
* Corresponding author.

1944-3994/1944-3986 © 2018 Desalination Publications. All rights reserved.

Desalination and Water Treatment 
www.deswater.com

doi: 10.5004/dwt.2018.22609

127 (2018) 325–333
September 

One-step surface-functionalization of polydopamine-modified multiwalled 
carbon nanotubes for the selective removal of organic dyes from aqueous 
solutions

Fangli Liao*, Kejun Feng, Luigi Agostini, Xianfeng Li
School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China, emails: 1628640576@qq.com (F. Liao), 
466399081@qq.com (K. Feng), luigiago@hotmail.com (L. Agostini), 252756005@qq.com (X. Li)

Received 7 November 2017; Accepted 6 June 2018

a b s t r a c t
Multiwalled carbon nanotubes (MWCNTs) modified by polydopamine (PDA) (MWCNTs/PDA) 
were synthesized via oxidation polymerization of dopamine. Scanning electron microscopy, Fourier 
transform infrared spectroscopy, and thermogravimetric analyses were used to characterize the 
obtained materials. To study the effect of the mass fraction of PDA on the adsorption capacity, a 
series of MWCNTs/PDA composites with different mass ratios between MWCNTs and PDA, were 
prepared, and their adsorption selectivity toward six different dyes was investigated. The results 
indicated that the MWCNTs/PDA composite with a 1:1 mass ratio between MWCNTs and PDA 
exhibits a higher adsorption capacity toward phenazine and phenothiazine dyes, which both con-
tain the C=C–C=N 1,4-conjugate quinone structure and acid fuchsin, with a N atom in a C=C–C=N 
1,4-conjugate structure connecting H atoms. The adsorption process could be well described by the 
pseudo-second-order kinetic model and by the Langmuir isotherm, respectively. Furthermore, ther-
modynamic parameters revealed that the adsorption was an endothermic and spontaneous process.
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1. Introduction

Over the past few decades, discharge of industrial 
effluents containing organic dyes has brought about serious 
environmental pollution which threatens human health [1–3]. 
Therefore, owing to their ubiquitous use in many industries, 
removal of organic dyes from polluted water has been an 
important research subject [4]. Several biological treatments, 
physicochemical strategies, and chemical methods have been 
extensively investigated to alleviate the effluent pollution, 
such as photocatalysis [5,6], chemical precipitation [7,8], elec-
trochemical degradation [9,10], ozonation [11,12], advanced 
oxidation processes [13,14], membrane filtration [15,16], 
and adsorption [17–19]. However, most techniques have 
their inherent limitations, including the excessive usage of 

chemicals, expensive plant requirements, and high oper-
ational costs. Among these methods, adsorption may be 
regarded as a superior technology, due to its high efficiency, 
easier operation, and low operational cost.

To date, many types of adsorbents, possessing selective 
adsorption, and capable of eliminating dyes from waste-
water, have been studied, such as inorganic or organic 
modified carbon-based nanoparticles [20–22], wood waste [23], 
inorganic materials [24], metal-organic frameworks [25], 
supramolecular hydrogels [26], and polymers [27–29]. 
Especially, multiwalled carbon nanotubes (MWCNTs), as 
carbon-based nanomaterials, have been widely applied 
as promising adsorbents due to their unique quasi-one 
dimensional hollow structure, high specific surface areas, 
light weight, and good chemical stability [30–32]. However, 
their selectivity is usually realized by introducing func-
tional groups onto their surfaces [33,34]. Polymers usu-
ally exhibit different kind of functional groups, such as 
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hydroxyl, carboxyl, or amidogen, which could improve 
adsorption capacity via noncovalent host–guest interactions 
(electrostatic interaction, Van der Waals forces, π–π stack-
ing interaction, and hydrophobic interaction) between the 
adsorbent and the dye molecules [34–36]. Polydopamine 
(PDA), which can be synthesized through the spontaneous 
polymerization of dopamine in aerobic atmosphere under 
alkaline conditions, contains functional groups, including 
catechol, amine, and imine, beneficial to the adsorption 
process [37–40]. In addition, dopamine, a mussel-inspired 
protein, can form surface-adherent PDA films onto various 
inorganic and organic materials [41–43].

