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a b s t r a c t

Accurate assessment of piping systems’ risk to damage reduces annual operation and maintenance 
costs. Recently, extreme climate events (e.g. cold snaps or heavy snow) due to global climate change 
have increased pipe system failure. The objective of this study is to establish a framework for develop-
ing screening models of pipe failure events, due to water network systems freezing using two statis-
tical approaches. More specifically, logistic regression was used to estimate the probability of failure 
at a household level, whereas the customized model developed to predict the frequency of communi-
ty-wide failure events. The data recorded at least one failure event in Korea from 2008 to 2015, which 
was provided to the logistic regression model. The customized model, however, only used the data 
set compiled from three areas of concern with the highest frequency of the failures. Results showed 
that the logistic model showed the best performance out of the 11 constructed models, in terms of R 
and the variance inflation factor (of lower than two). The logistic model incorporated three variables: 
the minimum temperature on the day of failure, the natural logarithm of the total water usage in the 
previous month and the mean minimum temperature over the previous 10 days. The selected model 
had an overall prediction accuracy of 66.4%. When the customized model at the community level was 
examined the three models not only yielded moderate R2 values ranging from 0.53 to 0.66, but also 
helped identify water network systems at risk of failures. Overall, this study demonstrated that the 
proposed methodology can be used to highlight areas of concern at different geographic scales, along 
with refining existing statistical models with new variables updated in real time. 
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1. Introduction

Insurance companies revealed that pipe failures due to 
freezing or bursting are the leading source of residential 
water losses worldwide [1]. In addition, 80% of the total 
cost of a water network is used to operate or maintain the 
water supply system. Currently, in Korea, the probability 
of pipe failure is classified into four stages (very high, high, 
normal, and low) based simply on the daily minimum tem-

perature. Pipe failure is dependent upon geographic loca-
tion and temperature [2], but it is difficult to predict with 
only these two pieces of information. The risk of failure can 
actually be attributed to combined effects of various causes.

To identify and predict pipe failure due to freezing, many 
studies were performed using physical deterministic and 
statistical models dependent on the available data [3]. Phys-
ically-based models used data such as soil properties, pipe 
properties, hydraulic conditions, and environmental condi-
tions [4–6]. These studies were focused on the mechanical 
behavior of materials by analyzing the stress on the pipes. 
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While the failure of a pipe could be experimentally verified, 
there still remain restrictions due to insufficient data avail-
able. Therefore, statistical models have generally been used 
to predict pipe failures, by attempting to define the relation of 
historical failure data with environmental conditions [7–13].

This study developed a logistic regression model to 
estimate the probability of a failure at the household level. 
In addition, a customized model was developed to predict 
the frequency of community-wide pipe failure events when 
considering site-specific characteristics. This study revealed 
that using the proposed methods and models identified the 
factors related to freeze events, and the water networks at 
risk of failure. Further, the proposed methodology could be 
utilized for forecasting, by updating the current statistical 
model with additional monitoring data in real time.

2. Materials and methods

2.1. Study area

The study area was located throughout the Republic 
of Korea. The Korea peninsula is geographically located 
in mid-latitude and approximately 70% of the country is 
composed of mountainous terrain. Climatologically, Korea 

belongs to a tropical climate zone with four distinct seasons. 
Winters are long, cold and dry due to the expanding Siberian 
high-pressure air mass. Over the past 30 years (1981 ~ 2010), 
the average annual precipitation of the Korean Peninsula 
was 1,162.2 mm, the annual average temperature was 11.0°C, 
the average winter temperature was –1.7°C, and the average 
daily temperature range was 10.4°C [18]. Fig 1. Shows the 
spatial distribution of pipe failure events in Korea.

