
*Corresponding author.

1944-3994 / 1944-3986 © 2018 Desalination Publications. All rights reserved.

Desalination and Water Treatment
www.deswater.com

doi:10.5004/dwt.2018.22175

111 (2018) 88–93
April

Research on water resources optimal scheduling problem based
on parallel biological computing

Zuwen Jia, Zhaocai Wangb,a,*, Xiaoguang Baob, Xiaoming Wangb, Tunhua Wuc,*
aState Key Laboratory of Simulation and Regulation of River Basin Water Cycle, China, Institute of Water Resources and Hydro power
Research, Beijing 100048, China, Tel. +86 10 68786631, Fax +86 10 68786631, email: jzw@iwhr.com, zwji66@163.com (Z. Ji)
bCollege of Information, Shanghai Ocean University, Shanghai 201306, China, Tel. +86 2161900624, Fax +86 2161900624,
email: zcwang1028@163.com (Z. Wang), xgbao@shou.edu.cn (X. Bao), xmwang@shou.edu.cn (X. Wang)
cSchool of Information & Engineering, Wenzhou Medical University, Wenzhou 325035, China, Tel. +86 57786689913,
Fax +86 57786689913, email: appll188@163.com (T. Wu)

Received 17 November 2017; Accepted 7 March 2018

a b s t r a c t

Water resource shortage has become one of the main factors restricting the rapid economic and social
development of mankind, how limited water resources reasonable allocation to various users, pro-
tection of life and production, ecological water safety is facing an important problem in various
countries. Water resources optimal scheduling problem also has a wide range of application space,
which involves cost control and optimization of design expertise. The shortest flow path problem, as
a well-known NP-complete problem and one of famous water resources optimal scheduling prob-
lem, has attracted the attention of many scholars. In this paper, we use a new parallel algorithm
to solve the problem by basic DNA molecular operations. We reasonably design DNA chains that
characterize cities and paths, take appropriate biological operations and get solutions of the task
scheduling problem in proper length range with O(n2) time complexity. The ability of biological
manipulation in the algorithm helps us better understand DNA computing, and can be widely used
to solve more complex problems.

Keywords: DNA computing; Water resources optimal scheduling problem; The shortest flow path
problem; NP-complete problem

1. Introduction

The optimal scheduling of water resources is a multi-ob-
jective stochastic sequential decision making problem in
theory. The scheduling objectives are usually related to
flood control, power generation, urban and industrial water
supply, irrigation and reservoir deposition prevention and
ecological environment protection. In order to reduce the
complexity of the problem, the weight of each objective can
be assigned according to the actual situation, or the second-
ary objective is turned into the constraint condition, so that

the problem becomes a single objective stochastic sequen-
tial decision-making problem.

The main steps of water resources optimal scheduling
are as follows: (1) clear scheduling objectives and various
constraints; (2) build appropriate models and select optimi-
zation methods; (3) analyze the results and form the schedul-
ing scheme; (4) use administrative and economic measures
to promote the implementation of scheduling scheme; (5)
by using the simulation of the actual investigation or other
scheduling schemes, it is necessary to determine whether it
is necessary to improve the target, model, solution method,
scheduling rules and water rate system, etc.

There are mathematical programming method, net-
work flow method, large scale system decomposition
coordination method and simulation technology for water

Z. Ji et al. / Desalination and Water Treatment 111 (2018) 88–93 89

resources optimization scheduling. In mathematical pro-
gramming, linear programming and dynamic program-
ming are used more frequently. The nonlinear model
is usually used to avoid the loss of precision caused by
linearization when there has a hydraulic power gener-
ation target. When the scale of the problem is large, the
decomposition coordination technique can be applied to
deal with the problem. Simulation technology is a power-
ful tool to evaluate whether the system operation can pro-
duce expected benefits. Because the simulation model can
describe the water resources allocation system characteris-
tics and the expected benefits in various water conditions,
water requirement and operation mode of operation, and
easy to solve. Therefore, it has been widely used at home
and abroad in recent years.

