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a b s t r a c t
Recently, the highly pathogenic and carcinogenic nitrogen disinfection byproducts (N-DBPs) have 
been found to be prevalent in disinfected drinking water, causing widespread concern. This review 
summarizes the major findings related to N-DBPs in drinking water over the previous decade. In 
particular, the review focuses on the known precursors and formation mechanisms of N-DBPs. New 
information regarding precursors and mechanisms is also discussed. N-DBPs include the halonitro-
methanes (HNMs), haloacetonitriles (HANs), nitrosamines (NAs), and haloacetamides (HAcAms), 
among other chemicals. HNMs are mainly generated through disinfectant oxidation and halogen 
atom substitution, while HANs are formed through a decarboxylation pathway and an aldehyde path-
way. The formation of N-nitrosodimethylamine (NDMA) occurs in two steps: in the first, nitrite reacts 
with dimethylamine (DMA) to generate NDMA, while in the second, the unsymmetrical oxidation of 
dimethylhydrazine (UDMH) generates NDMA indirectly. The control of N-DBPs remains challenging, 
and the area requires additional research. This review can act as a reference for the research and con-
trol of N-DBPs.
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1. Introduction

Drinking water disinfection plays an important role in 
reducing pathogenic bacteria and stabilizing water quality. 
However, organic pollutants can react with disinfectants 
during this process and generate a variety of disinfection 
byproducts (DBPs) with high toxicity and carcinogenicity 
[1]. Moreover, drinking water sources have been severely 
polluted from municipal wastewater discharges and agri-
cultural non-point source pollution discharges in many 
countries and regions worldwide, which increases the con-
centrations of dissolved organic nitrogen in the water [2] and 
results in the production of higher concentrations and more 

varieties of N-DBPs during disinfection. Wang et al. [3] sur-
veyed the water from a water supply plant in a city in north-
ern China and found that the concentrations of haloacetic 
acids (HAAs), NDMA, and trihalomethanes (THMs) in the 
water after conventional treatment were 18.5 μg/L, 2.9 ng/L, 
and 32.7 μg/L, respectively. Although the concentrations 
were within water quality standards, they were still consid-
ered high [3]. Tan et al. [4] found the highest concentration 
of dichloroacetonitrile (DCAN), 9.05 μg/L, in a water sample 
from Taihu Lake. Bei et al. [5] examined samples from treated 
water and tap water from 44 cities in 23 provinces in China; 
the average concentration of NDMA was 11–13 ng/L, and 
the maximum concentration was 27–28.5 ng/L. Moreover, 
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the concentrations of NDMA in the sampled water reached 
up to 204 ng/L. Kosaka et al. [6] found that at least one of 
six HAcAms was found in all of the drinking water samples 
examined, and the total concentration of HAcAms ranged 
from 0.3 to 3.8 mg/L across Japan. These studies showed that 
a complex variety of N-DBPs were present in relatively high 
concentrations in water from water supply plants, and in 
some cases, the contamination was severe. This review pres-
ents an analysis of the variety of N-DBPs and the precursors 
and formation mechanisms of these pollutants; in addition, 
suggestions for future studies on N-DBPs are made.

2. N-DBP speciation

The organic/inorganic precursors of DBPs in water can 
react with disinfectants during the disinfection process, 
generating the DBPs. At present, more than 700 DBPs have 
been identified [7]. These are divided into nitrogenous 
and carbonaceous DBPs (N-DBPs and C-DBPs, respec-
tively) according to whether or not they contain nitrogen. 
N-DBPs are unregulated and include HANs, HNMs, NAs, 
and HAcAms. N-DBPs have attracted widespread interest 
because of their strong cytotoxicity and genotoxicity [8–11]. 
For example, researchers have found that nitromethane, 
especially dibromonitromethane and tribromonitrometh-
ane, is potentially highly toxic to humans [12]. Compared 
with THMs and HAAs, the emerging iodo-trihalomethanes 
(I-THMs), HANs and HNMs are more toxic [13]. As N-DBPs 
have not been included in the Standards for Drinking Water 
Quality (GB5749-2006, China), the water supply plants in 
China seldom make routine measurements of N-DBP con-
centrations. Methods for detecting and controlling N-DBPs 
are still being studied, and no standards for N-DBPs have 
been implemented in China or elsewhere. The varieties and 
molecular structures of N-DBPs in drinking water are shown 
in Table 1.

