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a b s t r a c t
Sea level prediction is essential and complicated in the context of climate change. Conventional meth-
ods developed for the prediction are still considered insufficient due to the complexity of the nonsta-
tionary and nonlinear sea level change. To improve the modeling accuracy of the sea level, this paper 
proposed a methodology combining the ensemble empirical mode decomposition (EEMD) and the 
back propagation (BP) neural network for monthly mean sea level record modeling in South China 
Sea. The results show that the EEMD can extract the signals with physical meanings according to their 
unique frequencies. The inputs of the BP, defined by the preprocessing of the original time series, 
turn out to be smoother and more regular, influencing the modeling in a positive way. The good per-
formance of the hybrid method, with higher correlation coefficient (R = 0.89) and lower root square 
mean error (RMSE = 28.16 mm) between the modeling and the observed data, suggests an improved 
accuracy on sea level modeling than using the BP directly (with R = 0.76 and RMSE = 36.74 mm). This 
hybrid method can be further applied to sea level modeling in another region. The results of the study 
also suggest that the preprocessing of the original time series such as smoothing and denoising is sig-
nificantly improving the modeling.
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1. Introduction

Sea level is a significant indicator and the result of climate 
change, and sea level prediction is of great interests to the 
science and public [1]. While major efforts have been made 
to understand the change of sea level, which is complex by 
many factors, the predictability of the driving processes 
is limited [2,3]. The projection of sea level change largely 
depends on the methods being used and varies greatly from 
regions to regions [4]. Therefore, selecting a proper method 

for modeling site-specific sea level change is a challenging 
task and essential for accurately predicting the future sea 
level variability.

The conventional approach to predict the sea level has 
been to model and predict the contribution components: 
modeling the change of snow and ice melting and thermal 
expansion of the ocean surface under the condition of the 
temperature rise by the atmosphere – ocean coupled model 
[5,6]. Based on the clear driven factors and their interaction 
mechanism, the dynamic model would provide a range of 
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projection for sea level change at large scale such as global 
scale [7]. Nevertheless, large uncertainties occur while apply-
ing this global model to regional sea level which is mainly 
affected by many local factors, and the physical process and 
mechanisms is difficult to be stimulated [8]. Rahmstorf [9] 
proposed a semi-empirical approach for sea level prediction 
by connecting the global sea level rise to global mean sur-
face temperature. This method provides a pragmatic alter-
native for the global sea level prediction while the driver 
(e.g., global warming) is known but the computation of the 
link between the driver and the sea level response remains 
elusive. Furthermore, similar to the model prediction, 
the semi-empirical approach is not able to fully model the 
change for sea level in regional or along coasts where the 
drivers and their contributions are complex and uncertain. 
Another approach is to simulate the observed sea level time 
series and predict it by using mathematical statistics model. 
Nerem et al. [10] made extrapolation of the quadratic implies 
global mean sea level could rise 65 ± 12 cm by the year 2100 
compared with the year 2005 [10]. As the model depends on 
the past and present observed records and the developed 
mathematical basis, this approach can simulate the sea level 
change well and is reliable for local long-term (e.g., decade) 
sea level prediction.

To improve the accuracy of the prediction, time series are 
often decomposed and analyzed as an ensemble of several 
simpler signals, such as cyclic components (e.g., seasonal, 
semi-annual and annual cycles), trends and random noise 
[11]. Huang et al. [12] proposed a new spectral decomposi-
tion algorithm for the analysis called empirical mode decom-
position (EMD), which has been widely applied in sea level 
study [13,14]. The original time series are decomposed into 
several oscillating modes and a residual (trend), called intrin-
sic mode functions (IMFs) [15]. Unlike wavelet or Fourier 
analysis, EMD is a non-parametric method which does not 
require the use of pre-determined basis functions, and per-
forms better while employed to the analysis of nonstation-
ary series. A noise assisted method ensemble EMD (EEMD) 
was developed by Wu and Huang [16] as the improvement 
of EMD to address the mode mixing, a phenomenon that the 
similar frequencies mix with each other. These methods can 
lead to optimal improvements in the analyzing of the past 
and present time series, whereas they are limited in the pre-
diction of future change.

