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a b s t r a c t
The soil water characteristic curve (SWCC) is an important property for unsaturated soils and is essen-
tial to unsaturated soil engineering analysis. There is significant uncertainty of SWCC obtained by 
experiment due to the complicated unmodelled influencing factors on SWCC. In this paper, regarding 
the fitting parameters in Fredlund and Xing (FX) model, Van Genuchten (VG) model, and Gardner 
model as the random vectors, the uncertainty of SWCC fitting parameters is evaluated using the 
Bayesian framework. This framework is demonstrated using sandy experimental data with 1,030 
records in UNSODA. The posterior distributions of fitting parameters are obtained by the Markov 
chain Monte Carlo simulation. Different levels of confidence intervals of fitting parameters for FX, VG 
and Gardner models are obtained intuitively by proposed Bayesian framework. It is found that the 
confidence interval of the VG model is narrowest, and its uncertainty is the lowest. Different levels of 
confidence intervals of SWCC with VG model are applied in the one-dimensional vertical soil water 
filtration. The results demonstrated that the uncertainty in SWCC had significant effects on soil water 
infiltration.

Keywords:  Bayesian framework; Soil water characteristic curve; Uncertainty; Markov chain Monte 
Carlo; Confidence interval; Soil water infiltration

1. Introduction

The soil water characteristic curve (SWCC) defines the
relationship between the water content or degree of satura-
tion and suction of soil which can be used to estimate the 
unsaturated soil behaviours, such as shear strength, perme-
ability and stress–strain relationships [1–3]. The SWCC rep-
resents the water retention ability of the soil at different soil 
suction and is widely used in geoenvironmental, agricultural 
and geotechnical engineering [4]. When the SWCC is used 
to analyze the geotechnical and geoenvironment problems 

associated with unsaturated zone, the reliability of the input 
parameters of SWCC directly affects the correctness of the 
results. It is question about the reliability and predictability 
of SWCC. It has been recognized that the SWCC is affected 
by many factors, such as the initial dry intensity [5,6], speci-
men thickness [7], initial water content [8], grain size distri-
bution [9], stress state [10] and even temperature [11]. The 
types of soil, test methods, environment factors, including 
the previously mentioned factors, will make the SWCC have 
obvious uncertainty. Its predictability is often challenged for 
researchers.
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In order to predict the SWCC effectively, many math-
ematical models and fitting methods have been proposed 
to fit the experimental data of the SWCC [12–15]. The 
SWCC is commonly expressed using best fit models with 
several fitting parameters. The parameters of SWCC model 
depends on the prediction model, fitting method and mea-
sure data of the water content versus the soil suction. Since 
the measurement of the SWCC is always time consuming 
and expensive due to the equilibrium time for each data 
point can be very long, only limited experimental data can 
be obtained. In practice, the fitting parameters in the pre-
dict models of SWCC for a given soil are determined by 
very limited laboratory data using curve fitting technique. 
It is obvious that the measured data and the curve fitting 
parameters of SWCC exists high level uncertainty. This 
uncertainty may lead to uncertainty in the estimated unsat-
urated soil properties. The uncertainty is mainly caused by 
the uncertainty of the model structure, uncertainty of input 
and the uncertainty of the parameters [16,17]. When the 
model structure can reasonably reflect the soil water char-
acteristics and the measured data have enough accuracy, 
the uncertainty of the parameters plays a dominant role. 
Now, more attention has been paid on this kind of uncer-
tainty [18,19]. Parameter values are expressed by proba-
bility density function (PDF). Phoon et al. [20] estimated 
probability of SWCC using a correlated lognormal random 
vector with two parameters, but it does not involve the 
confidence interval. The combination of Bayesian approach 
and the Markov chain Monte Carlo (MCMC) method can 
solve the problem and quantitatively analyze the uncer-
tainty of parameters.

Bayesian approach can incorporate the prior knowledge 
into the analysis of current observation data and can estimate 
the probabilities of the population parameters from the sam-
ple data. The uncertainty of any unknown parameters can 
be described by probability distribution. However, it is very 
difficult to solve the function, especially for calculating com-
plex problems. The MCMC method which is posterior prob-
ability sampling approach based on Bayesian inference can 
effectively solve the above problems. The MCMC method 
greatly promotes the application of Bayesian, and develops 
rapidly. The MCMC has been applied in different research 
fields, flood frequency analysis [21], consolidation measure-
ments [22]. Bayesian updating analysis of fitting parameters 
of SWCC based on the measured data is still lacking.

