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a b s t r a c t
The current approaches to the demand calibration of hydraulic models in water distribution system 
(WDS) are typically slow and not sufficiently reliable. This study introduces “deep fuzzy mapping” 
(DFM) as the fast and reliable tool for an on-line demand calibration of WDS hydraulic models based 
on supervisory control and data acquisition. Also, an on-line WDS hydraulic simulation platform is 
built which consists of a data resource layer, a model processing layer, and an access display layer. The 
on-line simulation platform is applied to the demo network, and it is verified that a DFM learning algo-
rithm serves as an effective method for the on-line demand calibration of WDS hydraulic model in WDS.
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1. Introduction

The on-line hydraulic simulation of water distribution
system (WDS) is the important basis for making scientific 
decision of daily operation, making plan for expansion, 
reconstruction of pipe network, and the handling of emer-
gencies such as burst detection and localization [1,2] as well 
as contamination sources identification [3]. The error of WDS 
hydraulic model mainly is attributed to two aspects: one is 
the pipe network’s calibration, including devices’ parameters 
and pipes’ topology; the other is whether the node demand 
of the pipe network is correct or not. Among them, the accu-
racy of node demand has the greatest impact on the model 
results. The efficiency and reliability of node demand cali-
bration are the keys to realize on-line simulation of WDS 
hydraulic model. Here, the reliability of the calibration results 
is not only reflected in the low error between the monitoring 

value and the calculated value of the pressure meters and 
flow meters, but also reflected in the corrected node demand 
which should be consistent with the actual pipe network.

In order to solve the problem of slow calibration speed 
and difficulty to realize on-line calibration of hydraulic model 
in WDS, we proposed an on-line calibration of WDS hydrau-
lic model by means of recently introduced “deep fuzzy 
mapping” (DFM) models. The learning algorithm of DFM, 
at every time point, utilizes supervisory control and data 
acquisition (SCADA) to calibrate the node demand via iden-
tifying the mathematical mapping between pressure/flow 
sensor data and nodes demand. First, the method simulates a 
training dataset consisting of at least 300 inputs-outputs data 
pairs for the learning of DFM at every time point. The model 
calibration performance can be used for real time as it takes 
less than 1 min to calibrate the nodes demand at every time 
point. Further, the method is robust against the inaccuracy in 
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base demand. Finally, the calibration algorithm could help 
us to find the problems related to basic data of water net-
work such as the network structure, sensor data, and valves’ 
state. The calibration of basic data of water network would 
further improve the accuracy of the model. Therefore, the 
node demand calibration algorithm is well suitable for a real 
practical situation.

In this paper, we synchronized the revenue data of the 
demo network to its geographic information system data 
and established the on-line hydraulic calibration model 
using DFM learning algorithm based on SCADA, and ana-
lysed the accuracy of the modelling approach on the on-line 
WDS hydraulic simulation platform. Finally, we analysed the 
superiority of the proposed method in comparison with the 
traditional optimization method and discussed the direction 
of further improvements.

2. The current status of WDS hydraulic model calibration 
methods

Hydraulic model is the basis for the analysis, design, oper-
ation, and maintenance of water supply network. Before the 
hydraulic model can be used for daily work, the model needs 
to be calibrated first. Hardy Cross proposed the basic equa-
tions of pipe network hydraulics, which combined the node 
demand, pipe friction, pipe flow, and nodal head together. It 
is generally believed that the friction of pipe changes little, 
and the node demand is changed in real time. Therefore, the 
on-line calibration of node demand is the key to realize the 
on-line simulation of hydraulic model. So how to improve 
the calculation efficiency and the reliability of node demand 
calibration method is still a hot and difficult problem in the 
field of pipe network research.

This research is a part of the research that is sponsored 
by the Special Program of Talents Development for Excellent 
Youth Scholars in Tianjin.

At present, the methods of hydraulic model calibra-
tion can be divided into three categories. The first is itera-
tive (repeated trial) process calibration model [4]. Second 
is the explicit calibration (hydraulic simulation) [5]. Third 
is implicit calibration model (optimization model). Among 
them, the optimization method is the main method to 
achieve the pseudo-steady state hydraulic model calibration. 
The core idea of the method includes two aspects: first, the 
objective function and the constraint condition; second, the 
optimization algorithm to calibrate the model parameters. At 
present the main objective functions to solve the problem are 
as follows: least absolute value [6] function, weighted least 
absolute value [7], least squares (LS) [8] function, weighted 
least squares [9] function. And the optimization algorithm 
mainly has genetic algorithm [10,11], Levenberg–Marquardt 
algorithm [12], Gauss–Newton optimization method [13], 
simulated annealing method [14], first-order second-moment 
method [15], particle swarm optimization [16], and singular 
value decomposition [17]. Recently, Bayesian inference has 
been broadly adopted for quantifying uncertainties in variet-
ies of WDS problems [18–20].