On the other hand, approaches for modeling and predict-
ing some geophysical time series have been well developed 
to enhance the ability of capturing the nonlinear or nonsta-
tionary characteristics (e.g., auto-regressive and moving 
average model [17], support vector machine [18], grey model 
[19]). Among these methods, artificial neural network (ANN) 
has been widely used in various areas for the prediction of 
nonlinear and nonstationary time series with its highly learn-
ing function [20]. Back propagation (BP) algorithm has been 
the most representative and developed method for ANN 
and applied to model the sea level and tidal changes [21]. 
However, as a pure data-driven model, none of any physical 
relationships can be pre-determined from the time series by 
using BP neural network, thus the prediction finally provides 
several dataset without any physical meaning patterns can be 
explored or explained. Establishment of a scientific method 
to extract the distinctive temporal patterns of sea level 

variations and investigation of the major factors is essential 
for improving the modeling and prediction accuracy of the 
regional sea level.

Guangdong Province, one of the most essential financial 
centers in China, is located in southern China and abuts the 
northern coast of the Pacific. Similar to other coastal regions 
in the world, the threat posed by rising sea level has become 
more prominent in Guangdong due to the low-lying nature of 
the land, the increasing population and assets, and the effects 
of climate change [22]. Many studies have been conducted 
to predict sea level change in Guangdong at both large and 
small scales, whereas no agreement has been reached [23]. 
Accurate prediction of the regional sea level variations in 
Guangdong has been impeded by the complex forcing fac-
tors and the relatively short-term coverage provided by sat-
ellite altimetry data [24].

To address this, this study attempts to propose a hybrid 
method combining EEMD and BP neural network (EEMD-BP) 
to model the sea level change from the long term monthly 
tide gauge records (spanning 01/1959–12/2011) on the coast 
of Guangdong. EEMD is used to pre-process the original 
time series, in other words, to analyze the patterns of regional 
sea level change, figure out the main affecting factors, and in 
turn make the original time series simpler. BP neural network 
is then applied to predict the patterns, and the result of mod-
eling the original time series is obtained by reconstructing 
the output of the prediction. This method explores the ways 
of improving the prediction accuracy at regional scale and 
may provide potential for investigation of the patterns of sea 
level change.

2. Data and methods

The method of EEMD-BP involves two parts: the decom-
position of the original time series and the signals prediction. 
At first the original sea level time series is decomposed by 
using EEMD for smoothing and denoising, and several sim-
pler signals (such as cyclic components, trends and random) 
called IMFs, are obtained. Then prediction models are estab-
lished for modeling the variability of each IMF by using BP 
neural network. Finally the future change of the original sea 
level time series is simulated by reconstructing the output of 
each IMF from the prediction models.

2.1. Ensemble empirical mode decomposition

EMD extracts the frequency contributions, that is, IMFs, 
from a targeted time series oscillatory signal. An IMF usually 
has a physical meaning and can be identified by two charac-
teristics: (1) the number of extremes and zero-crossings are 
either equal or differ at most by one; (2) at any point, the mean 
value defined by local envelops of the IMF must be zero.

The detailed procedures of EMD are described as follows 
[25]: First of all, local maxima and minima are identified in 
a signal f(t), then an upper envelope and a lower envelope 
are produced by employing cubic interpolation functions, 
respectively. Second, the local mean m1(t), defined as half the 
difference between the upper and lower envelopes, is com-
puted and subtracted from f(t). Usually the residual signal 
h1(t) is not stable and above procedure is repeated until the 
criteria of IMF is satisfied. Then the first IMF IMF1(t), that 



141L. He et al. / Desalination and Water Treatment 121 (2018) 139–146

is, the highest frequency component in f(t), can be extracted 
after several times (e.g., k times) of sifting process:

IMF1(t) = h1k(t) = h1(k – 1)(t) – m1(k)(t)  (1)

Now f(t) has been decomposed into the highest frequency 
component, IMF1(t), and a residual signal, as in the following 
equation

f(t) = IMF1(t) + R1(t)  (2)