Based on these unique features, the objective of this work 
is to synthesize PDA-coated MWCNT (MWCNT/PDA) com-
posites and investigate their adsorption behavior for dyes. 
To study the effect of PDA’s mass fraction on the adsorption 
capacity, a series of MWCNTs/PDA composites, with differ-
ent mass fraction of PDA, were easily prepared through a 
spontaneous polymerization method. The results show that 
the adsorption capacity of MWCNTs/PDA is highest when 
the mass ratio between MWCNTs and PDA is 1:1. Further, we 
selected the following six dyes: neutral red (NR), acid fuchsin 
(AF), azure A (AZA), methylene blue (MB), rhodamine B 
(RHB), and alizarin red S (ARS), to study the selective adsorp-
tion ability of MWCNTs/PDA composites. Finally, the influ-
ence (influential) of factors, such as contact time, solution 
pH, and temperature, were tested. The adsorption isotherms, 
kinetics, and thermodynamics were also investigated.

2. Experimental

2.1. Materials

All chemicals were of analytical grade and used as 
received without further purification. Deionized water used 
in all experiments was purified using the Milli-Q water puri-
fication system. MWCNTs were purchased from Shenzhen 
Nanotech Port Co., Ltd., Shenzhen, China. Dopamine (DA) 
hydrochloride and tris(hydroxymethyl)aminomethane (Tris) 
were obtained from Tianjin Hengxing Chemical Reagent 
Co., Ltd., Tianjin, China. NR, AF, AZA, MB, RHB, ARS, 
hydrochloric acid, and sodium hydroxide were supplied by 
Sinopharm Chemical Reagent Co., Ltd., Shanghai, China.

2.2. Instrumentation

The absorbance of dyes was detected by a 752 UV-Vis 
spectrophotometer. A Nicolet 6700 Fourier transform infra-
red (FTIR) spectrometer (Thermo Fisher Scientific, USA) was 
used to confirm whether the DA was polymerized on the 
surface of MWCNTs successfully or not. Scanning electron 
microscopy (SEM) images of the absorbents were performed 
using a MIRA3 scanning electron microscope (TESCAN, 
Czech). Thermogravimetric analyses (TGA) were conducted 
on a SDT Q600 thermal analyzer (TA Instruments, USA) to 
further estimate the relative composition of nanoparticles.

2.3. Synthesis of MWCNTs/PDA

100 mg MWCNTs were dispersed in 100 mL of Tris–HCl 
buffer solution (10 mM, pH = 8.5) and ultrasonically treated 
for 10 min to obtain homogeneous dispersion. Then 50, 100, 

150, or 200 mg of DA were dissolved in the mixed solution, 
respectively. After mechanical agitation for 24 h at 35°C under 
anaerobic atmosphere, the deep brown solution was sepa-
rated by a 0.45  µm polytetrafluoroethylene membrane and 
the filtrate was washed with deionized water until removal 
of the unpolymerized dopamine monomer, then dried under 
vacuum at 40°C for 24 h. The obtained MWCNTs/PDA com-
posites were marked, respectively, as MWCNTs/PDA (2:1), 
MWCNTs/PDA (1:1), MWCNTs/PDA (2:3), and MWCNTs/
PDA (1:2), according to their mass fraction of PDA. Fig. 1 
shows the process for the modification of MWCNTs.

2.4. Dyes adsorption experiments

For the contrast experiments, six typical dyes, namely 
NR, AF, AZA, MB, RHB, and ARS were chosen as absor-
bates to investigate the adsorption capacity of different 
absorbents: raw MWCNTs, MWCNTs/PDA (2:1), MWCNTs/
PDA (1:1), MWCNTs/PDA (2:3), and MWCNTs/PDA (1:2). 
The chemical structures of the dyes are shown in Fig. 2. The 
equilibrium adsorption capacity (qe) was obtained through 
the following typical adsorption experiment: 5.0 mg of absor-
bent and 20 mL of dye solution, of known initial concentra-
tion, were mixed together in 50  mL conical flask, then the 
mixture was stirred continuously at 25°C until equilibrium 
was reached. The absorbance of the residual dye in solution 
was measured by using a 752 UV-Vis spectrophotometer 
operating at a wavelength corresponding to the maximum 
absorption wavelength of the dye. The equilibrium concen-
tration of each dye was calculated according to the standard 
calibration curve. The qe can be determined by the following 
formula [44]:

q
C C V
me

o e=
−( )

	 (1)

where qe (mg/g) is the equilibrium adsorption capacity of 
absorbent. C0 and Ce (mg/L) are the initial and equilibrium 
concentrations of dye. V (L) is the volume of the aqueous 
solution and m (g) is the mass of adsorbent.