2.2. Data acquisition

In this study, historical pipe failure event data from 
2008 to 2015 of 21 cities were acquired from the Korea Water 
Resources Corporation. Pipe failure event data contained 
the number of failure events as well as the time of the event 
and the properties of pipe (e.g. diameter of pipe, installation 
year of pipe and pipe material). In addition, the water use 
data were provided by Korea Water Resources Corporation. 
Meteorological data, which contained daily mean tempera-
ture, maximum temperature and minimum temperature 
were acquired from Automatic Weather Stations (AWS) 
adjacent to individual households. To analyze the influence 
of persistent low temperatures, the average mean tempera-
ture 10 d antecedent the pipe failure events, the average 

Fig. 1. A map showing pipe failure events in Korea during the monitoring period from 2008 to 2015. 
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maximum temperature 10 d antecedent the pipe failure 
events the average minimum temperature 10 d antecedent 
the pipe failures were calculated for further analyses. The 
same number of individual households within the range 
of temperature and water use conditions for frozen pipe 
failures could not be matched, and instead were randomly 
extracted to set the control data for the experiment.

2.3. Logistic regression model

Logistic regression analysis proposed by Cox (1958) 
predicted which groups of individual observations can be 
classified when the subjects of an analysis are categorized 
into two or more groups [19]. When the dependent vari-
able is binary, such as the occurrence of an event or not, it is 
called a binomial logistic regression, which is a specific case 
of linear regression with S-shape curve function. The bino-
mial logistic regression is used to predict the occurrence 
of an event from a number of categorical or continuous 
explanatory variables. The probability of occurrence for the 
independent variables Xi can be expressed by the following 
equation [20]:

p
e i iX=

+
1

1 β  (1)

where βi is coefficient of the logistic regression model.
With logistic regression analysis, the possibility of pipe 

failure events was analyzed using a combination of spe-
cific explanatory variables. For this purpose, the influence 

of individual explanatory variables on the occurrence of 
failure was analyzed and the probability of failure was cal-
culated from the combination of selected explanatory vari-
ables. The sensitivity and predictive accuracy of the model 
constructed using the cut-off value of the logistic regression 
was also analyzed.

2.3.1. Selection of major factors

For the logistic regression analysis, the dependent vari-
able was set as the categorical type, which represented 
occurrence and non-occurrence of pipe failure. The rest of 
the data were used as explanatory variables in model con-
struction, as summarized in Table 1. The logarithm of water 
usage during the month prior to the pipe failure event 
(Log_Qb) and the average minimum temperature during 
the antecedent 10 days (Tbmin10) were forcibly entered as 
explanatory variables. The model was then determined by 
selectively adding variables in descending order of explan-
atory power.

2.3.2. Model selection

To determine the optimal explanatory variables, collin-
ear variables were excluded based on the average variance 
inflation factor (VIF). Collinear variables are those which 
can be predicted from other variables with a considerable 
degree of accuracy. The VIF indicates correlation between 
explanatory variables, and should remain less than five, 
which is the maximum value to avoid multicollinearity 

Table 1
Summary of variables used to develop logistic and customized models

Types Groups of 
variables

Raw and derived 
variables

Units Description

Dependent variable Failure events E – The frequency of pipe failure events
Explanatory 
(Independent) 
variables

Pipe properties Pipe_install year The installation year of a pipe
Ptype – The types of a pipe
Pwidth mm The diameter of a pipe

The amount of 
water usage

Qt tons The total water usage in the month at failure
Qb tons The antecedent total water usage in the previous month 

prior to failure event occurrence
Log_Qb – The logarithm of Qb

Air temperature Tmax0–10 °C The maximum temperature the day of failure (Tmax0); 
The antecedent maximum temperature 10 days prior to 
failure event occurrence (Tmax1 – Tmax10)

Tmin0–10 °C The minimum temperature the day of failure (Tmin0); The 
antecedent minimum temperature 10 days prior to failure 
event occurrence (Tmin1 – Tmin10)

Tmean0–10 °C The mean temperature the day of a pipe failure event 
(Tmean0); The antecedent mean temperature 10 days prior 
to failure event occurrence (Tmean1 – Tmean10)

Tbmin1–10 °C The mean antecedent minimum temperature (e.g., 
Tbmin10 indicates the mean minimum temperature during 
the day of failure and 10 days prior to failure event 
occurrence)
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[21]. The selected model had an average VIF value of less 
than two and a relatively high coefficient of determination 
R, which indicated explanatory power.

