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a b s t r a c t

Water resource shortage has become one of the main factors restricting the rapid economic and social 
development of mankind, how limited water resources reasonable allocation to various users, pro-
tection of life and production, ecological water safety is facing an important problem in various 
countries. Water resources optimal scheduling problem also has a wide range of application space, 
which involves cost control and optimization of design expertise. The shortest flow path problem, as 
a well-known NP-complete problem and one of famous water resources optimal scheduling prob-
lem, has attracted the attention of many scholars. In this paper, we use a new parallel algorithm 
to solve the problem by basic DNA molecular operations. We reasonably design DNA chains that 
characterize cities and paths, take appropriate biological operations and get solutions of the task 
scheduling problem in proper length range with O(n2) time complexity. The ability of biological 
manipulation in the algorithm helps us better understand DNA computing, and can be widely used 
to solve more complex problems.

Keywords:  DNA computing; Water resources optimal scheduling problem; The shortest flow path 
problem; NP-complete problem

1. Introduction

The optimal scheduling of water resources is a multi-ob-
jective stochastic sequential decision making problem in 
theory. The scheduling objectives are usually related to 
flood control, power generation, urban and industrial water 
supply, irrigation and reservoir deposition prevention and 
ecological environment protection. In order to reduce the 
complexity of the problem, the weight of each objective can 
be assigned according to the actual situation, or the second-
ary objective is turned into the constraint condition, so that 

the problem becomes a single objective stochastic sequen-
tial decision-making problem.

The main steps of water resources optimal scheduling 
are as follows: (1) clear scheduling objectives and various 
constraints; (2) build appropriate models and select optimi-
zation methods; (3) analyze the results and form the schedul-
ing scheme; (4) use administrative and economic measures 
to promote the implementation of scheduling scheme; (5) 
by using the simulation of the actual investigation or other 
scheduling schemes, it is necessary to determine whether it 
is necessary to improve the target, model, solution method, 
scheduling rules and water rate system, etc.

There are mathematical programming method, net-
work flow method, large scale system decomposition 
coordination method and simulation technology for water 
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resources optimization scheduling. In mathematical pro-
gramming, linear programming and dynamic program-
ming are used more frequently. The nonlinear model 
is usually used to avoid the loss of precision caused by 
linearization when there has a hydraulic power gener-
ation target. When the scale of the problem is large, the 
decomposition coordination technique can be applied to 
deal with the problem. Simulation technology is a power-
ful tool to evaluate whether the system operation can pro-
duce expected benefits. Because the simulation model can 
describe the water resources allocation system characteris-
tics and the expected benefits in various water conditions, 
water requirement and operation mode of operation, and 
easy to solve. Therefore, it has been widely used at home 
and abroad in recent years.

In this paper, we use biological parallel computing 
algorithm to solve the classical problem of water resources 
scheduling—the shortest flow path problem. The prob-
lem can be described as: given n cities and m flow paths 
with cost weight between different cities, the solution is to 
find minimum cost weight flow path which it starts des-
ignated city, passes the rest of the cities one time and only 
once, and finally comes back to the original starting point. 
The shortest flow path problem is a typical NP-complete 
problem, and it is also considered as one of the most chal-
lenging issues in the field of water resources regulation. For 
instance, the edge-weighted graph G in Fig. 1 defines such 
a problem. We assume that the starting and ending city ver-
tex is v1. It is not difficult to find that the path v1→ v2→ v5→ 
v6→ v4→ v3→ v1 with total weight 10 is a solution to shortest 
flow path problem for graph G in Fig. 1. But with the scale 
of the problem increasing, the problem is getting more and 
more difficult to be solved.