Moreover, NR and MWCNTs/PDA (1:1) were selected 
as representative absorbate and absorbent to run a series 
of experiments to study the effect of crucial parameters, 
such as contact time (0–180 min), pH (2.0–7.0), temperature 
(298–318 K), and initial dye concentration (5.0–30.0 mg/L), on 
the final equilibrium concentration qe.

For kinetic studies, 20 mL of dye solution (the initial con-
centration of which was 20.0 mg/L) and 5.0 mg of absorbent 
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Fig. 1. Schematic representation of the modification of MWCNTs.
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were put together in a 50 mL conical flask. Thereafter, nine 
independent flasks were shaken in a constant tempera-
ture (25°C) shaking water bath for different contact time 
(0–180  min). At various time intervals, the sediment was 
removed by filtering the mixture with MCE (mixed cellulose 

acetate and cellulose nitrate ester) membrane discs (pore 
size 0.45  µm). The concentration of dye in the supernatant 
was analyzed by UV-Vis spectrophotometer.

For adsorption isotherm, 20 mL of dye solution (the initial 
concentration of which was 5.0–30.0  mg/L) and 5.0  mg of 
absorbent were mixed together in a 50 mL conical flask and 
shaken for 30 min at 298, 308, and 318 K, respectively. Then, 
the equilibrium concentration of dye was measured.

The effect of solution pH was investigated by mixing 
20 mL of dye solution (the initial concentration of which was 
20.0 mg/L) and 5.0 mg absorbent in a 50 mL conical flask and 
shaking for 30 min at different pH levels (2.0–7.0). The pH of 
dye solution was adjusted using HCl (0.10 mol/L) and NaOH 
(0.10 mol/L) solutions. Then, the final dye concentration was 
measured.

3. Results and discussion

3.1. Characterization of MWCNTs/PDA

Figs. 3(a)–(e) are the SEM images of raw MWCNTs, 
MWCNTs/PDA (2:1), MWCNTs/PDA (1:1), MWCNTs/PDA 
(2:3), and MWCNTs/PDA (1:2), respectively, which show the 
morphology and microstructure of absorbents. It can be seen 
that, compared with raw MWCNTs (Fig. 3(a)), the surface of 
MWCNTs/PDA (Figs. 3(b)–(e)) became significantly rougher. 
In addition, with the increase of the dopamine content, the 
tendency of accumulation and aggregation became more 
significant, the distribution of PDA in MWCNTs/PDA (1:1) 
was the most uniform among all the obtained compos-
ites (Fig. 3(c)), and such uniform distribution improved its 
adsorption capacity. Table 1 shows the elemental analysis 
of raw MWCNTs and MWCNTs/PDA, demonstrating that 
PDA had been successfully polymerized on the surface of 
MWCNTs. Moreover, by decreasing the mass ratio between 
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Fig. 3. SEM images of (a) MWCNTs, (b) MWCNTs/PDA (2:1), (c) MWCNTs/PDA (1:1), (d) MWCNTs/PDA (2:3), and 
(e) MWCNTs/PDA (1:2).
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MWCNTs and PDA from 2:1 to 1:2, the elemental content of 
N increased from 3.67% to 5.89%. However, by comparing 
MWCNTs/PDA (1:1) and MWCNTs/PDA (1:2), we found that 
despite the latter’s amount of dopamine doubled, there was 
only a 1% increase in the elemental content of N. Therefore, 
we drew the conclusion that the utilization of dopamine in 
MWCNTs/PDA (1:1) was the highest. 

FTIR spectra of raw MWCNTs and MWCNTs/PDA 
composites are shown in Fig. 4(a), in the range of 500–
4,000 cm–1, to exhibit the absorption peaks of the composites’ 
functional groups The characteristic wide peak at 3,445 cm–1 
is due to the stretching vibration of υ(OH). For the MWCNTs/
PDA composites, the characteristic peak at 3,552  cm–1  is 
assigned to the stretching vibration of υ(NH). Finally, the 
adsorption at 700–750  cm–1 can be ascribed to the bend-
ing vibration (out-plane bending vibration) of N–H band. 
Evidently, these peaks indicate the successful coating of PDA 
on MWCNTs.