2.4. Development of customized model

The equation for the customized model explaining the 
frequency of pipe failure events was designed using the 
explanatory variables from the previously derived logistic 
regression model. Tbmin10, Qb, and Tmin0 were chosen as explan-
atory variables for further analyses. Since the frequency of 
a pipe failure event and the temperature were normally dis-
tributed and the water usage was exponentially distributed, 
the relationship between each explanatory variable and the 
frequency of pipe failure were expressed by the following 
equations.

f T a e b T c
min

min
0 1

1 0 1
2

( ) = − −( )  (2)

f T a ebmin
b T cbmin

10 2
2 10 2

2

( ) = − −( )  (3)

f Q a e cb
b Qb( ) = +−

3 3
3  (4)

where Tmin0 is the minimum temperature on pipe failure day, 
Tbmin10 is the average of minimum temperature during the 10 
days antecedent to pipe failure, Qb is total water usage for 
the previous month, and a, b, and care constants.

Eqs. (2), (3) and (4) are expressed as follows through 
natural log transformations.

ln lnmin minf T b T c a0 1 0 1

2

1( ) = − −( ) +  (5)

ln lnf T b T c abmin bmin10 2 10 2

2

2( ) = − −( ) +  (6)

ln ln *f Q b Q cb b( ) = − +3 3  (7)

The rearranged formulae for the frequency of a pipe 
failure event are expressed as follows when combining Eq. 
(5), (6) and (7).

nf T T Q b T c b T c b Q Rbmin b bmin bmin min, ,0 10 1 0 1

2

2 10 2

2

3( ) = − −( ) − −( ) − +  (8)

where R is constant. Finally, rearranging by Eq. (8), the 
generalized model equation for each community-level area 
used for further analysis was derived. 

ln , ,min

min min
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( ) =

+ + + + iin bm Q10 5+
 (9)

where m0, m1, m2, m3, m4, and m5 arecharacteristic coefficients 
of specific sites. As a constraint condition for coefficient esti-
mation, m0 was assigned to a value higher than zero.

A methodology for intuitive and quick risk classifica-
tion based on historical statistics was additionally investi-
gated. Hence, a simple method of categorizing frequency 

of pipe failure events into a fewer number of warning lev-
els was proposed. The warning levels of pipe failure were 
classified into Danger, Warning, and Caution by using the 
average and half standard deviation of the natural loga-
rithm of observed frequency of failure events. The crite-
ria and procedure for classifying the warning levels are 
shown in Fig. 2.

3. Results and discussion

3.1. Logistic regression model at the household level

Fig.3 compares the performance of different logistic 
regression models, which were developed at the house-
hold level, with respect to VIF (see solid bars) and R val-
ues (see a solid line with maker). Note that the variables 
incorporated into individual logistic regression models 
are provided in Table 2. From the figure, it was observed 
that the average VIF values generally increased with an 
increasing number of variables included in the model 
(Models 1–9), though Model 6 recorded a sudden drop in 
the average VIF value. The decrease in the average VIF 
value for Model 6 was likely attributed to Pwidth which 
was added to Model 5. Models 10 and 11 were found to 
have average VIF values significantly lower than the other 
models that included more than six variables (i.e., Mod-
els 5–9), due to adopted new variables (e.g., Qb) as well 
as dropped old variables (Tbmin10) from the previous mod-
els (i.e., Models 5 to 9). When the model quality in terms 
of R was investigated, there was no significant difference 
in performance among Models 2–11. This result indicated 
that even if more than three variables were incorporated 
(Models 3–11), the model performance was not improved 
considerably from Model 2. Therefore, when considering 
VIF and R values for, Model 2, which simultaneously sat-
isfied both conditions, was selected as the optimal model 
for this study. Note that low VIF values indicate a weak 
correlation among variables, such that the model with an 
average VIF value lower than two is free from multicol-
linearity issues. The coefficients of individual variables 
in Model 2 are summarized in Table 3. Within the table, 
the interpretation of exp(B) indicates the odds ratio of the 
independent variable. If the value of exp(B) is less than 
one, the independent variable becomes smaller as the 
explanatory variable becomes larger. However, if exp(B) is 
larger than one, the opposite is true. In the case of exp(B)
approaching one, changes to incorporated variables were 
not associated with that of dependent variable. Therefore, 
Model 2 implied that as Log_Qb, Tmin0, and Tbmin10 increased, 
the probability of a failure event decreased.