In 1961, Feynman [1] gave a visionary talk to describe 
the construction of computer, the possibility of submicro-
scopic. Although remarkable progress has made in com-
puter miniaturization, this goal has not been achieved 
yet. Computer scientists rank computational problems in 
three categories: easy, hard and incomputable [2]. One of 
the major opinions of computer science in the understand-
ing is that many important computational problems are 
NP-complete and there are unlikely to have efficient algo-
rithms to exactly solve the problems. To find more efficient 
algorithms is a hot spot of research. DNA computing, by 
virtue of its highly parallel computing ability, large storage 
space, low loss characteristics, can overcome the shortcom-

ings of traditional electronic computer storage and comput-
ing speed. In 1994, Adleman [3] firstly proved that DNA 
computing can be used to solve computationally difficult 
problems, such as the Directed Hamiltonian Path Problem, 
and demonstrated the strong parallel computing power of 
DNA computing. The parallelism implies DNA computers 
may solve more complex problems such as NP-complete 
problems in linear scale growth time, comparing with the 
exponential growth time required by electronic computers. 
Lipton [4] confirmed that Adleman’s method can be used to 
solve one kind of NP-complete problem (the satisfiability 
problem). DNA computing, as an interdisciplinary science 
using DNA biotechnologies to solve complex problems of 
computational mathematics and optimization, has a wide 
application prospect in handling scabrous problems. In 
recent years, DNA computation has received considerable 
interest from researchers. Many typical biological com-
puting models, such as Adleman-Lipton model [3,4], the 
sticker model [5], the restriction enzyme model [2,6], the 
self-assembly model [7], the hairpin model [8] and the sur-
face-based model [9] have already been proposed and built. 
Based on previous computing models, lots of DNA algo-
rithms and procedures have been executed to solve intrac-
table NP-complete problems [10–21]. In order to better 
reflect the advantages of biological computing, it is of great 
significance that we try to solve more complex problems by 
using DNA biological computing.

The rest of this paper is organized as follows. In Sec-
tion 2, the preliminary knowledge, including the Adle-
man-Lipton model and the shortest flow path problem, is 
introduced. Section 3 proposes a DNA molecular parallel 
algorithm to solve the shortest flow path problem. The algo-
rithm’s theoretical proof and complexity are got in Section 
4. We get conclusions in Section 5.

2. Preliminary knowledge

2.1. Adleman-Lipton model

The DNA nucleotides are adenine, guanine, cytosine 
and thymine, commonly abbreviated as A, G, C and T. Every 
strand, according to chemical structure, has a 5 and a 3 end-
point; hence, any single strand has a natural direction. The 
pairs (A, T )and (G, C) are known as complementary base 
pairs. For instance, The strand 3′GACGTCATGTGG5′ is as 
the complementary one of 5′CTGCAGTACACC3′ and 3′GAC-
GTCATGTGG5′ can be denoted by 5 3’ ’CTGCAGTACACC . 
Thus, the singled strand 5′CTGCAGTACACC3′and 3′GAC-
GTCATGTGG5′ can form a double strand. The length of a 
single DNA stranded is determined by the number of nucle-
otides comprising the single strand. So, if a single stranded 
DNA having 10 nucleotides, we call it 15 mer.

The DNA biological manipulations introduced by Adle-
man [3] and Lipton [4] are firstly described. These manipu-
lations can be used to solve the shortest flow path problem. 
Given test tubes, containing finite DNA molecule strings 
over the alphabet {A,C,G,T}, we can execute the following 
operations:

(1) Merge (T1, T2,…,Tn): given tubes T1, T2,…, Tn, the 
operation stores the union T1 ∪ T2 ∪ … ∪ Tn in T1 and 
leaves other tubes empty.Fig. 1. An edge-weighted graph G with 6 vertices.
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(2) Copy (T1,T2, …, Tn): given a tube T1, the operation 
gets other tubes T2,…,Tn with same strands as T1.

(3) Separation (T1, X, T2): given a tube T1 and a kind of 
strings X, the operation moves away all strands 
with string X from T1, and leaves surplus strands in 
tube T2.

(4) Selection (T1, L, T2): given a tube T1 and integer num-
ber L, the operation transfers all strands with length 
L from T1 to T2.

(5) Discard (T): given a tube T, the operation clears the 
strands in T and leaves the T empty.

(6) Read (T): given a tube T, the operation can be used to 
get the explicit DNA combinations of the strands in 
tube T.