TGA was performed on a thermal analyzer in the tem-
perature region of 25°C–800°C (as shown in Fig. 4(b)) to 
further estimate the amount of polymers grafted onto the 
MWCNTs and the thermal stability of materials. The weight 
loss of water in external surface and internal pores or cavities 
was below 200°C. The PDA decomposed entirely at about 
650°C. It can be seen from the TGA curves that the contents 
of PDA coated on the MWCNTs/PDA (2:1), MWCNTs/PDA 
(1:1), MWCNTs/PDA (2:3), and MWCNTs/PDA (1:2) were 
17.90%, 26.58%, 26.59%, and 26.68%, respectively. The above 
result further proves that the preparation of composites was 
successful and the yield of PDA in MWCNTs/PDA (1:1) was 
the highest.

3.2. Contrast adsorption experiments

The adsorption behavior of synthesized MWCNTs/
PDA toward six different dyes was studied and the results 
are exhibited in Figs. 5(a)–(f). According to the figures, the 
adsorption capacities of MWCNTs/PDA composites toward 
NR, AF, AZA, and MB are superior to that of raw MWCNTs. 
And the adsorption capacities increased by increasing the 
mass ratio of PDA from 2:1 to 1:1, then decreased from 
1:1 to 1:2, that is, which means that, MWCNTs/PDA (1:1) 
exhibited the highest adsorption capacity. The different 
adsorption capacity of the MWCNTs/PDA composites with 
different amount of dopamine is due to the synergistic effect 
of MWCNTs and dopamine. The SEM images of synthesized 
MWCNTs/PDA composites shown in Figs. 3(a)–(e) may 
explain why the adsorption capacity of MWCNTs/PDA (1:1) 
was the highest. First of all, the PDA coating is necessary in 

order to achieve high adsorption capacity, and the distribu-
tion of PDA on the surface of MWCNTs/PDA (1:1) (Fig. 3(c)) 
is the most uniform, which translates in more active sites for 
the adsorption of dyes. Further, roughened surface, with 
large specific surface area, is conductive to an increase of the 
adsorption capacity. However, excessive PDA coating on 
MWCNTs would lead to a reduction in adsorption capacity, 
owing to only increasing the weight of material and not in the 
creation of more active sites for adsorption. 

On the contrary, for the other two dyes: RHB and 
ARS, the adsorption capacities of as-prepared materials 
were lower than that of raw MWCNTs. A closer look at 
the chemical structures of these six dyes may explain this 
phenomenon. NR as phenazine dye, MB and AZA as phe-
nothiazine dye, all contain the C=C–C=N 1,4-conjugate 
quinone structure, which is beneficial to the improvement 
of the adsorption capacity via electrostatic attraction, π–π 
stacking interaction, Van der Waals forces, and 1,4-Michael 
addition reaction between adsorbent and dyes. However, 
in the chemical structure of RHB, although it contains the 

Table 1
The contents of elements in materials

Materials N (%) C (%) O (%)
r-MWCNTs 2.97 95.65 1.38
MWCNTs/PDA (2:1) 3.67 87.21 9.12
MWCNTs/PDA (1:1) 5.98 83.00 11.11
MWCNTs/PDA (2:3) 5.33 82.20 12.46
MWCNTs/PDA (1:2) 6.67 76.47 16.86
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Fig. 4. (a) The FTIR spectra of MWCNTs, MWCNTs/PDA (2:1), 
MWCNTs/PDA (1:1), MWCNTs/PDA (2:3), and MWCNTs/
PDA (1:2). (b) The TGA curves of MWCNTs, MWCNTs/PDA 
(2:1), MWCNTs/PDA (1:1), MWCNTs/PDA (2:3), and MWCNTs/
PDA (1:2).



329F. Liao et al. / Desalination and Water Treatment 127 (2018) 325–333

C=C–C=N 1,4-conjugate structure, the nitrogen atom is 
connected with two ethyl chains rather than H atoms as in 
AF. Therefore, the steric hindrance created by the carbon 
chains leads to the decrease of the adsorption capacity of 
MWCNTs/PDA. In the chemical structure of ARS, the group 
of catechol tends to form intramolecular hydrogen bonds, 
rather than intermolecular hydrogen bonds between absor-
bent’s molecules, via host–guest interactions, as a result, the 
adsorption capacity of MWCNTs/PDA is lower than that of 
raw MWCNTs. Thus, for the further experiments, MWCNTs/
PDA (1:1) was chosen as absorbent and NR was used as a 
representative absorbate.