3.2. Accuracy of the selected logistic regression model 

Table 4 shows the prediction accuracy of the selected 
logistic regression model (Model 2) by comparing the num-
ber of pipe failure events predicted by the model with the 
corresponding (field) observations. The cut-off value was 
0.4 was used for accuracy assessment, which determined 
the sensitivity of the model. The table showed that the 
predicted accuracy of the model for failures that actually 
occurred was 59.0%, and for failures that did not occur was 
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75.5%. The overall prediction accuracy of the selected logis-
tic regression model was 66.4%, indicating that the model 
was relatively good at predicting a failure event at the 
household level. 

3.3. Customized model at the community level

Nonlinear regression was used to develop the cus-
tomized model at the community level, examining in 
three target areas (DY01, DY04, and HJ01), recording 
the highest frequency of failures. Note that independent 
and dependent variables incorporated into the logistic 
regression model at the household level were identically 
applied to the customized model, except for two vari-
ables employed in a different form: Qb instead of Log_Qb, 
and ln F instead of F. Based on the relationship between 
dependent and independent variables, the customized 

Fig. 2. Schematic diagram of developing screening models at household and community levels based on the monitoring data set of 
pipe failure events. Note that the logistic model uses both raw and derived variables, whereas only uncorrelated variables are used 
in the customized model. 

Fig. 3. Performance assessment of different logistic regression 
models in terms of VIF (indicated by solid bars) and R (indi-
cated by a solid line with a marker). The dotted line (indicated 
by light blue color) represents the VIF cut-off value to select the 
best logistic regression models out of all models.
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model included two additional variables (expressed in 
quadratic form) derived from the raw variables Tmin0 and 
Tbmin10 (see Eq. (9)). The coefficients, standard errors, and 
95% confidence intervals are summarized in Table 5. The 
coefficients of five individual variables varied consider-
ably depending on the study area. This indicated that the 
coefficients could be used as site characteristic proper-
ties that reflected failures at the community level. Fig. 4 
illustrates the performance of the individual customized 
models developed for three test areas using those charac-
teristic properties. It was determined that the customized 
models efficiently captured the failure events at the com-
munity level, as most of observations were within the 
95% confidence band. The customized models yielded 
coefficients of determination (R2) of 0.658 (for DY01), 
0.529 (for DY04) and 0.593 (for HJ01).

Fig. 5 exhibits the example alert system that classifies the 
status of pipe networks for three test areas based on the out-
puts predicted by the customized models. Three variables 

contributed to the failure event occurrence for the three test 
areas. According to the example alert system, warning or 
caution were assigned when Tmin0 and Tbmin10 were between 
–10°C and 0°C and/or when Qb was over 20 tons. The sys-
tem assigned dangerous when both Tmin0 and Tbmin10 were 
under –10°C as well as when Qb was below 20 tons. This 
implied that there was a high risk for failure due to freezing 
and bursting if the air temperature was low, the influence 
of the low temperature was persistent and the water usage 
was relatively low.

4. Conclusions

This study developed a methodology constructing 
screening models for pipe failure events at household and 
community levels, to which the logistic and customized 
models were applied, respectively. Forty-nine independent 
variables were provided to the logistic regression model, 

Table 2
Logistic regression models developed from a series of variables

Models R Std. error of the estimate Variables incorporated in each model

1 0.312 0.473 Tmin0, Log_Qb

2 0.381 0.460 Tmin0, Log_Qb, Tbmin10

3 0.386 0.459 Tmin0, Log_Qb, Tbmin10, Tmean4

4 0.389 0.458 Tmin0, Log_Qb, Tbmin10, Tmean4, Tmean1

5 0.391 0.458 Tmin0, Log_Qb, Tbmin10, Tmean4, Tmean1, Tmin1

6 0.393 0.458 Tmin0, Log_Qb, Tbmin10, Tmean4, Tmean1, Tmin1, Pwidth

7 0.394 0.457 Tmin0, Log_Qb, Tbmin10, Tmean4, Tmean1, Tmin1, Pwidth, Tmean10

8 0.395 0.457 Tmin0, Log_Qb, Tbmin10, Tmean4, Tmean1, Tmin1, Pwidth, Tmean10, Tmax0