(7) Append-tail(T,Z): given a tube T and singled strands 
Z, the operation attaches Z at the end of every strand 
in tube T.

(8) Cleavage (T,): given a tube T and strings with, the 
operation divides every strand containing [γ0γ1] in T 
to two kinds different strands:

 […αγ0γ1βγ0γ1δ…]⇒[…αγ0], [γ1 βγ0], [γ1δ…].
(9) Annealing (T): given a tube T, the operation gener-

ates all feasible double strands and leaves them still 
in T.

(10) Denaturation (T): given a tube T, the operation seg-
ments each double strand in T to two single strands 
as:

 
αβ

αβ
αβ αβ













⇒ [ ] 

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(11) Sort (T1, T2, T3): for a given test tube T1, it chooses 
the shortest length strands in the tube T2, the longest 
strands in T3and the rest strands still in T1.

Since these operations can be executed in a constant 
number steps with DNA biological strands [22], we confirm 
each operation with O(1) time complexity.

2.2. The shortest flow path problem

The shortest flow path problem is a typical NP problem 
[23]. Given a graph with n cities and m edges, the solution 
path to the problem needs to be satisfied:

(1) The path must be sequentially joined together by the 
cities.

(2) The path starts and ends from the same designated 
city.

(3) The path goes through the rest of the n – 1 cities one 
time and only once.

(4) The goal solution is to find paths satisfying the above 
conditions and with minimized sum of weight cost.

While, the feasible combination paths is between n! to m! 
kinds, the work is very difficult to search optimal solution 
in such large quantities scope, this process needs a long 
time complexity and huge storage space, even for the fastest 
silicon based computers.

3. DNA algorithm for the shortest flow path problem

3.1. Initial idea

The initial idea to solve the shortest flow path problem 
is as followed: generate strands corresponding to all pos-
sible edges connected paths in data pool, next, check out 
the path strands for starting and terminating in a desig-
nated city and going through the rest cities one time and 
only once; then, append the cost weighted length strands 
in order to identify cost difference; finally, get the solutions 
of the shortest flow path problem by corresponding DNA 
operations. Concretely, the proposed algorithm has four 
steps. 

Step 1:  Automatic response generate all possible edge 
connected path strands starting and ending at 
the specified city vertex for the shortest flow 
path problem;

Step 2:  Append corresponding cost weight strands on 
the end of all possible combinations for mutual 
comparison;

Step 3:  Check out the eligible path strands containing 
the other cities one time and only once.

Step 4:  Select the optimal strands as the solution to the 
shortest flow path problem;

3.2. Strand design

In the following, the symbols Ai,Bi(i∈{1,2,…, n}) indi-
cate different DNA singled strands having the same inte-
ger length (supposing t mer, certainly, the integer length t 
is mainly depended on the scale of corresponding problem 
as to distinguish all symbols [24–41]), and the vertex vi can 
be represented by strands AiBi. We apply different DNA 
strands symbols BiAj,BiAj(1 ≤ i < j ≤ n) to denote the edges 
ei,j in graph, the corresponding cost weight strands are wi,-

jand wi,j = ci,j mer in order to compare the cost sum of 
different combination paths. Meanwhile, we design singled 
weighted strands # with t-mer length to show the beginning 
and ending of the path strands.

3.3. An example of the problem

We firstly use Fig. 1 with 6 vertices and 13 edges as an 
example to illustrate the algorithm of the shortest flow path 
problem. We need to search the shortest continuous path 
which starts and ends vertex v1, meanwhile, passes the rest 
5 vertices one time and only once. Next, we explain the pro-
cess of biological computing algorithm.

3.3.1. Generate data pool

For the shortest flow path problem, all combination 
paths are firstly continuous connected, in addition, the 
paths must start the setting vertex v1and stop it. We Let

P = {#A1B1, B1A1#, AiBk|k = 2,3,…, n}

Q e E i j nB Ai j i j= ≤ < ≤{ | };, 1   
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Algorithm 3.1: Generate all possible path strands in data 
pool.