There are four limitations in the optimization method. 
First, the method has huge amount of calculations and 
needs long time to find the optimal solution, so this method 
is mainly applicable to steady or quasi-steady state pipe 

network model calibration, but it is difficult to achieve on-line 
calibration for large urban water supply network. The sec-
ond is that the initial flow distribution has a great influence 
on the result, which leads to the low accuracy. The third is 
that the method requires higher accuracy of monitored data 
but has poor noise immunity. So if an individual sensor got 
the wrong records at a certain time due to instrument fail-
ure, an erroneous calibration result will be obtained. Fourth, 
this method defaults the equipment status in the pipe net-
work, the topology of the pipe network and the parameters 
of the pipes are accurate. In fact, due to the lack of equip-
ment parameters, state inaccuracy, the man-made errors in 
the pipe network, the modeling pipe network, and the actual 
pipe network are difficult to achieve. Therefore, the nodes 
demand calibration by this method cannot truly reflect the 
node demand of the actual network.

3. On-line calibration of hydraulic model for water supply 
network

3.1. Hydraulic equation of water supply network

Pipe network operation condition refers to the hydraulic 
characteristics of pipe network under certain water supply 
and water use conditions, mainly contains the nodal head 
H (or pipe head loss h) and pipe flow rate q. The operation 
condition of the pipe network depends on two parameters, 
that is, pipe section friction S and node demand Q, which 
reflect the discharge capacity and water consumption of 
the pipe network respectively. S and Q are called indepen-
dent variables, and H (or h) and q are called state variables. 
The independent variable determines the state variable, 
and the state variable is the reflection of the independent 
variable. Follow equations describing the hydraulic steady 
state of flows and pressure in a water distribution network, 
which includes mass continuity and energy conservation 
equations:

Q i Ni ij+ ∑ = = ⋅ ⋅ ⋅q 0 1 2( , , , )  (1)

∑ =hij 0  (2)

where N represents the number of nodes in the pipe network, 
qij represents the flow rate from the node i to the node j, Qi 
represents the node demand of i, and hij represents the head 
loss of the pipe from the node i to the node j.

3.2. On-line calibration of hydraulic model based on DFM 
learning algorithm

A recent work [21] has suggested a mathematical way to 
study the propagation of the uncertainty through an uncer-
tain nonlinear function. The concept of “fuzzy mapping” was 
introduced [21] to represent the uncertainty of any nonlinear 
function. A fuzzy mapping uses an infinite-dimensional fuzzy 
membership function to represent the uncertainties regarding 
a functional relationship and is thus the fuzzy equivalent of 
Gaussian process. The main idea is of introducing a finite pairs 
of input-output points (referred to as the auxiliary inducing 
points) to be interpolated for defining a fuzzy membership 
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function on functional output values. The designed fuzzy 
membership function–based data model can be applied for 
solving filtering, prediction, and classification problems. It is 
suggested [21] to maximize the over uncertainties averaged 
log-membership values of the observed data as the design 
criterion for determining fuzzy membership function on the 
variables. This maximization problem can analytically only 
partially be solved. Another significant feature of the approach 
[21] is that the intractability problem is circumvented by care-
fully and sensibly constraining the solution space to develop 
a practical algorithmic solution which is not only competi-
tive in the modeling performance but also computationally 
remarkably faster than its probabilistic counterpart.

A DFM is formed via a nested composition of a finite 
number of fuzzy mappings. The composition of fuzzy map-
pings would further enhances the capabilities in learning 
complex data structures. Our research group has intro-
duced a fuzzy theoretic approach to the learning of DFM. 
The most significance feature of the learning approach is 
that all of the unobserved variables and parameters asso-
ciated to the deep model are averaged out where the aver-
ages are computed taking into account the uncertainties (on 
variables and parameters) being represented by the fuzzy 
membership functions optimally learned from the observed 
data. Several issues are addressed to design fast, competent, 
and robust modeling algorithms. A mathematical theory is 
provided to facilitate the application of fuzzy theoretic data 
models in prediction, filtering, and classification problems. 
As the uncertainties have been handled in a principled 
mathematical manner, the built DFM models are robust 
against noise.