In this paper, we use biological parallel computing
algorithm to solve the classical problem of water resources
scheduling—the shortest flow path problem. The prob-
lem can be described as: given n cities and m flow paths
with cost weight between different cities, the solution is to
find minimum cost weight flow path which it starts des-
ignated city, passes the rest of the cities one time and only
once, and finally comes back to the original starting point.
The shortest flow path problem is a typical NP-complete
problem, and it is also considered as one of the most chal-
lenging issues in the field of water resources regulation. For
instance, the edge-weighted graph G in Fig. 1 defines such
a problem. We assume that the starting and ending city ver-
tex is v1. It is not difficult to find that the path v1→ v2→ v5→
v6→ v4→ v3→ v1 with total weight 10 is a solution to shortest
flow path problem for graph G in Fig. 1. But with the scale
of the problem increasing, the problem is getting more and
more difficult to be solved.

In 1961, Feynman [1] gave a visionary talk to describe
the construction of computer, the possibility of submicro-
scopic. Although remarkable progress has made in com-
puter miniaturization, this goal has not been achieved
yet. Computer scientists rank computational problems in
three categories: easy, hard and incomputable [2]. One of
the major opinions of computer science in the understand-
ing is that many important computational problems are
NP-complete and there are unlikely to have efficient algo-
rithms to exactly solve the problems. To find more efficient
algorithms is a hot spot of research. DNA computing, by
virtue of its highly parallel computing ability, large storage
space, low loss characteristics, can overcome the shortcom-

ings of traditional electronic computer storage and comput-
ing speed. In 1994, Adleman [3] firstly proved that DNA
computing can be used to solve computationally difficult
problems, such as the Directed Hamiltonian Path Problem,
and demonstrated the strong parallel computing power of
DNA computing. The parallelism implies DNA computers
may solve more complex problems such as NP-complete
problems in linear scale growth time, comparing with the
exponential growth time required by electronic computers.
Lipton [4] confirmed that Adleman’s method can be used to
solve one kind of NP-complete problem (the satisfiability
problem). DNA computing, as an interdisciplinary science
using DNA biotechnologies to solve complex problems of
computational mathematics and optimization, has a wide
application prospect in handling scabrous problems. In
recent years, DNA computation has received considerable
interest from researchers. Many typical biological com-
puting models, such as Adleman-Lipton model [3,4], the
sticker model [5], the restriction enzyme model [2,6], the
self-assembly model [7], the hairpin model [8] and the sur-
face-based model [9] have already been proposed and built.
Based on previous computing models, lots of DNA algo-
rithms and procedures have been executed to solve intrac-
table NP-complete problems [10–21]. In order to better
reflect the advantages of biological computing, it is of great
significance that we try to solve more complex problems by
using DNA biological computing.

The rest of this paper is organized as follows. In Sec-
tion 2, the preliminary knowledge, including the Adle-
man-Lipton model and the shortest flow path problem, is
introduced. Section 3 proposes a DNA molecular parallel
algorithm to solve the shortest flow path problem. The algo-
rithm’s theoretical proof and complexity are got in Section
4. We get conclusions in Section 5.

2. Preliminary knowledge

2.1. Adleman-Lipton model

The DNA nucleotides are adenine, guanine, cytosine
and thymine, commonly abbreviated as A, G, C and T. Every
strand, according to chemical structure, has a 5 and a 3 end-
point; hence, any single strand has a natural direction. The
pairs (A, T)and (G, C) are known as complementary base
pairs. For instance, The strand 3′GACGTCATGTGG5′ is as
the complementary one of 5′CTGCAGTACACC3′ and 3′GAC-
GTCATGTGG5′ can be denoted by 5 3’ ’CTGCAGTACACC .
Thus, the singled strand 5′CTGCAGTACACC3′and 3′GAC-
GTCATGTGG5′ can form a double strand. The length of a
single DNA stranded is determined by the number of nucle-
otides comprising the single strand. So, if a single stranded
DNA having 10 nucleotides, we call it 15 mer.

The DNA biological manipulations introduced by Adle-
man [3] and Lipton [4] are firstly described. These manipu-
lations can be used to solve the shortest flow path problem.
Given test tubes, containing finite DNA molecule strings
over the alphabet {A,C,G,T}, we can execute the following
operations:

(1) Merge (T1, T2,…,Tn): given tubes T1, T2,…, Tn, the
operation stores the union T1 ∪ T2 ∪ … ∪ Tn in T1 and
leaves other tubes empty.Fig. 1. An edge-weighted graph G with 6 vertices.