Iterate on the residual until the stop criteria is met and 
the process of the sifting is complete. Finally, the original 
signal has been decomposed into several IMFs (e.g., after n 
times decomposition, there are n IMFs) and the final residual, 
or trend, as show in the following equation:

f t F t R tj
j

n

n( ) ( ) ( )= +
=
∑IM

1
 (3)

However, mode mixing often came out as the result of 
signal intermittence and noise. Therefore, EEMD was pro-
posed to eliminate the effect of mode mixing and extract 
the actual time–frequency distribution of the signal by Wu 
and Huang [26]. The original signal is added to an ensem-
ble of white noise which is uniformly distributed as white 
background, and the bits of signals of different scales can be 
automatically designed onto proper scales of reference estab-
lished by the white noise. Each individual trial produces very 
noisy results, consisting of real signal and noise. The noise 

can be averaged out as more and more trials are added in the 
ensemble, and the only persistent part is the signal.

Two parameters, the number of white noise series M 
and amplitude of the added noise ε, affect the decomposing 
results of the EEMD, which is evaluated by the final standard 
deviation of error e (the distinctions between the input time 
series and the corresponding IMFs),

e
M

=
ε  (4)

In general, the M of a few hundred will gain a good 
result, and the remaining noise may cause only less than 1% 
of error. In addition, under an appropriate level of the ε, it 
has no obvious improvement for decomposing results by 
constantly increasing the M. Based on these findings above, 
meaningful IMFs can be well specified when M = 100, and ε  
∊ [0.01, 0.5] [16]. In this study, the number of ensemble white 
noise is 100, and the ratio of the standard deviation of the 
white noise and that of the original signal was 0.2.

2.2. BP neural network

BP neural network is the most prevalent learning algo-
rithm in ANNs due to its excellent properties such as the 
universal approximating ability toward arbitrary continuous 
functions [27]. The principle of BP neural network is based on 
the hypothesis that there is a functional relationship between 
the observation and the prediction, and the prediction is 
approached by means of establishing the neural network to 
simulate the relationship. Fig. 1 shows the typical BP neural 

Fig. 1. Structure of BP neural network.
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network structure which has three layers: input layer, hid-
den layer and output layer, and each layer consists of sev-
eral neurons and all the layers are interconnected by sets of 
correlation weights. The modeling procedure includes two 
parts: forward information transmission and the error BP. At 
the first stage, the input signals flow from the input layer to the 
hidden layer, and transform to the output layer and then the 
outputs are produced by means of a non-linear transfer func-
tion. A common transformation is the tan-sigmoid function 
expressed by f(x) =2/(1 + exp(–2 × x)) – 1, which produces the 
output between –1 and 1. The output may be very different 
from the required data, since all the weights are random at 
first. Therefore, the error BP procedure starts. Each error of 
the neuron is calculated and minimized through gradient 
descent while propagating to the prior layers. The weights 
are modified on the repeated processes of information trans-
mission and error propagation until the error can be accept or 
the preset training time is reached, then the network is estab-
lished. Since the principle of BP neural network has been 
developed and described by many studies in details [20], in 
this paper a brief introduction is given.

2.3. Assessment of model performance

To enlighten the improvements of the hybrid method, 
two predictions are carried out and compared by using the 
BP neural network and EEMD-BP, respectively. Prediction 
with BP method is to simulate the original sea level time 
series directly by BP neural network, without any prepro-
cessing process such as decomposing and denoising.

To assess the performances of the models, correlation 
coefficient (R) and root mean square error (RMSE) are deter-
mined. RMSE provides information on the short-term per-
formance of the correlations by allowing a term by term 
comparison of the actual deviation between the observed 
and predicted values. RMSE is calculated by the following 
equations.

RMSE = − ∧

=
∑1

1

2

n
y yi i

i

n

( )  (5)

where n, y, ŷ represent the number of samples, the observed 
value and the prediction, respectively.

2.4. Data and model development

Zhapo tide gauge, which is located in the southern China 
(21°35′N, 111°50′E), provides the longest and most complete 
records widely used for the estimation of sea level change in 
the South China Sea. Therefore, the monthly series of Zhapo 
tide gauge during the period 01/1959–12/2011 selected from 
Permanent Service for Mean Sea Level (PSMSL) were used 
here to illustrate the capability of the proposed model for sea 
level prediction. Small gaps in the records (1–2 months) were 
filled using cubic spine interpolation [28].