The DFM learning algorithm, every time a new sensor 
data (i.e., pressure, flow, and total input demand) is received, 
is applied for node demand calibration as follows:

(1) N = 300 number of independent EPANET (Application 
for Modeling Drinking Water Distribution Systems of 
United States Environmental Protection Agency) sim-
ulations are performed on a given water distribution 
network via randomly generating demand values from 
a uniform distribution on an interval around an initial 
guess. The simulations could be performed using parallel 
computing to reduce computational time.

(2) The simulation data are meant to identify the inverse 
mapping from pressure/flow values to node demand 
values.

(3) The inverse modeling problem is generally ill-posed, and 
therefore DFM is used to calibrate node demand values 
from sensor data.

Fig. 1 shows the process of on-line hydraulic simulation 
of WDS. After the completion of the initial node demand dis-
tribution, the program can run automatically without man-
ual operation.

4. Application of hydraulic simulation in demo network

4.1. Identification of pump characteristic curves in demo network

The demo network contains 3 water sources, 2,534 
nodes, 223 valves, and 2,504 pipes after simplification. 
Because some pumps have been running for many years, 

the pump characteristic curves are no longer in accor-
dance with the factory characteristic curves and need to 
be recalibrated. We established the identification model 
of the pump characteristic curve by using the nonlinear 
LS method according to the clear-water reservoir (suction 
well) level, the pump status, the pump frequency, and the 
total flow of the water source provided by the SCADA 
system:

Α Β^ ^ ^, , arg min ( ( ) ( )
, ,

i i i

i

N

A B C t

T

iC Q t
i i i i

N









= −
= { } ==

∑
1 11

t π qq ti
i

N

( ))
=
∑

1

2
 (3)

h t
s t

A
q t
s t

Ci

i

i

i

B( )
( )

(
( )
( )

)2 = +  (4)

where A, B, and C are the calibrate parameters, Q(t) rep-
resents the total flow at time number t, πi(t) represents the 
running status of the pump number i at time point t, πi(t) = 1 
stands for pump opened, πi(t) = 0 stands for pump closed, 
qi(t) is the pump flow of pump number i at time point t, hi(t) 
is the delivery lift of pump number i at time point t, and si(t) 
is the speed ratio of pump number i at time number t. The 
characteristic curve of each pump can be obtained by solv-
ing the optimization Eq. (3) using the trust-region-reflective 
algorithm.

Figs. 2–4 are the comparison of the measured and calcu-
lated values of the pumps’ flow of the S-1 water source, S-2 
water source, and S-3 water source, respectively.

Generate the current node demand 
according to the total

 flow of the water source 

 Generate 300 sets of nodes demand 
at this moment randomly 

according to the node demand

Hydraulic calculation:
 get monitoring pressure/flow values 
corresponding node demand values,

 get 300 sets of training data 

Exist corrected node demand   
at the previous moment or not

Use the last time corrected 
node demand data 

Identify the inverse mapping from 
pressure/flow values to node demand 

values by using DFM algorithm 

Read the current 
monitoring pressure/flow values

Model calculation: 
obtain the corrected node demand 

values

Hydraulic calculation: 
get all node pressure values and

 pipe flow rate at the moment 

Compare  Monitoring pressure/flow 
values with model calculation 

pressure/flow values

Y
es

 Store the estimated node demand,
 node pressure and pipe  flow 

in the database 

Read the current SCADA data, including 
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Allocating node Demand
 at initial time based 

on revenue data 

No

Fig. 1. Flow chart of on-line WDS hydraulic simulation.
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4.2. On-line hydraulic simulation platform of the demo network

Using the established calibration model of node demand, 
we developed an on-line hydraulic simulation platform for 
WDS. Fig. 5 is the frame. The data resource layer realizes 
the structured storage, update and format conversion of the 
partial static data, dynamic real-time data, model input and 
output data, and front-showing data. The model processing 
layer performs on-line node demand calibration and hydrau-
lic calculation by reading database data. The access display 
layer implements the visualization of the final results.

4.3. On-line hydraulic simulation results and accuracy evaluation

The platform adjusts the node demand every 15 min, 
and 23 pressure meters and 42 flow meters of SCADA were 
applied in the on-line hydraulic simulation. Hydraulic model 
accuracy evaluation should include the evaluation of nodal 
head and pipe flow between estimated value and measured 
value. Fig. 6 is the comparison between the calculated and 
monitored values of three pressure meters. It can be seen from 
the P-12 pressure meter that the abnormal pressure value at 
individual time has little influence on the estimated pressure 
value. Fig. 7 is the error distribution of all pressure meters, 
the number of pressure meters with pressure error less than 

1 m account for 68.3%, and with pressure error less than 2 m 
account for 86.4%, reaching the standard of British water 
research centre (WRC) quasi-steady state water quality mod-
eling which requires that the error of 70% is within ±2.1 m.