In this paper, a Bayesian framework for prediction of 
SWCC is established and adopted to evaluate the uncer-
tainty of the fitting parameters for the Fredlund and Xing 
(FX), Van Genuchten (VG) and Gardner models. The calcu-
lation steps are illustrated using sandy data in unsaturated 
soil hydraulic database (UNSODA), and experimental data 
within the dry range are required in this paper. The prob-
abilities analysis and parameters uncertainty estimation is 
performed using the MCMC simulation method which has 
good efficiency for highly nonlinear problem, with a delayed 
rejection adaptive metropolis (DRAM) [23] algorithm. The 
different confidence intervals of uncertainty model parame-
ter for the FX, VG and Gardner models can be obtained. The 
different confidence intervals of uncertain model parameters 
can be constructed for one-dimensional vertical soil water 
filtration analysis.

2. Methodology

2.1. SWCC models

Data associated with the SWCC are commonly plotted as 
water content or degree of saturation versus the logarithm of 
soil suction. In order to describe the highly nonlinear SWCC, 
numerous equations have been proposed for fitting water con-
tent or degree of saturation versus soil suction data. Among 
these equations, the models developed by FX [13], VG [14] 
and Gardner [12] are some of the most notable ones found in 
literature. In this paper, these three models are chosen to fit 
the measured data as shown in Eqs. (1)–(3), respectively, and 
all models are written in terms of degree of saturation.

FX model [13] can be written as follows: 

S
e

n m=
+ ( )( )( )

1

ln ψ α  (1)

where α is the fitting parameter related to the air entry value 
for the soil; n is the fitting parameter related to the pore size 
distribution of the soil and affects the slope of the SWCC; m is 
the fitting parameter related to the asymmetry of the model; 
e is the natural base of logarithms; ψ is the suction; S is the 
degree of saturation bounded by 0 and 1. The degree of satu-
ration S is the ratio of difference of water content and resid-
ual water content to the difference of saturated and residual 
water contents, as follows:
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where θw, θr, θs are the water content, saturated water content 
and residual water content, respectively. The saturated water 
content is fixed at experimental value corresponding to zero 
suction.

VG model [14] 

S
n

n
=

+ ( )( ) − −

1

1
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αψ
 (3)

where α and n are the fitting parameters associated SWCC; 
ψ is the suction.

 Gardner model [12]

S n=
+

1
1 αψ  (4)

where α and n are the fitting parameters associated SWCC; 
ψ is the suction.

2.2. Bayesian framework

Bayesian theory is well suitable for analysis of geotech-
nical problems, especially when the available information 
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is limited [24]. The unknown parameters can be regarded 
as a random variable, and described with probability distri-
bution. Based on the Bayesian method, the posterior distri-
bution of parameter ζ is proportional to the product of the 
likelihood function and the prior distribution function. The 
Bayes’ formula can be written as follows: 

p D
p D p

p D
ζ

ζ ζ
( ) = ( ) ( )

( )  (5)

where p(ζ) is the prior probability distribution of the 
parameters; p(D|ζ) is the likelihood function; P(ζ|D) is the 
posterior distribution of the parameters; p(D) is the nor-
malizing constant to make the PDF valid; ζ is the vector 
of uncertain input parameters. The prior distribution of 
parameter ζ and measured data can be integrated using a 
systematic way.

2.3. Probabilistic analysis

Based on the FX, VG and Gardner models, the uncer-
tainty of fitting parameters is evaluated using the Bayesian 
framework. The error or difference between the actual per-
formance and the model prediction is defined as the model 
correction factor ε which can be used to characterize model 
uncertainty.

Sm = S + ε (6)

where Sm is the actual measured degree of saturation; S is the 
predicted degree of saturation; ε is the model output error 
which reflects the measurement noise and modelling error 
and modelled by Gaussian random variable with zero mean 
and variance σε

2.
The updated posterior PDF of the parameter ζ = [α, n, m] 

or ζ = [α, n] given the data D can be expressed as [25,26]:

p D c p N J D
N N

gζ ζ π σ
σ

ζε
ε

( ) = ( )( ) − ( )











− −
0

2

22
2

exp  (7)

where c0 is the normalizing constant; N is the number of mea-
sured data points; p(ζ) is the prior PDF of the model param-
eters in ζ representing the user’s judgment; and Jg(ζ|D) is the 
goodness of fit function indicating the level of data fitting 
and expresses as follows:
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where Sm(i) is the measured degree of saturation of i-th 
record; S(ψ, ζ) is the corresponding i-th model output of 
degree of saturation with parameter vector ζ.