9 0.396 0.457 Tmin0, Log_Qb, Tbmin10, Tmean4, Tmean1, Tmin1, Pwidth, Tmean10, Tmax0, Tmin7

10 0.396 0.457 Tmin0, Log_Qb, Tmean4, Tmean1, Tmin1, Pwidth, Tmean10, Tmax0, Tmin7

11 0.397 0.457 Tmin0, Log_Qb, Tmean4, Tmean1, Tmin1, Pwidth, Tmean10, Tmax0, Tmin7, Qb

Table 3
Coefficients of the selected logistic regression model (Model 2)

Variables Coefficients (B) Standard 
error

p-value exp(B) 95% confidence intervals for individual coefficients

Lower bound Upper bound

Log_Qb –0.701 0.042 0.000 0.496 0.457 0.538
Tmin0 –0.021 0.006 0.000 0.980 0.969 0.990
Tbmin10 –0.151 0.008 0.000 0.860 0.847 0.873
Constant –0.760 0.055 0.000 0.468

Table 4
Prediction accuracy of the selected logistic regression model (Model 2)

Observation Prediction Prediction 
accuracy [%]

Overall prediction 
accuracy [%]Pipe failure event

Occurrence Non-occurrence

Pipe failure event Occurrence 2469 1716 59.0 66.4
Non-occurrence 833 2563 75.5
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with respect to R. The overall classification accuracy of the 
model developed with three variables was 66.4%.

The customized model developed at the community 
level showed good prediction accuracy for three test 
areas (DY01, DY04, and HJ01), which recorded the high-
est frequency of the failures. The coefficient of determi-
nation for the three models were estimated to be 0.53 for 
DY04, 0.59 for HJ01 and 0.66 for DY01. The alert system 
that classified the frequency of the failures into discrete 
risk levels (i.e., danger, warning and caution) success-
fully demonstrated in those areas using the outputs of 
the customized model.

Table 5
Coefficients of the customized models developed for three areas of concern with the highest frequency of pipe failure events

Management areas Coefficients Estimates of 
coefficients

Standard error 95% confidence intervals for coefficients

Lower bound Upper bound

DY01 m0 0.306 0.298 –0.350 0.916
m1 0.011 0.003 0.005 0.017
m2 0.211 0.067 0.074 0.347
m3 0.007 0.004 –0.002 0.016
m4 –0.060 0.092 –0.248 0.128
m5 –0.047 0.027 –0.103 0.009

DY04 m0 0.476 0.207 0.049 0.903
m1 0.000 0.002 –0.004 0.004
m2 0.007 0.039 –0.073 0.086

m3 0.011 0.004 0.002 0.020

m4 0.091 0.082 –0.078 0.261

m5 –0.019 0.020 –0.059 0.022

HJ01 m0 1.447 1.150 –.922 3.815

m1 0.013 0.003 0.007 0.019

m2 0.211 0.063 0.081 0.341

m3 0.009 0.010 –0.012 0.030

m4 0.142 0.222 –0.314 0.598

m5 –0.006 0.007 –0.021 0.009

including both antecedent and transformed variables,in 
addition to seven raw variables. Note that the occurrence of 
failures was used as a dependent variable and the custom-
ized model was designed to adopt variables only selected 
from the logistic model. The following conclusions were 
obtained from this study.

The logistic regression identifying the number of the 
failures at the household level recommended 11 models that 
contained different numbers of predictors ranging from two 
(as a minimum) to ten variables (as a maximum). Only two 
models had a VIF value lower than two, where the model 
including three variables performed better than that of two, 

Fig. 4. Performance assessment of customized models developed at three areas of concern: DY01, DY04, and HJ01. Note that the 
shaded areas display the 95% confidence intervals. 
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Therefore, the proposed screening model identified 
regions that were prone to pipe failures at different geo-
graphic scales. The model was also successfully used to 
modify existing models or indicators that assessed the risk 
of water network system failure using additional variables.
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