Fig. 2. Measured and calculated pumps’ flow of S-1 source.

Fig. 3. Measured and calculated pumps’ flow of S-2 source.

Fig. 4. Measured and calculated pumps’ flow of S-3 source.

Fig. 5. On-line hydraulic simulation platform for water 
distribution system.

Fig. 6. Calculated pressure and sensor pressure.
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Fig. 8 is the comparison of three flow meters (F-25, F-28, 
and F-30) between sensor value and calculated value, which 
shows the good stability and high accuracy in the on-line 
WDS calibration process.

Because the manager of water plants decided the water 
supply plan mainly according to the water source flow rate, 
the requirement for accuracy of the water source flow rate 
was higher in the hydraulic model. Fig. 9 is a comparison 
between the measured and estimated values of six water 
sources, the average relative error of water sources flow is 
8.01%, and the average relative error of monitoring point 

flow is 9.62%, which basically meets the requirements of 
British Water Association for flow accuracy (relative error of 
water source flow is less than 10% and relative error of mon-
itoring point flow is less than 20%).

4.4. Water supply subarea of each water source in the demo 
network

Identifying water supply subarea of each water source 
and water distribution demarcation line can provide the 
basis for optimizing the operation and scheduling of the pipe 
network. The topological relationship between nodes and 
pipes of the demo network can be described by the associated 
matrix Am × n (m is the number of nodes, and n is the number of 
pipes), and each element in the associated matrix is defined 

Fig. 7. Error distribution of pressure meters. Fig. 8. Calculated and sensor flow rate.

Fig. 9. Estimated and measured values of six outlet flow rates in three water source.
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as Eq. (5), which we can calculate by using the result of the 
on-line hydraulic corrected model.

aij
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According to the associated matrix, first we find the node 
vector corresponding to the first source node number, and 
then search out all the pipes numbers where the value in the 
node vectors value is “1”, and then get the corresponding 
pipe vectors, then search out all the node numbers where the 
value in the pipe vectors obtained from the upper level where 
the pipe vectors value is “–1”. Save each pipes numbers and 
node numbers obtained from the each time searching. The 
search process is finished until the number of nodes is zero. 
The saved set of pipe numbers and the node numbers are the 
water distribution area of the water source. Search method 
for other water sources is the same. Fig. 10 is the result of 
numbers of each type of water supply subarea in the demo 
network, in which S1 represents the single water supply area 
of S-1water source, S2 represents the single water supply area 
of S-2 water source, S3 represents the single water supply 
area of S-3 water source, S12 represents the common water 
supply areas of S-1 and S-2 water sources, S23 represents the 
common water supply areas of S-2 and S-3 water sources, 
and S123 represents the common water supply areas of S-1, 
S-2, and S-3 water sources.

5. Conclusion

We realized the on-line calibration of the node demand 
by using the DFM learning algorithm, which has a fast cali-
bration performance, high precision, and strong noise immu-
nity for developing an on-line hydraulic model calibration 
platform. The work has verified the feasibility and broad 
application prospects of the algorithm by studying the water 
supply demo network.

The traditional optimization algorithm is to continuously 
adjust the node demand to minimize the difference between 
model simulated pressure/flow values and the measured 
pressure/flow values, which could get good calibration accu-
racy even in the case of wrong topology. The DFM learning 
algorithm identifies the functional relationship between 

pressure/flow values and the node demand at every time 
point. Therefore, the influence of initial flow distribution is 
very small, and it can achieve high accuracy at the initial stage 
of on-line hydraulic simulation. In addition, the accuracy of 
the model simulations would depend on the goodness of the 
approximation between the constructed pipe network and 
the actual pipe network; a good simulation accuracy would 
confirm a reliability of the pipe network as well.

At present, the on-line hydraulic model calibration algo-
rithm estimates only the node demand. The future work is 
concerned with the simultaneous calibration of node demand 
and the pipe friction coefficient.

Acknowledgments

The authors acknowledge the National Natural Science 
Foundation of China (Grant no. 61662045) and the Special 
Program of talents Development for Excellent Youth Scholars 
in Tianjin.