3.3. Effect of pH

To further analyze the adsorption process, the pH of 
the dye solution, which could affect aqueous chemistry and 

surface binding sites of the adsorbents, was investigated. 
Fig. 6(a) shows the results. As it can be seen, the adsorption 
capacity of MWCNTs/PDA (1:1) was directly proportional to 
the pH of the solution in the range from 2.0 to 7.0, that is, 
when the pH value of the NR solution was 7 the adsorption 
capacity of MWCNTs/PDA (1:1) was optimal. This trend can 
be explained by considering the structure of the absorbent. 
The electron cloud density of phenolic hydroxyl group on 
the absorbent increased with the increase of the pH value, 
which contributes to the formation of host–guest interaction 
with NR. Therefore, the adsorption capacity of the absorbent 
increased.

3.4. Effect of contact time

The influence of contact time on the adsorption process 
was also investigated in order to determine the equilibrium 
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Fig. 5. (a–f)The adsorption capacity of synthesized materials toward NR, AF, AZA, MB, RHB, and ARS, respectively 
(M stands for MWCNTs).
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time. The adsorption capacity of MWCNTs/PDA and 
MWCNTs toward NR at various time is shown in Fig. 6(b). 
It is obvious that the adsorption capacity increased dras-
tically during the first 5  min and reached equilibrium at 
30 min. Fig. 6(b) also shows that the maximum adsorption 

quantity of MWCNTs and MWCNTs/PDA (1:1) was 30.92 and 
51.95  mg/g, respectively. The adsorption capacity of modi-
fied material was almost double than that of raw MWCNTs.

3.5. Effect of temperature

Temperature is also an important parameter influencing 
the adsorption process. As shown in Fig. 6(c), the adsorp-
tion capacity increased while increasing the experimental 
temperature from 298 to 318 K, which indicated that higher 
temperatures were more beneficial to the adsorption and 
that the adsorption of NR onto MWCNTs/PDA (1:1) was an 
endothermic process.

3.6. Kinetic studies

Kinetic studies of MWCNTs/PDA (1:1) toward NR, 
which could provide valuable insight into the adsorption 
process, were also conducted. Two kinetic models, the pseu-
do-first-order and the pseudo-second-order were used in this 
study to investigate the mechanism of adsorption [45]. These 
models are both expressed in linear form. 

The pseudo-first-order kinetic model is expressed as:

log log
.

q q q
k t

e t e−( ) = − 1

2 303
	 (2)

where qe (mg/g) and qt (mg/g) are the adsorption capacity at 
equilibrium and any time t (min), respectively. k1 (min–1) is 
the pseudo-first-order rate constant.

The pseudo-second-order model is represented as the fol-
lowing form:

t
q k q

t
qt e e

= +
1

2
2 	 (3)

where k2 (g/mg/min) is the rate constant of the pseudo-sec-
ond-order model.

The parameters of the two kinetic equations are summa-
rized in Table 2 and the fitting lines of the pseudo-second-
order model are shown in Fig. 7(a). As shown in Table 2, 
the correlation coefficient (R2) of the pseudo-second-order 
was higher than 0.99 and the calculated adsorption capacity 
(qe = 51.57 mg/g) for the pseudo-second-order model was very 
close to the one obtained experimentally (qt  =  51.95  mg/g). 
Therefore the adsorption of NR can be explained by the 
pseudo-second-order model. 

3.7. Adsorption isotherm studies

A series of experiments were carried out to study 
the adsorption behavior of NR onto MWCNTs/PDA (1:1). 
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Fig. 6. (a) Effect of pH on the adsorption capacity of MWCNTs/
PDA (1:1) toward NR at 25°C,(b) effect of time on the adsorption 
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Table 2
Kinetic parameters for the adsorption of NR onto MWCNTs/
PDA (1:1)

Pseudo-first-order model Pseudo-second-order model

qe 

(mg/g)
k1 

(min–1)
R2 qe 

(mg/g)
k2  

(g/mg/min)
R2

12.32 0.02374 0.7181 51.57 0.007063 0.9980
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The linear form of Langmuir and Freundlich isotherms 
was used to analyze the adsorption mechanism [46]. The 
Langmuir isotherm, which is suitable to model monolayer 
adsorption with homogeneous sites, is given by the follow-
ing expression:

C
q b q

C
q

e

e m

e

m

=
×

+
1

	 (4)

where qe (mg/g) is the adsorption capacity at equilibrium. Ce 
(mg/L) is the equilibrium concentration of the dye in solution. 
qm (mg/g) is the calculated maximum adsorption capacity 
and b (L/mg) is the constant of Langmuir isotherm.