The prior PDF of geotechnical parameters is often consid-
ered to follow lognormal distributions because fitting param-
eters in SWCC cannot have negative values [27]. Assuming 
no correlations between random variables in prior distribu-
tions, the prior PDF is described as:
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where j is the number of random variables; µlnζi and σlnζi are 
the logarithmic mean and standard deviations of the random 
variable, respectively.

The optimal values of SWCC fitting parameters can 
be obtained by minimizing the goodness of fit function. The 
variable σ ε

∧ 2
 for the most probable fitting parameters can be 

computed by maximizing the posterior PDF and equals 
to minimum value of the goodness of fit function over all 

parameter. By solving 
∂ ( )
∂

=
p Dζ

σε

0, the most probable value 
of the error variance turns out to be the minimum value of 
the goodness of fit function.
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For large number of data points, the updated PDF of 
the parameters can be approximated by the Gaussian dis-
tribution with mean �ζ

∧
 and covariance ∑. The uncertainty of 

parameters estimated can be represented by the covariance 
matrix given by the inverse of the Hessian matrix of the 
function –lnp(ζ|D).
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Based on FX, VG and Gardner models, the optimization 
values of fitting parameters in those models are obtained 
using the laboratory data for sandy in UNSODA [28]. The 
UNSODA computer database compiled by U.S. Salinity 
Laboratory, U.S. Department of Agriculture, contains the 
soil water retention and unsaturated hydraulic conduc-
tivity information of the soils from around the world. 
There are 780 unsaturated soil samples with the texture of 
clay, clay loam, loam, loamy sand, sand, sandy clay loam, 
sandy loam, silt and silt loam in database. In this paper, a 
total of 80 samples (1,030 suction vs. volumetric water con-
tent data pairs) of SWCC data for sandy are selected from 
the database to demonstrate the probabilistic analysis. 
Based on the given fitting model, the corresponding model 
parameters are estimated using the proposed approach. 
Figs. 1–3 show the posterior PDF of parameters for the FX, 
VG Gardner models, respectively. Figs. 1(a) and (b) show 
the corresponding posterior PDF for FX model at α∧  = 22.5343 
and n∧  = 1.9627, respectively. The most probable or optimal 
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fitting parameters corresponding to the maximum value of 
posterior PDF at α∧  = 22.5343, n∧  = 1.9627, m∧  = 0.9167 for FX 
model, at α∧  = 0.0491, n∧  = 1.5929 for VG model and at α∧  = 0.0169, 
n∧  = 0.9843 for Gardner model, respectively, as shown by the 

peaks in Figs. 1–3. Table 1 summarizes statistical information 
of fitting parameters of SWCC samples for the FX, VG and 
Gardner models, most probable (α∧ , n∧ , m∧ ), mean (α∧ , n, m), stan-
dard deviation (σα, αn, σm) and output error variance σ ε

∧ 2
.

The SWCC fitted by FX, VG and Gardner models with the 
most probable parameters from Bayesian analysis and lab-
oratory data for sandy is plotted in Fig. 4. It shows that the 
modelling error of sandy is large around suction of 10 kPa 
and beyond suction of 300 kPa. The curve of VG model is 
between the curves of FX and Gardner models. It is found 
that the SWCCs obtained by FX, VG and Gardner models 
with most probable parameter values by Bayesian approach 
are similar. In other words, the effect of fitting model on the 
most probable SWCC is small. Especially on straight linear 
section of curve, the effects of models on the most probable 
SWCC may be negligible. The line section of the SWCC can 
be approximately represented with saturated and residual 
water content and desaturation rate of the SWCC.

2.4. Confidence interval of SWCC

The computational procedure to analyze the confidence 
interval of SWCC by Bayesian approach involves the follow-
ing steps:

1. The prior distributions p(ζ) of the fitting parameters  
ζ = [α, n, m] or ζ[α, n] are set to be lognormal distributions.

2. The likelihood function p(D|ζ) is determined by mea-
sured data.

3. The posterior distribution is used to be the target distri-
bution function, and the random sample generation from 
posterior distribution is done using DRAM.

4. The samples at the beginning stage are discarded. The 
remaining samples are used to replace the posterior 
distribution.

5. The confidence intervals of SWCC are computed.

Bayesian updating can be achieved using Bayesian 
framework, when conjugate priors are given. The posterior 
distribution function of input parameters and model pre-
dicted response cannot be derived through analytical means. 

