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a b s t r a c t 
This paper reconstructs the phase space for the runoff time series of three typical stations in the middle 
and lower reaches of the Yellow River by using the C–C algorithm and proves that the runoff time 
series of the Yellow River has chaotic characteristics through calculating the largest Lyapunov index. 
The three-order Volterra adaptive filter model is used to predict the runoff time series of three stations, 
which has a better forecast effect. A new method is provided for the forecast of river runoff.
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1. Introduction

The formation of river runoff is influenced by a variety 
of random factors such as climate, rainfall, watershed char-
acteristics, geographical environment, and human distur-
bance. And the mechanism of action of each factor is often 
difficult to accurately describe in precise mathematical lan-
guages. Therefore, the river runoff forecast is a complex non-
linear non-stationary system problem. The traditional runoff 
forecasting model cannot accurately describe the variation 
characteristics of river runoff, and the prediction accuracy is 
also declining naturally. This makes it possible to study new 
methods and improve the conventional methods and com-
plementary use of various methods. Volterra series can effec-
tively characterize nonlinear nonstationary system problems. 
Volterra adaptive filter can adaptively track the motion trajec-
tory of chaotic system and has high prediction accuracy [1,2].

Based on the previous scholars’ research [3–6], the runoff 
time series of the Yellow River has chaotic properties, but 
the calculation is cumbersome and the calculation speed is 
slower. The C–C algorithm [7] has the characteristics of fast 
calculation and simultaneous estimation of the delay time 

and the embedded dimension. This paper reconstructs the 
phase space for the runoff time series by using the C–C algo-
rithm and calculates the largest Lyapunov index of runoff 
time series. On the basis of this, the third-order Volterra 
adaptive filter model is applied to the Yellow River runoff 
forecast for the first time. The forecast results show that 
the Volterra adaptive filter model can effectively reflect the 
future trend of runoff series and achieve high prediction 
accuracy, which can provide the basis for the Yellow River 
runoff forecast.

2. Volterra adaptive filter prediction principle

2.1. Phase space reconstruction of time series

The judgment and prediction of chaotic time series are 
based on phase space reconstruction. According to Takens’ 
embedding theorem, for a given time series, if m ≥ 2d + 1 (d is 
the correlation dimension of the dynamical system, and m is 
the embedded dimension), the attractor can be recovered 
in the m-dimensional reconstruction space. Phase trajectory 
in reconstructed space and differential of motivation system 
are homeomorphism, in addition, the reconstructed space 
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is topological equivalent to the primitive dynamical sys-
tem [8]. Assuming that the time series is {x(t)}, t = 1, 2, ⋯, n, 
n is the number of time series, If the embedded dimension 
is m and the time delay is f, the phase space is reconstructed 
as follows:

Xm(t) = ���[x(t), x(t + f), x(t + 2f)… x(t + (m – 1)f)]
t = l, 2, …, N; N = n – (m – 1)f� (1)

For a specific time series, the Lyapunov index quanti-
tatively describes the property of exponential divergence 
between adjacent orbits in phase space, which is used to 
reflect the initial sensitivity of the chaotic motion. In the actual 
system chaotic recognition, only the maximum Lyapunov 
index is usually estimated. It indicates that the system has 
chaotic properties when L > 0. The main methods are small 
data method [8], Wolf method, [9] and so on.

2.2. The C–C method selects the reconstructed spatial parameters

In this paper, the delay time τ and the embedded window 
width τw are estimated by C–C method. Because the delay 
time mainly depends on the embedded dimension and the 
embedded window width, the embedding dimension can 
be obtained according to τw = (m – 1)τd. The time series {x(t)} 
(t = 1, 2, ⋯, n) is divided into M disjoint time series, the length 
is int(n/M), where int is the rounding function. For the gen-
eral natural number M:

{x(1), x(M + 1), x(2M + 1), …}
{x(2), x(M + 2), x(2M + 2), …}� (2)

⋮
{x(M), x(M + M), x(2M + M), …}

Calculate the statistical component of each subsequence:

S m N r
t

C m N r C m N r
m
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In Eq. (3), Cl is the correlation integral of the Lth 
subsequence of the time series, defined as (4).
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In Eq. (4), θ() represents the Heaviside unit function; X(i) 
represents the ith time series. The local maximum interval can 
take the zero point of S()or the time point that is the small-
est difference from the full radius r. Select the corresponding 
minimum radius and maximum radius r, the definition of the 
difference is as follows:

∆ ( ) = ( )  − ( )  ≠S m N t S m N r t S m N r t i ji i, , , , , , , ,max min � (5)

According to the statistical principle, the ranges of m are 
between 2 and 5, r is between σ/2 and 2σ, and σ is the mean 
square of the time series. Calculate the Eq. (6) as follows:
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In Eq. (6), Δ S (t) is the first local maximum time point 
corresponding to the first minimum; S (t) is the mean of 
the statistic c of all subsequences S(m,N,ri,τ); independent of 
the first overall maximum time window is Scor(t) minimum 
corresponding to the time series, known as the delay time 
window.