3. Precursors of N-DBPs

Studying the control of N-DBP precursors is of great sig-
nificance, as identifying the precursors’ classifications and 
structural characteristics could help define the formation 
mechanisms of N-DBPs and thus enable the reduction of 
N-DBP production through source control.

The precursors of N-DBPs mainly consist of dissolved 
organic nitrogen (DON) compounds in the water [8]. The 
organic precursors include natural organic matter (humic 
acid, fulvic acid, proteins, polysaccharides, etc.), chemi-
cal and human emissions (amido polymers and flocculants 
introduced by the domestic sewage drainage and supply 
process, drugs, cosmetics and personal care products, etc.), 
and microorganisms and their metabolites (bacteria, algae, 
and their respective metabolites). The inorganic precursors 
consist of halide ions, such as Br and I, in the water. At least 
in some waters, a significant proportion of NDMA formation 
can be explained by the presence of known precursors [16]. 
Identified N-DBP precursors tend to be of low molecular 
weight and low electrostatic charge relative to bulk natural 
organic matter. This makes them recalcitrant to removal by 
water treatment processes, notably coagulation, as confirmed 
by a number of bench-scale studies.

3.1. Precursors of HANs

Wang et al. [47] chlorinated 20 typical amino acids and 
found that DCAN was the main product of HAN chlori-
nation. The potential of asparagine to form HANs was the 
highest of all the amino acids (0.027 mol/mol), although that 
of aspartic acid, glutamic acid, glutamine, lysine, arginine, 
proline, histidine, tryptophan, phenylalanine, and tyrosine 
were also high. Studies in which nine amino acids (tyrosine, 
uracil, tryptophan, threonine, asparagine, adenine, cytosine, 
thymine, and glycine) were chlorinated revealed that only 
tyrosine, tryptophan, and asparagine chlorination produced 
DCAN [48]. Other studies found that a variety of organic 
nitrogen compounds could produce a certain amount of 
HANs in the chlorination process; among these compounds, 
the HAN formation potential of kynurenine was the highest 
[49]. Heterocyclic nitrogen and albuminoid substances in free 
amino acids and nucleic acids can produce HAN during the 
chlorination process [8]. Zhang et al. [50] chlorinated soluble 
microbial products (SMPs) in activated sludge and found 
that the SMPs could produce DCAN and trichloroacetonitrile 
(TCAN) during the chlorination process, thereby showing 
that SMPs may also be precursors of HANs. In comparison 
with free AAs, combined AAs generate more chloroform 
(125%–671%) but less DCAN (4.66%–87.5%) at all chlorine 
doses [51].

3.2. Precursors of HNMs

Trichloronitromethane (TCNM), which was the first 
HNM to be discovered, usually accounts for most of the 
measured HNMs and is generally considered a represen-
tative HNM. The main precursors of TCNM are not pro-
teins or aromatic carbons but DON components with amino 
sugar structures [8]. Hu et al. [29] further found that DON 
components with short-chain amino acid structures were 
precursors of TCNM, but amino acids with highly stable 
functional groups (such as phenylalanine) were less likely to 
be precursors. The HNM formation potential was relatively 
high in water with low SUVA254, while the formation poten-
tial was lower in water with high concentrations of aro-
matic carbons and high hydrophobicity. In addition, some 
specific synthetic organic compounds (such as benzene and 
methylbenzene) might also become precursors of HNMs 
under certain disinfection conditions [52]. Consequently, 
water containing DON with amino sugars and amino acid 
structures and water with high concentrations of dissolved 
organic carbon are more likely to promote the formation of 
HNMs.