Z. Ji et al. / Desalination and Water Treatment 111 (2018) 88–9390

(2) Copy (T1,T2, …, Tn): given a tube T1, the operation
gets other tubes T2,…,Tn with same strands as T1.

(3) Separation (T1, X, T2): given a tube T1 and a kind of
strings X, the operation moves away all strands
with string X from T1, and leaves surplus strands in
tube T2.

(4) Selection (T1, L, T2): given a tube T1 and integer num-
ber L, the operation transfers all strands with length
L from T1 to T2.

(5) Discard (T): given a tube T, the operation clears the
strands in T and leaves the T empty.

(6) Read (T): given a tube T, the operation can be used to
get the explicit DNA combinations of the strands in
tube T.

(7) Append-tail(T,Z): given a tube T and singled strands
Z, the operation attaches Z at the end of every strand
in tube T.

(8) Cleavage (T,): given a tube T and strings with, the
operation divides every strand containing [γ0γ1] in T
to two kinds different strands:

 […αγ0γ1βγ0γ1δ…]⇒[…αγ0], [γ1 βγ0], [γ1δ…].
(9) Annealing (T): given a tube T, the operation gener-

ates all feasible double strands and leaves them still
in T.

(10) Denaturation (T): given a tube T, the operation seg-
ments each double strand in T to two single strands
as:

αβ

αβ
αβ αβ













⇒ [] 



, .

(11) Sort (T1, T2, T3): for a given test tube T1, it chooses
the shortest length strands in the tube T2, the longest
strands in T3and the rest strands still in T1.

Since these operations can be executed in a constant
number steps with DNA biological strands [22], we confirm
each operation with O(1) time complexity.

2.2. The shortest flow path problem

The shortest flow path problem is a typical NP problem
[23]. Given a graph with n cities and m edges, the solution
path to the problem needs to be satisfied:

(1) The path must be sequentially joined together by the
cities.

(2) The path starts and ends from the same designated
city.

(3) The path goes through the rest of the n – 1 cities one
time and only once.

(4) The goal solution is to find paths satisfying the above
conditions and with minimized sum of weight cost.

While, the feasible combination paths is between n! to m!
kinds, the work is very difficult to search optimal solution
in such large quantities scope, this process needs a long
time complexity and huge storage space, even for the fastest
silicon based computers.

3. DNA algorithm for the shortest flow path problem

3.1. Initial idea

The initial idea to solve the shortest flow path problem
is as followed: generate strands corresponding to all pos-
sible edges connected paths in data pool, next, check out
the path strands for starting and terminating in a desig-
nated city and going through the rest cities one time and
only once; then, append the cost weighted length strands
in order to identify cost difference; finally, get the solutions
of the shortest flow path problem by corresponding DNA
operations. Concretely, the proposed algorithm has four
steps.

Step 1: Automatic response generate all possible edge
connected path strands starting and ending at
the specified city vertex for the shortest flow
path problem;

Step 2: Append corresponding cost weight strands on
the end of all possible combinations for mutual
comparison;

Step 3: Check out the eligible path strands containing
the other cities one time and only once.

Step 4: Select the optimal strands as the solution to the
shortest flow path problem;

3.2. Strand design

In the following, the symbols Ai,Bi(i∈{1,2,…, n}) indi-
cate different DNA singled strands having the same inte-
ger length (supposing t mer, certainly, the integer length t
is mainly depended on the scale of corresponding problem
as to distinguish all symbols [24–41]), and the vertex vi can
be represented by strands AiBi. We apply different DNA
strands symbols BiAj,BiAj(1 ≤ i < j ≤ n) to denote the edges
ei,j in graph, the corresponding cost weight strands are wi,-

jand wi,j = ci,j mer in order to compare the cost sum of
different combination paths. Meanwhile, we design singled
weighted strands # with t-mer length to show the beginning
and ending of the path strands.

3.3. An example of the problem

We firstly use Fig. 1 with 6 vertices and 13 edges as an
example to illustrate the algorithm of the shortest flow path
problem. We need to search the shortest continuous path
which starts and ends vertex v1, meanwhile, passes the rest
5 vertices one time and only once. Next, we explain the pro-
cess of biological computing algorithm.