3. Adaptive prediction model based on Volterra filter

A large number of studies and experiments have 
proved that most of the nonlinear systems can be char-
acterized by Volterra series. Volterra adaptive prediction 
model can accurately predict many chaotic sequences. This 
kind of prediction requires small amount of training data, 
easy to implement hardware and software. It can adap-
tively track the trajectory of chaotic system and has high 
prediction precision [10]. Therefore, this paper applies the 
Volterra adaptive filter forecasting model to predict the 
natural flow data of the three representative stations in 
the upper, middle and downstream of the Yellow River for 
the first time.

3.1. Volterra series expansion

Assuming that the input of the nonlinear discrete dynam-
ical system is X(n) = [x(n) + x(n – τ), …, x(n – (m – 1)τ)], the 
output based on one step is y(n) =  x

∧
(n + τ) = F(X(n)). In this 

case, the second-order truncation error of the obtained non-
linear system is as follows[11]:
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Eq. (7) is represented by an finite impulse response (FIR) 
filter, that is, a Volterra adaptive filter. The filter coefficients 
and input vectors are as follows:

H n h h h m h
h h m m T

( ) [ , ( ), ( ), ( , ),
( , ), , ( , )]

= −

⋅ ⋅ ⋅ − −
0 1 1 1 2

2 2
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U n x n x n x n m
x n x n x n x n
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For high-order Volterra series filters, a sparse expansion 
of the predictive filter model [12] can be used to represent, 
specifically described as follows:
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At this point, the coefficient vector and the input vector 
are as follows:

H(n) = �[h0,h1(1), …, h1(m  –  1), h2(0,0), …, h2(0,m  –  1),  
h2(1,1), …, h2(1,m  –  1), …, h3(0,0), …,  
hk(0,0), hk(0,m – 1), …, hk(1,1), …, hk(2,1), …, hk(2,m – 1))]T

� (11)

U(n) = �[1, x(n), x(n  –  τ), …, x(n  –  (m  –  1)τ),  
x2(n), …, x2(n – (m – 1)τ), x(n)x(n – τ), …, x(n)x(n – (m – 1)τ),  
x3(n), …, xk(n), …, x(n)xk – 1(n – τ), x(n)xk – 1(n – (m – 1)τ)]T

� (12)

The above equation can be expressed as follows:

x
∧

(n + 1) = HT(n)U(n)	 (13)

4. Volterra adaptive filter prediction model

In a variety of adaptive algorithms for linear adaptive 
prediction models, time-domain orthogonal adaptive algo-
rithms can be used directly in the adaptation of nonlinear 
models [12] to adjust the coefficient vectors. The nonlinear 
Volterra adaptive filter structure is shown in Fig. 1.

In this paper, the third-order Volterra adaptive filter is 
used to predict the natural flow time series of three stations, 
the forecasting step is divided into the following:

•	 The training sample is selected and the training sample 
data are reconstructed by phase space to obtain the input 
vector of the Volterra filter.

•	 Initialize the coefficient vector and use the time orthogo-
nal adaptive algorithm to train the coefficient vector until 
it converges.

•	 The phase space included in the last time of the test point 
of the test sample is input to the trained Volterra filter to 
obtain the prediction result.

4.1. Basic information

The model was used to forecast and analyze the natural 
runoff sequences from 1919 to 1991 in the upper reaches of the 
Yellow River, Lanzhou station, middle reaches of Sanmenxia 
station and downstream Huayuankou station. The runoff 
data from the Yellow River Water Resources Commission 
Hydrology Bureau and the process of the runoff of the three 
stations are shown in Figs. 2 and 3.

5. Example application

5.1. Runoff prediction of the Yellow River

The third-order Volterra adaptive filter model is used 
to forecast the natural flow data of Lanzhou, Sanmenxia 
and Huayuankou stations in the Yellow River, the forecast 
is divided into monthly natural flow forecast and annual 
natural flow forecast. For the natural average flow forecast 
model, the total number of samples is 876, a total of 868 
samples of runoff time series data from January 1919 to 
April 1991 were selected as learning training samples and 
were used as input to the model. A total of eight samples 
of runoff time series data from May 1991 to December 1991 
were selected as the samples for the model. For the natu-
ral average flow forecast model, the total number of sam-
ples of the model is 73, and 8  years after the selection of 
data for the retention test samples, the previous 65 years of 
data are select as training samples. Considering the length 
is too long, only the graphs of forecasting and analyzing 
the annual runoff series of Lanzhou station in the upper 
reaches of the Yellow River are given, and the results are 
shown in Figs. 4 and 5.