One of the difficulties in establishing the BP neural net-
work model for sea level prediction is to construct the input 
datasets. To overcome the sparse of the samples, more time 
series are created by moving a window on the original IMFs. 
For learning and predicting the rules precisely, at least one 

complete cycle should be contained in the window. Given 
that the nutation cycle, with the period of 18.61 years, is a 
relatively long observed cycle in sea level change, after some 
tests, a window including 360 samples (i.e., covering 30 years) 
are established to create the new input datasets. Hence, the 
original time series spanning 01/1959–12/2011 (containing 
636 samples) are reconstructed to 288 groups of data. And 
these 288 groups are then separated into two parts for mod-
eling, the first 228 groups are training datasets and the last 60 
are validation datasets. For example, the input layer contains 
30 samples, which are January records from 1959 to 1988, and 
the output is the January record in 1989; then it moves to the 
next round and this input layer contains 30 February records 
from 1959 to 1988, and the corresponding output value is the 
February record of 1989. This process is moving on monthly 
until the input of December records spanning 1976–2005 and 
the output of December in 2006 are complete. Then the net-
work with 30 neurons in the input layers and 1 neuron in 
output layer finishes training.

3. Results

The results first show the oscillations and long-term 
trend as obtained from the EEMD; then, the significance test 
of the oscillations is conducted and their physical meanings 
are discussed, and finally, the performance of the BP neural 
network is evaluated.

3.1. Decomposition of tide gauge records

The series of Zhapo tide gauge were decomposed into 
nine IMFs by EEMD, as shown in Fig. 2. The mean periods of 
IMFs 1–8 are 3, 7, 13, 26, 49, 121, 220 and 314 months, respec-
tively, and the remainder IMF 9 is the long-term trend. To 
ensure the decomposition results are meaningful and not the 
noises, the significance test is conducted [29], as shown in 
Fig. 3. IMFs 1–3 and IMFs 5–7 pass the significance test on the 

Fig. 2. IMFs obtained by decomposing Zhapo tide gauge records 
using EEMD.
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level of 95%, suggesting that these six IMFs have statistical 
meaning. A linear trend of 1.6 mm/year can be observed from 
IMF 9, indicating that during the period of 1959–2011, the sea 
level around Zhapo rises at the rate of 1.6 mm/year, similar to 
rates found in other stations in the region [30] and similar to 
the global rate of 1.7 mm/year [31]. The results suggest that 
EEMD can extract the meaningful signals from the nonlinear 
and nonstationary time series, which would be appropriate 
for the study of sea level change.

Because of the complication and significance of sea level 
variability, many attempts have been devoted to it and sev-
eral cycles (e.g., seasonal cycle) determined by different 
factors such as river flow and El Niño–Southern Oscillation 
(ENSO) have been found in the sea level time series [32]. In 
this decomposition, IMF 1 with mean period of 3 months 
represents the seasonal cycle of sea level change, and it may 
be controlled by local factors such as river flow [33]. IMF 2 
and IMF 3, with mean period of 7 and 13 months, are sup-
posed to be semi-annual and annual cycles, respectively. 
And these cycles are confirmed existing in most of sea level 
time series all over the world [34]. IMF 5 shows the similar 
cycle (49 months) with ENSO cycle which is almost 3–7 years 
[35]. Furthermore, while the end effects of IMF 5 have been 
removed [36], a negative correlation (R = –0.62) is observed 
between IMF 5 and the NINO 3.4 Sea Surface Temperature 
index. The result indicates that IMF 5 is related to the ENSO 
events. The mean period of IMF 6 (121 months) is consistent 
with solar magnetic activity cycle (11 years) [37]. A signifi-
cant correlation (R = 0.82) is found between IMF 6 and the 
monthly series of mean northern hemisphere sunspot num-
bers, which was collected from Sunspot Index and Long-term 
Solar Observations. This high correlation suggesting that 
IMF 6 may reflect the response of sea level change to solar 
magnetic activity. The mean period of IMF 7 (220 months) 
is similar to the lunar nodal cycle (18.61 years). These are 