3.3. Precursors of NDMA

According to recent studies on the formation mecha-
nisms of NDMA, DMA is the most significant precursor of 
NDMA. Li et al. [53] found that, in Microcystis aeruginosa 
in the growth stage, the NDMA formation potential of 
intracellular organic matter was 96 ng/mg DOC, and that 
of extracellular organic matter reached 189 ng/mg DOC. 
Chu et al. [41] found that the precursors of NDMA in 
drinking water sewage treatment plants mainly consist of 
DMA, tertiary amines with DMA functional groups, and 
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Table 1
Varieties and structures of N-DBPs in drinking water reported in the literature

Reported varieties of N-DBPs Chemical structural formula

Haloacetonitriles, 
HANs

Dichloroacetonitrile, DCAN [14–22]

Bromochloroacetonitrile, BCAN [14,15,22–24]

Bromoacetonitrile, DBAN [14,15,17,22]

Trichloroacetonitrile, TCAN [15,20,22]

Chloroacetonitrile, CAN [25]

Bromoacetonitrile, BAN [26]

Halonitromethanes, 
HNMs

Chloronitromethane, CNM [27–29]
C N

OH

O

H

Cl
H

Dichlorodinitromethane, DCNM [28–30]
C N

OH

O

H

Cl
Cl

Trichloronitromethane, TCNM [15,27–30]
C N

OH

O

Cl

Cl
Cl

Bromonitromethane, BNM [28,29]
C N

OH

O

H

Br
H

Dibromonitromethane, DBNM [28,29]
C N

OH

O

H

Br
Br

Tribromonitromethane, TBNM [28–30]
C N

OH

O

Br

Br
Br

Bromochloronitromethane, BCNM [28–30]
C N

OH

O

H

Br
Cl

Dibromochloronitromethane, DBCNM [28–30]
C N

OH

O

Br

Br
Cl

Bromodichloronitromethane, BDCNM [28–30]
C N

OH

O

Cl

Br
Cl

Nitrosamines, NAs N-Nitrosodimethylamine, NDMA [15–17,31–38]

N-nitrosomethylethylamine, NMEA [39,40]

N-nitrosodiethylamine, NDEA [31–36]

N-nitrosopyrrolidine, NPYR [35,36]

N-nitrosopiperidine, NPIP [35,36]

N-nitrosomorpholine, NMOR [36]

N-nitrosodipropylamine, NDPA [35,36]

(Continued)
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dimethylformamide. Amino polymer flocculants (such as 
poly-DADMACs and cationic polyacrylamide) can release 
DMA during the ozone oxidation process and then form 
NDMA [54]. The precursors of NDMA are specific and are 
mainly composed of functional compounds such as DMA 
and UDMH, which are only present at very low back-
ground levels in natural waters. Therefore, the production 
rate of NDMA in water after disinfection is not high, and 
concentrations are approximately at the nanogram per litre 
level. However, the carcinogenicity of NDMA has necessi-
tated thorough study.

3.4. Precursors of HAcAms

HAcAms are emerging DBPs whose toxicity is much 
higher than that of the traditional DBPs [55]. However, there 
are fewer reports on the HAcAms, and their precursors and 
formation mechanisms are still not fully understood. Chu 
et al. [56] found that aspartic acid was an important precur-
sor of DCAcAm and TCAcAm; chloramphenicol is also an 
important precursor of DCAcAm [27].

Thus far, studies have mainly focused on the precursors 
of N-DBPs, but the structural characteristics of N-DBPs are 
not yet entirely clear. Therefore, further studies should be 
conducted as follows: (1) quantitative and qualitative anal-
ysis should be performed to identify the structural charac-
teristics of the N-DBP representative groups based on their 
different kinds of precursors. The characteristic substances 
and structures involved in the formation of N-DBPs should 
be identified. This would create a foundation for including 
N-DBPs in national water quality standards. (2) Targeted 
treatment technology that operates under conditions opti-
mized for maximum efficiency of N-DBP removal from the 
source should be developed based on the characteristics and 
structures of the different N-DBP precursors.

4. Formation mechanisms of N-DBPs

Studies clarifying the formation mechanisms of N-DBPs 
can provide a theoretical basis for improving treatment tech-
nology and optimizing operation parameters. Therefore, the 
current findings regarding N-DBP formation are reviewed 
here. 