 

Input x(n) 
Volterra non-linear
state extension U (n)  

Linear Adap�ve
FIR Filter

e(n+1)

Predic�ve value x (n+1)

Actual value 

^

Fig. 1. Volterra adaptive filter structure.
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Fig. 2. Monthly average flow chart in three stations of the Yellow River.

Fig. 3. Annual average flow chart in three stations of the Yellow River.
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Fig. 4. Results the phase space of monthly average flow in Lanzhou station.
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First, the C–C method is used to calculate the phase space 
reconstruction parameters of two time series, and the recon-
struction results are shown in Figs. 4 and 5.

As can be seen from Figs. 4 and 5, The first minimum 
value of the monthly average flow data is 3, corresponding 
to the first local maximum time, that is, the optimal delay 
time τ = 3; And then by Scor at τ = 9 to get the minimum, 
then corresponding to the time series independent of the 
first overall maximum time window, that is, the delay 
time window τ = 9.According to the embedded time win-
dow formula: τw = (m–1)τ, you can calculate the embedded 
dimension of 4; similarly, the optimal delay time of annual 
average flow is 4, and the embedding dimension is 2.

The Lyapunov–Wolf method is used to calculate the 
maximum Lyapunov index of the above data, and the num-
ber is 0.1286 and 0.3267, respectively. According to the chaos 
system theory, the maximum Lyapunov index obtained by 
the calculation is positive. It can be determined that both 
time series have chaotic properties. Then the third-order 
Volterra adaptive forecasting model is used to predict 
the above two sets of data, and the prediction results are 
shown in Figs. 6 and 7. Similarly, Sanmenxia station and 

Huayuankou station annual runoff forecast results are 
shown in Figs. 6 and 7.

5.2. Error analysis

“Hydrological information forecast” SL250-2000 pro-
vides 20% of the relative error between the predicted value, 
and the actual value is used as the permissible error. When 
the error of a forecast is less than the allowable error, it is 
a qualified forecast. The percentage of the ratio of the num-
ber of qualified forecasts to the total number of forecasts is 
the test pass rate, which reflects the overall accuracy of the 
forecast. The Volterra adaptive filter forecasting model is 
compared with the results of the annual runoff forecast of the 
Yellow River, and is shown in Table 1.

As can be seen from Table 1, for the monthly traffic fore-
cast, the best forecast for the three sites is the Sanmenxia 
station, the relative error between the predicted value 
and the true value is the smallest, the minimum is 0.20%; for 
the average annual traffic forecast, the best prediction of the 
three sites is Lanzhou station, the relative error between the 
predicted value and the real value is the smallest, the mini-
mum is 0.08%, the average error is 5.24%. The annual runoff 
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Fig. 5. Results the phase space of annual average flow in Lanzhou station.

Fig. 6. The predicted results of monthly average flow in three stations of the Yellow River.
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forecast of the three stations is qualified to meet the practical 
needs, indicating that the model can be used for the annual 
and annual runoff forecast of the Yellow River.

6. Conclusion

In this paper, the Volterra adaptive filter is introduced into 
the Yellow River runoff forecast, and the forecasting and anal-
ysis of the chaotic system is carried out by using the training 
data with small amount of training data, easy hardware, and 
software. The results show that the model has high consistency 
and good approximation ability, the prediction result is stable, 
easy to implement, and very fast. The model is suitable for the 
Yellow River runoff forecast, which enriches the river runoff 
forecasting method. But how to determine the optimal parame-
ters of the Volterra adaptive filter and how to construct a more 
efficient, reliable, and general algorithm for calculating the 
Volterra filter parameters, so as to further improve the predic-
tion accuracy and elongation of the Yellow River runoff forecast 
model. These problems still need to be studied in greater depth.
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Fig. 7. The predicted results of annual average flow in three stations of the Yellow River.

Table 1
The predicted error analysis of the annual and monthly runoff in the Yellow River mainstream

Station Monthly runoff forecast Annual runoff forecast
Maximum 
relative 
error (%)

Minimum 
relative 
error (%)

Average 
error  
(%)

Inspection 
pass rate 
(%)

Maximum 
relative 
error (%)

Minimum 
relative 
error (%)

Average 
error  
(%)

Inspection 
pass rate 
(%)

Lanzhou station 14 1.48 6.98 100 19.66 0.08 5.24 100
Sanmenxia 
station

5.87 0.2 2.79 100 13.92 0.59 6.54 100

Garden mouth 
station

15.87 1.13 7.71 100 14.61 2.69 7.67 100