encouraging results indicating that the EEMD can extract 
the signals with physical meaning from the chaos series. 
Moreover, the variance contribution rate of each IMF shows 
that the first three IMFs explains most of the total variances, 
which are 30.71%, 42.88% and 20.05%, respectively. It sug-
gests that the inter-annual, seasonal and annual cycles may 
be the dominant changes of the sea level in the study area, 
which is consistent with the study of Zheng [38] who reveals 
that the inter-annual variability would be the dominant char-
acteristic of sea level in China.

3.2. Effects of neural network structure

The BP neural network structure is used to illustrate the 
performance for sea level modeling, which is optimized by 
setting the essential parameters such as the number of the 
hidden layers and the number of neurons in each layer, the 
learning rates (α), the momentum factor (η), the number of 
training iterations (epochs) and so on. Many studies have 
revealed that the typical BP neural network with one hid-
den layer can highly approximate any nonlinear function 
defined by sets of real number [39]. Thus, a BP neural net-
work with three layers is adopted in this study for modeling 
the sea level prediction. The neurons of the hidden layer are 
used for extracting and restoring the rules from the samples, 
and the weights of them are critical to the reflecting func-
tion of the BP neural network. A testing BP neural network 
with α = 0.2, η = 0.9 and after 5,000 iterations is presented in 
Table 1 to illustrate the effect of the different number of the 
neurons. The results show that the prediction performance is 
improved when the neuron number increases until the num-
ber is over 6. Less neurons would result in absorbing infor-
mation incompletely, while too much would extract the noise 
and lead to the over-fitting. Therefore, after many tests, the 
number of neurons was recommended to be 6.

The value of α affects the convergence of the BP neural 
network training process, and the proper value of momen-
tum factor can avoid stopping the learning process at a local 
minimum instead of global minimum. Either low α or high 
η would fasten the convergence of the BP learning algo-
rithm. After some preliminary tests, the learning rate and 
the momentum factor are listed in Table 2. Considering the 
different characteristics of the nine IMFs, the testing process 
is repeated and the parameter settings of the nine IMFs are 
shown in Table 2.

To evaluate the accuracy of the BP neural network, the 
comparison between the prediction and observation of IMFs 
1–9 during 01/2007–12/2011 are shown in Fig. 4. All the 

Fig. 3. IMF significance test of Zhapo tide gauge records with 
99% (purple line) and 95% (blue line) confidence limit. The point 
(*) below the lines indicate that the hypothesis that the corre-
sponding IMFs of the observations are not distinguishable from 
the corresponding IMFs of a random noise series cannot be 
rejected with the confidence levels (95% and 99%, respectively).

Table 1
Effect of the number of the hidden neurons

Time series Number of hidden neurons RMSE (mm)

Zhapo 1 98.793
3 64.502
5 42.814
6 38.239
7 44.787
9 61.638
11 67.326
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predictions exhibit good performances. IMF 1 with the high-
est frequency signals exhibits a relatively poor performance, 
but the amplitudes and trends of the prediction are consistent 
with the observed value. IMFs 2–4 perform better than IMF 1, 
and as the signals go smoother, the prediction performances 
better. IMFs 8–9, the smoothest signals give the best perfor-
mances in BP neural network prediction. These regular chang-
ing results indicate that BP neural network is suitable for the 

prediction of nonstationary and nonlinear time series, and the 
model will provide a higher level accuracy while the signal is 
smoother. By the way, when the prediction of long-term sea 
level change is carried, the high frequency in the signals such 
as seasonal cycle should be removed at first [40]. Therefore, 
the relatively poor performance of IMF 1 would make little 
effect on the prediction of the long-term sea level change.