Fig. 1. Posterior PDF of parameters for FX model, (a) n∧  = 1.9627 and (b) m∧  = 0.9167.

Fig. 2. Posterior PDF of parameters for VG model.

Fig. 3. Posterior PDF of parameters for Gardner model.
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Therefore, random sampling methods are needed to generate 
samples from the posterior distribution function. These pos-
terior distributions are obtained using the MCMC sampling 
method with DRAM which is an effective random sampling 
method. The MCMC method can avoid solving the likeli-
hood function and the naturalization constant. The MCMC 
simulation can maintain adequate sampling density as the 
number of parameter increases and compute efficiently 
which has gained popularity in recent years to sample the 
posterior PDF [18,21]. It can handle efficiently problems with 
a large number of random variables and is very flexible to 
any type of prior distribution.

2.5. HYDRUS-1D model

The infiltration processes (vertical flow) in the soil 
later are further simulated by using HYDRUS-1D model. 
HYDRUS-1D model was developed by Simunek et al. [29] to 
simulate the one-dimensional flow of soil water, heat, solute 
and viruses in variably saturated–unsaturated media (www.
hydrus.com). Soil water movement for the experimental situ-
ation has been described in the model as follows:

∂
∂

=
∂
∂

( ) ∂
∂









 +

∂ ( )
∂

θ
t z

K h h
z

K h
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where θ is the soil volumetric water content; h is the water 
pressure head; K is the unsaturated hydraulic conductivity; z 
is the vertical axis depending on the origin of the surface flux.

The VG–Mualem models the variation of K(h) with the 
soil water content where
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 (13)

where m = 1 – n–1, l is the empirical parameter of pore connec-
tivity. Ks is the saturated hydraulic conductivity. The SWCC 
according to VG model is shown in Eq. (3).

We assumed that soil water movement would be restricted 
to one vertical dimension. The initial soil hydraulic properties 
used the sandy code 1141 in UNSODA. The dry bulk density 
is 1.70 g/cm3, and the saturated water content is 0.302. The ini-
tial water content is 0.08. The saturated hydraulic conductiv-
ity of the sandy is 38.6 cm/d. The pore connectivity parameter 
l is assumed equal to an average value (0.5) for many soils. 
The soil layer is 100 cm. The storage layer is 2 cm deep.

3. Results and discussion

3.1. Results of confidence interval

The SWCC fitting parameters are regarded as a random 
vector to consider the uncertainty of fitting models. The 
lab test data of SWCC in the paper are collected from the 
UNSODA database. The different levels of confidence inter-
vals of SWCC corresponding to FX, VG and Gardner mod-
els can be obtained by MCMC simulations. There are 10,000 
samples of the SWCC fitting parameters simulated by MCMC 
method with DRAM for each model. The posterior samples 
of parameter α in FX model generated by the MCMC method 
are shown in Fig. 5. As at the beginning stage, the Markov 
chain does not reach the stationary state, the first 3,000 sam-
ples are discarded and not used for posterior statistics infer-
ence. The remaining 7,000 pairs of fitting parameters for each 
model can be generated according to updated PDF of the 
parameters. Based on the given fitting model, the SWCC for 
each sample can be obtained and correspond to the updated 
PDF of the uncertain parameters. Therefore, 7,000 degrees 
of saturation are generated for a given suction value. After 
sorting the degree of saturation, the degree of saturation at 
different percentiles and corresponding fitting parameters 
can be obtained. This approach is used to evaluate the uncer-
tainty of fitting parameters for FX, VG and Gardner models 
and can classify its percentile among the database.

The SWCC and fitting parameters associated with dif-
ferent percentiles can be obtained. The fitting parameters of 
different percentiles SWCC for FX, VG and Gardner mod-
els presented in Table 2. Percentiles are used to characterize 
the confidence interval of the fitting parameters, such as the 
50% confidence interval is between 25% (lower bounds) and 
75% (upper bound), the 75% confidence interval is between 
12.5% (lower bounds) and 87.5% (upper bound), and so 
on. The upper and lower bounds of SWCC associated with 

Table 1
Most probable fitting parameters of SWCC samples

Model α∧ α σα n∧ n σn m∧ m σm σ ε

∧ 2

FX 22.5343 22.5525 0.00001 1.9627 1.9650 0.0027 0.9167 0.9171 0.0003 0.0292
VG 0.0491 0.0492 0.000002 1.5929 1.5933 0.0001 0.0300
Gardner 0.0169 0.0169 0.0000002 0.9843 0.9844 0.00005 0.0313