3.3.1. Generate data pool

For the shortest flow path problem, all combination
paths are firstly continuous connected, in addition, the
paths must start the setting vertex v1and stop it. We Let

P = {#A1B1, B1A1#, AiBk|k = 2,3,…, n}

Q e E i j nB Ai j i j= ≤ < ≤{ | };, 1

Z. Ji et al. / Desalination and Water Treatment 111 (2018) 88–93 91

Algorithm 3.1: Generate all possible path strands in data
pool.

(1-1) Merge (P,Q);
(1-2) Annealing (P);
(1-3) Denaturation (P);
(1-4) Separation (P, {#A1B1}, T1);
(1-5) Discard (P);
(1-6) Separation (T1, {A1B1#}, P);

In the above operations, we get the sequentially con-
nected path strands that denote starting and ending speci-
fied vertex v1. For example, for the graph in Fig. 1, we have
singled strands:

#A1B1A6B6A5B5A4B4A2B2A3B3A5B5A1B1# ∈ P

which denote the path v1→ v6→v5→ v4→v2→ v3→ v5→ v1. Of
course, it cannot be the optimum solution because the path
passes the vertex v5 twice. The operation can be finished in
O(1) steps since each single manipulation above works in
O(1) steps.

3.3.2. Check out proper paths

The solutions paths to shortest flow path problem need
pass the other vertices one time and only once, so we should
choose the path strands to meet this limitation. If one path
miss the vertex vi, it should be discarded. For example, for
the graph in Fig. 1, we have singled strands:

#A1B1A2B2A4B4A5B5A6B6A1B1# ∈ P

which denote the path v1 →v2→v4→ v5→ v6→v1. Natu-
rally, it cannot be the optimum solution because the path
misses the vertex v3. The length of strands AiBi denoting
the vertex vi is 2t mer. The length of the strands # denot-
ing the starting and ending signal is t mer. Consequently
the length of sequentially connected path strands which
denote starting and ending vertex v1 then passes the
other n–1 vertices one time in tube P must be between
(2n + 4)t mer. We can get the strands by the following
manipulations.

Algorithm 3.2: Check out the qualified path strands.
For k = 2 to k = n
(2-1) Separation (P,{AkBk}, T2);
(2-2) Discard (P);
(2-3) Copy (T2; P);
(2-4) Discard (T2);
End for
(2-5) Selection (P,2n + 4, T3).

In the above operation we use a “For” clause. Thus this
operation can be finished in O(n) steps since each single
manipulation above works in O(1) steps.

3.3.3. Append corresponding cost weight strands

In order to compare the sum of weights of different con-
tinuous paths, we append the weight chains to the corre-
sponding paths strands.

Algorithm 3.3: Compare time cost of different individuals
in same allocations.

For i = 1 to i = n–1
For j = i + 1 to j = n
(3-1) Separation(T3,{BiAj}, T4);
(3-2) If(Detect(T4))
Then execute (3-3) to (3-5)
(3-3) Append -tail(T4, wij);
(3-4) Merge(T3, T4);
(3-5) Discard(T4).
End for
End for
For example in Fig. 1, we have singled strands:

#A1B1A3B3A2B2A4B4A5B5A6B6A1B1# ∈ P

which denote the path v1→ v3→ v2→ v4→v5→v6→v1. After
the step, the strands can be appended the corresponding
weight chains to

#A1B1A3B3A2B2A4B4A5B5A6B6A1B1#w13w32w24w45w56w61.

The operation can be finished in O(n2) time complexity
since each single manipulation above works in O(1) steps.

3.3.4. Get the solutions to shortest flow path problem

The shortest length strands mean the solution to the
shortest flow path problem. So we can choose it and get the
final result. For example in Fig. 1, the singled strands

#A1B1A2B2A5B5A6B6A4B4A3B3A1B1#w12w25w56w64w43w31

standing for the path v1→ v2→ v5→ v6→ v4→v3→ v1 are the
optimum solution strands. This is done by the following
manipulations:

Algorithm 3.4: Search the best solution strands.
(4-1) Sort(T3,T5,T6);
(4-2) Read(T5);
Simply, the operation can be finished in O(1) step.
4. The complexity and feasibility of the proposed DNA

algorithm
The following theorems show that, our proposed DNA

parallel algorithm can get solutions strands of the shortest
flow path problem with proper length range in O(n2) time
complexity.