The Freundlich isotherm instead, which can be used 
to model multilayer adsorption, is given by the following 
expression: 

ln ln lnq k
n

Ce f e= +
1 	 (5)

where kf (L/mg) and n are the Freundlich constants.
The fitting parameters of the two isotherms are shown 

in Table 3. Fig. 7(b) shows the curve-fitting lines for the 
Langmuir isotherm. According to the obtained data, 
Langmuir isotherm with higher R2 values was the opti-
mal candidate to describe the monolayer adsorption of 
NR on MWCNTs/PDA (1:1). Furthermore, the values of 
qm obtained from Langmuir isotherm were fitted well 
with the experimental adsorption capacity, which shows 
that the adsorption sites of MWCNTs/PDA (1:1) were 
homogeneous.

3.8. Thermodynamics studies

Different thermodynamic parameters, standard free 
energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°), summarized 
in Table 4, were calculated via the following equations [47]:

∆ ° = −G RT Kcln 	 (6)

− = ∆ ° − ∆ °RT K H T Scln 	 (7)
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Fig. 7. (a) Pseudo-second-order model for the adsorption of NR 
onto MWCNTs/PDA (1:1), (b) the curve-fitting lines of Langmuir 
isotherm, and (c) plot of ln Kc versus 1/T for the adsorption of NR.

Table 3
The isotherm constants of Langmuir and Freundlich model

Model Parameter Parameter value

25°C 35°C 45°C
Langmuir isotherm qm (mg/g) 48.924 50.025 57.770

B (L/mg) 1.190 1.861 2.172
R2 0.9940 0.9965 0.9953

Freundlich isotherm 1/n 4.405 4.702 3.783
k (L/mg) 25.208 29.360 31.376
R2 0.8698 0.7211 0.6888

Table 4
Thermodynamic parameters for the adsorption of NR onto 
MWCNTs/PDA (1:1)

ΔH° (kJ/mol) ΔS° (J/K mol) T (K) ΔG° (kJ/mol) R2

32.392 130.409 298 –6.470 0.9978
308 –7.774
318 –9.078
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lnK S
R

H
RTc =

∆
−
∆Θ Θ

	 (8)

where Kc is the equilibrium distribution coefficient for 
the adsorption process, which is calculated through the 
following equation: 

K
C C
Cc

e

e

=
−0 	 (9)

R (8.314  J/(mol  K)) is the gas constant and T (K) is the 
absolute temperature. ΔH° and ΔS° can be determined by the 
slope and intercept of the plot of ln Kc versus 1/T as shown 
in Fig. 7(c). As it can be seen from Table 4, the process of 
adsorption is an endothermic process owing to the positive 
value of ΔH° and therefore lower temperature would facili-
tate the removal of NR. The negative value of ΔG° suggested 
that the adsorption of NR is spontaneous in nature. 

4. Conclusion

In summary, PDA-coated MWCNTs were synthesized by 
oxidation polymerization of DA under basic condition and 
fully characterized. To study the effect of the mass fraction 
of PDA on the adsorption capacity, a series of MWCNTs/
PDA composites, with different mass ratio between 
MWCNTs and PDA, were prepared. Subsequently, sys-
tematical experiments were conducted to investigate their 
adsorption selectivity toward six different dyes. The results 
showed that MWCNTs/PDA (1:1) exhibited an excellent 
adsorption capacity toward phenazine and phenothiazine 
dyes, that contains C=C–C=N 1,4-conjugate quinone struc-
ture, and toward AF with N atom in a C=C–C=N 1,4-conju-
gate structure connecting H atoms. The adsorption capacity 
of MWCNTs/PDA (1:1) toward NR was 58.17 mg/g at an ini-
tial NR concentration of 25.0 mg/L. Meanwhile, the adsorp-
tion study showed that the pseudo-second-order model 
and Langmuir isotherm were more suitable to explain the 
adsorption process. Furthermore, thermodynamic parame-
ters revealed that the adsorption was an endothermic and 
spontaneous process. In conclusion, MWCNTs/PDA (1:1) 
proved to be an extremely powerful composite material for 
removing dyes from aqueous solutions.
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