Fig. 4. SWCC of optimal parameters and laboratory data.
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different confidence intervals are evaluated. For FX model, 
the 95% confidence intervals of the fitting parameter α, n and 
m are [15.5846, 52.3265], [6.1114, 0.9601] and [2.1579, 0.4761], 
respectively. For VG model, the 95% confidence interval of 
the fitting parameter α and n are [0.1261, 0.0270] and [2.1574, 
1.3638], respectively. For Gardner model, the 95% confidence 
interval of the fitting parameter α and n are [0.0806, 0.0088] 
and [1.1422, 0.6173], respectively. These parameters for confi-
dence intervals of SWCC can be used to conduct the probabi-
listic analysis of unsaturated geoengineering.

The confidence intervals of SWCC for FX, VG and Gardner 
models are shown in Figs. 6–8, respectively. The upper and 
lower bounds of SWCC with different confidence intervals 
are given. Compared with the FX model and Gardner model, 
the band of confidence interval of VG model is narrowest. In 
others words, the VG model has lowest uncertainty or highest 
reliability for the sandy in UNSODA in the predicted SWCC. 
The proposed method can be applied to evaluate the SWCC 
with different fitting model for a given level of confidence.

3.2. Influence of confidence interval on infiltration process

The one-dimensional vertical infiltration process is sim-
ulated by HYDRUS-1D software for sandy code 1141 in 
UNSODA. Using the fitting parameters of VG model with 
different percentiles in Tables 1 and 2, the soil water con-
tent distribution and accumulated infiltration are observed. 
Fig. 9 shows wetting front depth in sandy simulated by 

HYDRUS-1D. It can be found that the simulated wetting front 
depths for the the 50% confidence interval (the 25 and 75 per-
centiles) and mean are [44.21 cm, 52.58 cm] and 49.50 cm at 
800 min, respectively. Fig. 9 shows the cumulative infiltration 
in sandy simulated HYDRUS-1D. The total cumulative infil-
tration are (14.578 cm3, 12.371 cm3) and 13.880 cm3 at 800 min 
for the 50% confidence interval (the 25 and 75 percentiles) and 
mean, respectively, as shown in Fig. 10. It provides uncertainty 
estimation of SWCC on one-dimensional vertical infiltration.

Fig. 5. Posterior samples of parameter α.

Table 2
Fitting parameter for different percentiles of SWCC samples

Percentiles 2.5 5 12.5 25 75 87.5 95 97.5

FX α 15.5846 16.9255 19.0540 21.1731 29.9220 35.7018 44.9811 52.3265
n 6.1114 4.8370 3.3579 2.5947 1.4490 1.2226 1.0546 0.9601
m 2.1579 1.8803 1.5721 1.2719 0.7633 0.6378 0.5333 0.4761

VG α 0.1261 0.1109 0.0835 0.0662 0.0383 0.0335 0.0292 0.0270
n 2.1574 2.0515 1.9043 1.7958 1.5284 1.4606 1.3974 1.3638

Gardner α 0.0806 0.0691 0.0533 0.0413 0.0190 0.0142 0.0106 0.0088
n 1.1422 1.0990 1.0318 0.9609 0.7780 0.7161 0.6569 0.6173

Fig. 6. Confidence intervals of SWCC for FX model.

Fig. 7. Confidence intervals of SWCC for VG model.



W. Liu et al. / Desalination and Water Treatment 121 (2018) 172–179178

4. Conclusion

In this paper, the updated PDF of the uncertain param-
eters of FX, VG and Gardner models are evaluated using 
the Bayesian framework. The proposed approach is demon-
strated using experimental data of sandy in UNSODA. The 
posterior samples of the fitting parameters within SWCC for 
three different models are generated by MCMC sampling 
method with DRAM algorithm. The distribution of SWCC 
can be evaluated, and the percentile among the entire data-
base can be classified using samples of parameters. Different 
levels of confidence intervals of SWCC are constructed con-
sidering the uncertainty of SWCC parameters for sandy by 
proposed Bayesian approach. It is found that the VG model 
has the narrowest band of confidence interval for the SWCC 
which reveals its lowest uncertainty in the predicted SWCC 
among three fitting models. The approach proposed in 
this paper can analyze quantitatively the uncertainty, and 
has good extension. Assuming the VG model as a fitting 
model of the SWCC, the effect of uncertainty of SWCC on 
one-dimensional vertical filtration is analyzed. It is found 
that the uncertainty of SWCC has significant effects on the 
wetting front depth and cumulative infiltration in the sandy.
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