Theorem 1. The solutions strands of shortest flow path problem
can be got by our designed DNA molecule operations.

Proof. We firstly generate strands denoting all possible
continuous paths which start and end definite vertex in
data pool by Algorithm 3.1. Also, for the shortest flow path
problem, each path should pass the other vertices one time
and only once, we select the paths satisfying the restric-
tion through the Algorithm 3.2. Next, we append edge cost
weight strands at the end of previous ones in order to find
best result in Algorithm 3.3. Surely, the solution to short-
est flow path problem has minimum cost weight sum in
all possible allocations. At last, we search and get the best
answer to the shortest flow path problem in Algorithm 3.4.

Z. Ji et al. / Desalination and Water Treatment 111 (2018) 88–9392

Theorem 2. The shortest flow path problem can be solved in
O(n2) time complexity using DNA parallel operations.

Proof. Owing to the time complexity of each operation
is in O(1) [16], the operations of previous algorithm can be
obviously executed in limited time range. The time com-
plexity T of total algorithm is as follows:

T(Algorithm 3.1) = O(1);
T(Algorithm 3.2) = O(n);
T(Algorithm 3.3) = O(n2);
T(Algorithm 3.4) = O(1);
T = T(Algorithm 3.1) + T(Algorithm 3.2) + T(Algorithm

3.3) +T(Algorithm 3.4)
= O(1) + O(n) + O(n2) + O(1)
= O(n2)
In conclusion, we can find the solutions of shortest flow

path problem in O(n2) time complexity.

Theorem 3. The solution strands of shortest flow path problem
can be searched in appropriate length range.

Proof. After the operations of Algorithm 3.2, we gener-
ate strands standing for continuous path which start and
end vertex v1 and pass the other vertices one time and only
once. The strands can be described:

#A1B1…AiBi…B1A1#i {2,3,…, n}

In the Algorithm 3.3, we append the cost weight strands
in order to find the optimal result strands, so the strands
after Algorithm 3.3 can be showed:

#A1B1…AiBi…B1A1#w1,mwm,n…ws,1i, m, n, s ∈ {2,3,…, n}.

Besides, we initially set the chain length as  Ai =  Bi
=  # = t mer,(1≤ i ≤ n) and  wkl = ckl mer,(1 ≤ k < l ≤ n,
ckl is the edge cost weight), and we suppose t = max{ckl},so the
length of DNA strands S in T4 is

 S =  # +  A1 +  B1 + …+  Ai +  Bi + …+  B1 +  A1
+ # +  w1,m +  wm,n + …+  ws,1

= + + + + + + + + + +
+

t t t t t t w w w
n

m m n s�� ��� ���
2 1()

, , ,|| || ... || ||1 1

∴t = max{ckl},|E|= m

∴0≤ w1,m +  wm,n +…+  ws,1 ≤mt
∴(2n + 4)t£  S £(2n + 4)t + mt

So the length of solutions strands in Algorithm 3.4 is in
appropriate length range. We can be relatively easy to find
and read out the strands.

5. Conclusions

In this paper, we utilize DNA computing algorithm
to solve the shortest flow path problem using the Adle-
man-Lipton model based on biological operations. Owing

to electronic computers have obvious limitations in speed,
storage capacity, mentality and physical space, the methods
of DNA computing is getting more and more attention. In
particular, the method is highly efficient and parallel. Com-
pared with previous algorithms, our DNA computing algo-
rithm has the following advantages: firstly, the proposed
algorithm has a lower hybrid error rate as we have devel-
oped computer program to generate better DNA sequences
of the shortest flow path problem for the solution space. Sec-
ondly, the algorithm complexity is polynomial time growth
with the size of the problem. For the shortest flow path
problem with n vertices and m edges, it only needs O(n2)
time complexity, faster than previous algorithms, also, the
solution strands can be obtained in a certain length range.
The ability based on complex biological operations in the
algorithm may help us to have a better understanding of
DNA computing and make a greater range of applications
to complicated issues. We expect that, in future research,
more nucleic acid operations will be utilized to derive com-
putational models to solve NP-hard problems with high
efficiency.