(1-1) Merge (P,Q);
(1-2) Annealing (P);
(1-3) Denaturation (P);
(1-4) Separation (P, {#A1B1}, T1);
(1-5) Discard (P);
(1-6) Separation (T1, {A1B1#}, P);

In the above operations, we get the sequentially con-
nected path strands that denote starting and ending speci-
fied vertex v1. For example, for the graph in Fig. 1, we have 
singled strands:

#A1B1A6B6A5B5A4B4A2B2A3B3A5B5A1B1# ∈ P

which denote the path v1→ v6→v5→ v4→v2→ v3→ v5→ v1. Of 
course, it cannot be the optimum solution because the path 
passes the vertex v5 twice. The operation can be finished in 
O(1) steps since each single manipulation above works in 
O(1) steps.

3.3.2. Check out proper paths

The solutions paths to shortest flow path problem need 
pass the other vertices one time and only once, so we should 
choose the path strands to meet this limitation. If one path 
miss the vertex vi, it should be discarded. For example, for 
the graph in Fig. 1, we have singled strands:

#A1B1A2B2A4B4A5B5A6B6A1B1# ∈ P

which denote the path v1 →v2→v4→ v5→ v6→v1. Natu-
rally, it cannot be the optimum solution because the path 
misses the vertex v3. The length of strands AiBi denoting 
the vertex vi is 2t mer. The length of the strands # denot-
ing the starting and ending signal is t mer. Consequently 
the length of sequentially connected path strands which 
denote starting and ending vertex v1 then passes the 
other n–1 vertices one time in tube P must be between 
(2n + 4)t mer. We can get the strands by the following 
manipulations.

Algorithm 3.2: Check out the qualified path strands.
For k = 2 to k = n
(2-1) Separation (P,{AkBk}, T2);
(2-2) Discard (P);
(2-3) Copy (T2; P);
(2-4) Discard (T2);
End for
(2-5) Selection (P,2n + 4, T3).

In the above operation we use a “For” clause. Thus this 
operation can be finished in O(n) steps since each single 
manipulation above works in O(1) steps.

3.3.3. Append corresponding cost weight strands

In order to compare the sum of weights of different con-
tinuous paths, we append the weight chains to the corre-
sponding paths strands.

Algorithm 3.3: Compare time cost of different individuals 
in same allocations.

For i = 1 to i = n–1
For j = i + 1 to j = n
(3-1) Separation(T3,{BiAj}, T4);
(3-2) If(Detect(T4))
Then execute (3-3) to (3-5)
(3-3) Append -tail(T4, wij);
(3-4) Merge(T3, T4);
(3-5) Discard(T4).
End for
End for
For example in Fig. 1, we have singled strands:

#A1B1A3B3A2B2A4B4A5B5A6B6A1B1# ∈ P

which denote the path v1→ v3→ v2→ v4→v5→v6→v1. After 
the step, the strands can be appended the corresponding 
weight chains to

#A1B1A3B3A2B2A4B4A5B5A6B6A1B1#w13w32w24w45w56w61.

The operation can be finished in O(n2) time complexity 
since each single manipulation above works in O(1) steps.

3.3.4. Get the solutions to shortest flow path problem

The shortest length strands mean the solution to the 
shortest flow path problem. So we can choose it and get the 
final result. For example in Fig. 1, the singled strands

#A1B1A2B2A5B5A6B6A4B4A3B3A1B1#w12w25w56w64w43w31

standing for the path v1→ v2→ v5→ v6→ v4→v3→ v1 are the 
optimum solution strands. This is done by the following 
manipulations:

Algorithm 3.4: Search the best solution strands.
(4-1) Sort(T3,T5,T6);
(4-2) Read(T5);
Simply, the operation can be finished in O(1) step.
4. The complexity and feasibility of the proposed DNA 

algorithm
The following theorems show that, our proposed DNA 

parallel algorithm can get solutions strands of the shortest 
flow path problem with proper length range in O(n2) time 
complexity.

Theorem 1. The solutions strands of shortest flow path  problem 
can be got by our designed DNA molecule operations.