References
[1] J. Meseguer, J.M. Mirats-Tur, G. Cembrano, V. Puig, J. Quevedo, 

R. Perez, G. Sanz, D. Ibarra, A decision support system for 
on-line leakage localization, Environ. Modell. Software, 60 
(2014) 331–345.

[2] G. Sanz, R. Perez, Z. Kapelan, D. Savic, Leak detection and 
localization through demand components calibration, J. Water 
Resour. Plann. Manage., 142 (2016) 04015057.

[3] C.D. Laird, L.T. Biegler, B.G.V. Waanders, R.A. Bartlett, 
Contamination source determination for water networks, J. 
Water Resour. Plann. Manage., 131 (2005) 125–134.

[4] T.M. Walski, Case-study-pipe network model calibration issues, 
J. Water Resour. Plann. Manage., 112 (1986) 238–249.

[5] P.F. Boulos, D.J. Wood, Explicit calculation of pipe-network 
parameters, J. Hydraul. Eng., 116 (1990) 1329–1344.

[6] L.E. Ormsbee, Implicit network calibration, J. Water Resour. 
Plann. Manage., 115 (1989) 243–257.

[7] M.J.H. Sterling, A. Bargiela, Minimum norm state estimation 
for computer control of water distribution-systems, IEE Control 
Theory Appl., 131 (1984) 57–63.

[8] C.T.C. Arsene, B. Gabrys, Mixed simulation-state estimation of 
water distribution systems based on a least squares loop flows 
state estimator, Appl. Math. Modell., 38 (2014) 599–619.

[9] W.P. Cheng, T.C. Yu, G. Xu, Real-time model of a large-scale 
water distribution system, Procedia Eng., 89 (2014) 457–466.

[10] N. Do, A. Simpson, J. Deuerlein, O. Piller, Demand estimation in 
water distribution systems: solving underdetermined problems 
using genetic algorithms, Procedia Eng., 186 (2017) 193–201.

[11] N.C. Do, A.R. Simpson, J.W. Deuerlein, O. Piller, Calibration of 
water demand multipliers in water distribution systems using 
genetic algorithms, J. Water Resour. Plann. Manage., 142 (2016) 
04016044.

[12] A. Vassiljev, T. Koppel, Estimation of real-time demands on 
the basis of pressure measurements by different optimization 
methods, Adv. Eng. Software, 80 (2015) 67–71.

[13] P.V.N. Reddy, K. Sridharan, P.V. Rao, WLS method for parameter 
estimation in water distribution networks, J. Water Resour. 
Plann. Manage., 122 (1996) 157–164.

[14] T. Tucciarelli, A. Criminisi, D. Termini, Leak analysis in pipeline 
systems by means of optimal valve regulation, J. Hydraul. Eng., 
125 (1999) 277–285.

[15] S. Diaz, J. Gonzalez, R. Minguez, Uncertainty evaluation for 
constrained state estimation in water distribution systems, J. 
Water Resour. Plann. Manage., 142 (2016) 06016004.

[16] L.K. Letting, Y. Hamam, A.M. Abu-Mahfouz, Estimation of 
water demand in water distribution systems using particle 
swarm optimization, Water, 9 (2017) 593.

Fig. 10. Numbers of each type of water supply subarea.



117W. Zhang et al. / Desalination and Water Treatment 121 (2018) 111–117

[17] G. Sanz, R. Perez, Sensitivity analysis for sampling design and 
demand calibration in water distribution networks using the 
singular value decomposition, J. Water Resour. Plann. Manage., 
141 (2015) 04015020.

[18] C.J. Hutton, Z. Kapelan, L. Vamvakeridou-Lyroudia, D.A. Savic, 
Dealing with uncertainty in water distribution system models: 
a framework for real-time modeling and data assimilation, J. 
Water Resour. Plann. Manage., 140 (2014) 169–183.

[19] C. Bragalli, M. Fortini, E. Todini, Enhancing knowledge in water 
distribution networks via data assimilation, Water Resour. 
Manage., 30 (2016) 3689–3706.

[20] X. Xie, H.J. Zhang, D.B. Hou, Bayesian approach for joint 
estimation of demand and roughness in water distribution 
systems, J. Water Resour. Plann. Manage., 143 (2017) 04017034.

[21] M. Kumar, Y.H. Mao, Y.H. Wang, T.R. Qiu, C. Yang, W.P. Zhang, 
Fuzzy theoretic approach to signals and systems: static systems, 
Inf. Sci., 418 (2017) 668–702.