Acknowledgements

It was supported by National Key Research and Devel-
opment Program of China (Grant No.2017YFC0405501)
and the Open Research Fund of State Key Laboratory of
Simulation and Regulation of Water Cycle in River Basin,
China Institute of Water Resources and Hydro power
Research(Grant No. SKL2018CG16, IWHR-SKL-201606).
The project was also financially supported by National
Natural Science Foundation of China (Grant No. 11701363,
11501359, 61702325, 11601324).

References

[1] R.P. Feynman (1961) In: Gilbert DH (ed) Minaturization. Rein-
hold, New York, pp 282–296.

[2] Q. Ouyang, P.D. Kaplan, S. Liu, A. Libchaber, DNA solution of
the maximal clique problem, Science, 278(3) (1997) 446–449.

[3] L.M. Adleman, Molecular computation of solutions to combi-
natorial problems, Science, 266(5187) (1994) 1021–1024.

[4] R.J. Lipton, DNA Solution of hard computational problems,
Science, 268 (5210) (1995) 542–545.

[5] S. Roweis, E. Winfree, R. Burgoyne, N.V Chelyapov, M.F. Good-
man, P.W.K. Rothemund, L.M. Adleman, A sticker based model
for DNA computation, J. Comput. Biol., 5(4) (1998) 615–629.

[6] J.F. Ren, Y.Z. Zhang, G. Sun, The np-hardness of minimizing
the total late work on an unbounded batch machine, Asia Pac.
J. Oper. Res., 26(03) (2009) 351–363.

[7] E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman, Design and
self-assembly of two dimensional DNA crystals, Nature, 394
(1998) 539–544.

[8] K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T.
Yokomori, M. Hagiya, Molecular computation by DNA hairpin
formation, Science, 288 (2000) 1223–1226.

[9] D.M. Xiao, W.X. Li, Z.Z. Zhang, L. He, Solving maximum cut
problems in the Adleman-Lipton model, BioSystems, 82 (2005)
203–207.

[10] W.X. Li, D.M. Xiao, L. He, DNA ternary addition, Appl. Math.
Comput., 182 (2006) 977–986.

[11] D.M. Xiao, W.X. Li, J. Yu, X.D. Zhang, Z.Z. Zhang, L. He, Proce-
dures for a dynamical system on f0; 1gn with DNA molecules,
BioSystems., 84 (2006) 207–216.

Z. Ji et al. / Desalination and Water Treatment 111 (2018) 88–93 93

[12] W.L. Chang, Fast parallel DNA-based algorithms for molecu-
lar computation: the set-partition problem, IEEE Trans. Nano
biosci., 6 (2007) 346–353.

[13] Z. Wang, D. Huang, H. Meng, C. Tang, A new fast algorithm
for solving the minimum spanning tree problem based on
DNA molecules computation, Bio systems, 114(1) (2013) 1–7.

[14] M.Y. Guo, W.L. Chang, M. Ho, J. Lu, J.N. Cao, Is optimal solu-
tion of every NP-complete or NP-hard problem determined
from its characteristic for DNA-based computing, BioSystems,
80 (2005) 71–82.

[15] W.L. Chang, K.W. Lin, J.C. Chen, C.C. Wang, L.C. Liu, M. Guo,
Molecular solutions of the RSA public-key cryptosystem on a
DNA-based computer, J. Super Comput., 61 (2012) 642–672.

[16] Z. Wang, J. Pu, L. Cao, J. Tan, A parallel biological optimization
algorithm to solve the unbalanced assignment problem based
on DNA molecular computing, Int. J. Mol Sci., 16(10) (2015)
25338–25352.

[17] Z.C. Wang, J. Tan, D.M. Huang, Y.C. Ren, Z.W. Ji, A biological
algorithm to solve the assignment problem based on DNA mol-
ecules computation, Appl. Math Comput., 244 (2014) 183–190.

[18] Z. Wang, D. Huang, J. Tan, T. Liu, K. Zhao, L. Li, A parallel
algorithm for solving the n-queens problem based on inspired
computational model, Biosystems, 131(5) (2015) 22–29.

[19] X.C. Liu, X.F. Yang, S.L. Li, Y. Ding, Solving the minimum
bisection problem using a biologically inspired computational
model, Theor. Comput. Sci., 411 (2010) 888–896.