Proof. We firstly generate strands denoting all possible 
continuous paths which start and end definite vertex in 
data pool by Algorithm 3.1. Also, for the shortest flow path 
problem, each path should pass the other vertices one time 
and only once, we select the paths satisfying the restric-
tion through the Algorithm 3.2. Next, we append edge cost 
weight strands at the end of previous ones in order to find 
best result in Algorithm 3.3. Surely, the solution to short-
est flow path problem has minimum cost weight sum in 
all possible allocations. At last, we search and get the best 
answer to the shortest flow path problem in Algorithm 3.4.
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Theorem 2. The shortest flow path problem can be solved in 
O(n2) time complexity using DNA parallel operations.

Proof. Owing to the time complexity of each operation 
is in O(1) [16], the operations of previous algorithm can be 
obviously executed in limited time range. The time com-
plexity T of total algorithm is as follows:

T(Algorithm 3.1) = O(1);
T(Algorithm 3.2) = O(n);
T(Algorithm 3.3) = O(n2);
T(Algorithm 3.4) = O(1);
T =  T(Algorithm 3.1) + T(Algorithm 3.2) + T(Algorithm 

3.3) +T(Algorithm 3.4)
= O(1) + O(n) + O(n2) + O(1)
= O(n2)
In conclusion, we can find the solutions of shortest flow 

path problem in O(n2) time complexity.

Theorem 3. The solution strands of shortest flow path problem 
can be searched in appropriate length range.

Proof. After the operations of Algorithm 3.2, we gener-
ate strands standing for continuous path which start and 
end vertex v1 and pass the other vertices one time and only 
once. The strands can be described:

#A1B1…AiBi…B1A1#i {2,3,…, n}

In the Algorithm 3.3, we append the cost weight strands 
in order to find the optimal result strands, so the strands 
after Algorithm 3.3 can be showed:

#A1B1…AiBi…B1A1#w1,mwm,n…ws,1i, m, n, s ∈ {2,3,…, n}.

Besides, we initially set the chain length as  Ai =  Bi 
=  # = t mer,(1≤ i ≤ n) and  wkl = ckl mer,(1 ≤ k < l ≤ n, 
ckl is the edge cost weight), and we suppose t = max{ckl},so the 
length of DNA strands S in T4 is

 S =  # +  A1 +  B1 + …+  Ai +  Bi + …+  B1 +  A1 
+ # +  w1,m +  wm,n + …+  ws,1 

= + + + + + + + + + +
+

t t t t t t w w w
n

m m n s�� ��� ���
2 1( )

, , ,|| || ... || ||1 1

∴t = max{ckl},|E|= m

∴0≤ w1,m  +  wm,n +…+  ws,1 ≤mt
∴(2n + 4)t£  S £(2n + 4)t + mt

So the length of solutions strands in Algorithm 3.4 is in 
appropriate length range. We can be relatively easy to find 
and read out the strands.

5. Conclusions

In this paper, we utilize DNA computing algorithm 
to solve the shortest flow path problem using the Adle-
man-Lipton model based on biological operations. Owing 

to electronic computers have obvious limitations in speed, 
storage capacity, mentality and physical space, the methods 
of DNA computing is getting more and more attention. In 
particular, the method is highly efficient and parallel. Com-
pared with previous algorithms, our DNA computing algo-
rithm has the following advantages: firstly, the proposed 
algorithm has a lower hybrid error rate as we have devel-
oped computer program to generate better DNA sequences 
of the shortest flow path problem for the solution space. Sec-
ondly, the algorithm complexity is polynomial time growth 
with the size of the problem. For the shortest flow path 
problem with n vertices and m edges, it only needs O(n2) 
time complexity, faster than previous algorithms, also, the 
solution strands can be obtained in a certain length range. 
The ability based on complex biological operations in the 
algorithm may help us to have a better understanding of 
DNA computing and make a greater range of applications 
to complicated issues. We expect that, in future research, 
more nucleic acid operations will be utilized to derive com-
putational models to solve NP-hard problems with high 
efficiency.
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