4. Discussions

The comparison between the predictions produced by 
the hybrid method and BP neural network directly is shown 
in Fig. 5. The high coincidence of the two prediction curves 
with the observation value curve indicates a good perfor-
mance of the BP neural network for the sea level prediction. 
Nevertheless, more and larger deviations are found in the 
green curve when the two prediction curves are compared 
with the observed curve, such as in 10/2007, the value on 
green curve is significantly higher than that of observed data, 
while the EEMD-BP prediction is much closer to it. This phe-
nomenon also appears in 10/2008 and 5/2010, where the green 
curve was clearly deviated from the red and blue curves. Fig. 4 
shows that the red line is more approaching to the blue curve 
than the green curve does, which indicates that the hybrid 
method provides a better performance in sea level prediction 
than using the BP learning algorithm only. Moreover, larger 

Table 2
BP neural network structures of the nine IMFs for the sea level 
prediction

Time 
series

Number of 
hidden layers

Number of 
neurons

α η Epoch RMSE 
(mm)

IMF1 1 6 0.01 0.9 5000 61.187
IMF2 1 6 0.04 0.9 5000 46.848
IMF3 1 6 0.1 0.7 5000 43.405
IMF4 1 6 0.02 0.8 5000 11.421
IMF5 1 6 0.1 0.8 5000 1.537
IMF6 1 6 0.01 0.8 5000 1.430
IMF7 1 6 0.01 0.9 5000 0.255
IMF8 1 6 0.1 0.7 5000 0.069
IMF9 1 6 0.1 0.7 5000 0.081

Fig. 4. Comparison between the prediction and samples of IMFs from EEMD.
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deviations of the BP neural network predictions are prone 
to appear in the extremes, for example, in 10/2007, 10/2008, 
10/2011, which may suggest that the BP neural network has a 
relative poor ability in simulating extremes owing to the dis-
order and complex variability of the nonlinear original series. 
And the decomposition process has made an advantage for 
resolving this problem, as shown in Fig. 5.

The correlation coefficient (R) and the root square mean 
error (RMSE) are determined from the two predictions. High 
R and low RMSE between the predictions and the observation 
are the encouraging results indicating that the BP performs 
well in the sea level prediction. Compared with Cheng et al. 
[41] who carried out a prediction using tide gauge records and 
altimeter satellite data, and the minimum RMSE is 43.9 mm, 
the predictions in this study show a lower error level, would be 
applicable for sea level prediction (the higher RMSE produced 
by using the BP directly is 36.74 mm). Compared with using 
the BP method directly (with R = 0.76 and RMSE = 36.74 mm), 
the EEMD-BP hybrid method with higher R (R = 0.89) and 
lower RMSE (RMSE = 28.16 mm), shows a better performance. 
Lee [42] also used BP neural network for long-term tidal pre-
diction, and the lowest normalized RMSE is 0.0844. The RMSE 
of the prediction produced by EEMD-BP is calculated accord-
ingly, which is 0.0142, indicating that the hybrid method may 
improve the accuracy of the BP prediction.

5. Conclusions

Conventional methods developed for the sea level pre-
diction are still considered insufficient due to the complexity 
of the nonstationary and nonlinear sea level change. In this 
study, a method combining the data analysis method EEMD 
and the prediction method BP neural network was proposed 
to improve the accuracy of sea level prediction. EEMD can 

extract significant information and wipe off the noise from 
sea level height time series, and is applicable for the sea level 
change analysis. The decomposition of Zhapo tide gauge 
records shows that the inter-annual and annual cycles are 
the dominant periods of sea level change in Guangdong, 
and the sea level has been rising at the rate of 1.6 mm/year 
during 1959–2011. With the advantages of not requiring the 
prior knowledge, BP neural network performs good in learn-
ing and predicting nonlinear and nonstationary time series 
by data driven. Preprocessing of the time series in the time 
and frequency allows defining the input of the BP neural net-
work. The results show that the prediction accuracy has been 
improved when the input time series are decomposed to be 
smoother and more regular. The EEMD-BP hybrid method 
shows a higher accuracy (with R = 0.89 and RMSE = 28.16 mm) 
than using the BP neural network directly (with R = 0.76 and 
RMSE = 36.74 mm), and the hybrid method can be further 
applied to other regions for the sea level prediction. The 
results also illustrate that the pre-processing such as smooth-
ing or decomposing is strongly recommended for the nonlin-
ear time series prediction.
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