[20] Z.C. Wang, Y.M. Zhang, W.H. Zhou, H.F. Liu, Solving traveling
salesman problem in the Adleman-Lipton model, Appl. Math
Comput., 219 (2012) 2267–2270.

[21] C. Wang, J. Zhou, X. Xu, Saddle points theory of two classes
of augmented Lagrangians and its applications to generalized
semi-infinite programming, Appl. Math Opt., 59(3) (2009) 413–
434.

[22] M.R. Garey, D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-completeness., W. H. Freeman and
Company, 1979.

[23] M. Yamamura, Y. Hiroto, T. Matoba, Solutions of shortest path
problems by concentration control, Lecture Notes Computer
Science, 2340 (2002) 231–240.

[24] H. Zhang, Y. Wang, A new CQ method for solving split feasi-
bility problem, Front Math China, 5(1) (2010) 37–46.

[25] R.B.A. Bakar, J. Watada, W. Pedrycz, DNA approach to solve
clustering problem based on a mutual order, Biosystems, 91
(2008) 1–12.

[26] Z. Wang, Z. Ji, Z. Su, X. Wang, K. Zhao, Solving the maximal
matching problem with DNA molecules in Adleman-Lipton
model, Int. J. Biomath., 9(02) (2016) 1650019.

[27] H.Y. Zhang, X.Y. Liu, A CLIQUE algorithm using DNA com-
puting techniques based on closed-circle DNA sequences, Bio-
systems, 105 (2011) 73–82.

[28] L. Qi, X. Tong, Y. Wang, Computing power system parameters
to maximize the small signal stability margin based on min-
max models, Optim Eng., 10(4) (2009) 465–476.

[29] G. Wang, X.X. Huang, J. Zhang, Levitin-Polyak well-posedness
in generalized equilibrium problems with functional con-
straints, Pac. J. Optim., 6(2) (2010) 441–453.

[30] R.S. Braich, C. Johnson, P.W.K. Rothemund, N. Chelyapov, L.M.
Adleman, Solution of a 20-variable 3-SAT problem on a DNA
computer, Science, 296 (2002) 499–502.

[31] Z. Wang, Z. Ji, X. Wang, et al. A new parallel DNA algorithm to
solve the task scheduling problem based on inspired computa-
tional model, Biosystems, 162 (2017) 59–65.

[32] H. Chen, Y. Wang, A Family of higher-order convergent itera-
tive methods for computing the Moore–Penrose inverse, Appl.
Math Comput., 218(8) (2011) 4012–4016.

[33] C.P. Wei, P. Wang, Y.Z. Zhang, Entropy similarity measure of
interval-valued in tuition is tic fuzzy sets and their applica-
tions, Inform Sciences, 181(19) (2011) 4273–4286.

[34] C. Miao, Y. Zhang, Z. Cao, Bounded parallel-batch scheduling
on single and multi machines for deteriorating jobs, Inform.
Process Lett., 111(16) (2011) 798–803.

[35] G. Wang, Levitin–Polyak Well-Posedness for optimization
problems with generalized equilibrium constraints, J. Optimiz
Theory App., 153(1) (2012) 27–41.

[36] W. Liu, C. Wang, A smoothing Levenberg–Marquardt method
for generalized semi-infinite programming, Comput. Appl.
Math, 32(1) (2013) 89–105.

[37] N. Zhao, C. Wei, Z. Xu, Sensitivity analysis of multiple criteria
decision making method based on the OWA operator, Int. J.
Intell. Syst, 28(11) (2013) 1124–1139.

[38] Q. Liu, A. Liu, Block SOR methods for the solution of indefinite
least squares problems, Calcolo., 51(3) (2014) 367–379.

[39] B. Liu, B. Qu, N. Zheng, A successive projection algorithm
for solving the multiple-sets split feasibility problem, Numer.
Func. Anal Opt., 35(11) (2014) 1459–1466.

[40] J. Ren, G. Sun, Y. Zhang, The supplying chain scheduling with
outsourcing and transportation, Asia Pac. J. Oper. Res., 34(2)
(2017) 1750009.

[41] B. Wang, A. Iserles, X. Wu, Arbitrary-order trigonometric fou-
rier collocation methods for multi-frequency oscillatory sys-
tems, Found Comput Math., 16(1) (2016) 151–181.