4.1. Formation mechanism of HANs

HANs are formed by the reaction of free amino acids, 
nucleic acids, proteins, humic acid, and small molecular 
amines with chlorine or chloramine. At present, there are 
two known HAN formation pathways [57]: the first is the 
aldehyde pathway, in which a halogen is substituted for an 
atom of H on an amino acid and the nearest carboxyl forms 
a C=N imine after decarboxylation and dehalogenation. The 
imine and water continue to react to form NH3 and aldehyde, 
and the aldehyde and chlorine/chloramines ultimately react 
to form nitriles. The second pathway is the decarboxylation 
pathway, in which halogens are substituted for two H atoms 
on an amino acid, and decarboxylation, after the removal 
of HCl, forms nitriles. Ding et al. [58] studied the formation 
mechanism of DCAN from aspartic acid during the chlori-
nation process. It has been shown that the amino functional 
group of aspartic acid is first chlorinated to form chloraspar-
tic acid [8,29,42], and the chloraspartic acid is decarboxylated 
via the removal of carboxylate and two molecules of carbon 
dioxide [8,42,59]. The decarboxylated chloraspartic acid is 
then oxidized by HClO, and acetonitrile is formed after one 
molecule of HCl is removed from the amino functional group 
to form a carbon-nitrogen triple bond. Finally, the methyl 
group of the acetonitrile continues to be oxidized by HClO to 
form DCAN [42,59,60]. When the ratio between free chlorine/
chloramine and amino acids is greater than 1, the decarbox-
ylation pathway is more likely to occur. Yang et al. [61] also 
studied the pathway of nitrile formation from the reaction of 
chlorine/chloramine and amino acids. Ammonia reacts with 
chlorine to form organic chloramines. Based on different 
chlorine–nitrogen ratios, there are two potential products: 
when the chlorine–nitrogen ratio is less than or equal to 1, 
R–CH(COOH)–NHCl is formed, while R–CH(COOH)–NCl2 
is formed when the chlorine–nitrogen ratio is greater than 1. 
R–CH (COOH)–NHCl and R–CH (COOH)–NCl2 form R–C≡N 
after elimination and hydrolysis reactions; when the R group 
is CH3, it can react with chloride ions to form DCAN/TCAN.

Organic nitrogen in natural waters is involved in the major-
ity of cases of HAN production, and free chlorine and chlora-
mine in organic nitrogen can also be involved in the reaction. 
Therefore, it is necessary to improve the removal of organic 
nitrogen precursors of HANs and to intensify source control.

Reported varieties of N-DBPs Chemical structural formula
N-nitrosodibutylamine, NDBA [32,36]

N-nitrosodiphenylamine, NDPhA [35,36]

Haloacetamides, 
HAcAms

Dichloroacetamide, DCAcAm [6,15,19,20,22,41–45]

Trichloroacetamide, TCAcAm [6,15,20,22,41,44,45]

Dibromoacetamide, DBAcAm [6,15,22,43,46]

Table 1 (Continued)
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4.2. Formation mechanism of HNMs

Studies have found that the concentration of HNMs 
increases markedly when chlorine and chloramine are applied 
after ozonation [28,62]. Thus, it is clear that ozone can pro-
mote the formation of HNMs. Recent studies on HNMs have 
mainly focused on TCNM. And and Mitch [63] studied the for-
mation mechanism of TCNM from methylamine precursors 
and found that during disinfection by chlorination, methyl-
amine rapidly reacts with HOCl to form dichloramine, which 
is then oxidized into nitroalkane. Cl from the disinfectant is 
then substituted for H on the nitroalkane to form TCNM. Hu 
et al. [29] explored the formation mechanism of TCNM from 
aspartic acid precursors. The reaction process is very compli-
cated and has been divided into 13 steps; alternating oxida-
tion and elimination reactions promote the decomposition 
of alkyl groups and the formation of TCNM. Taken together, 
the findings of current studies on the formation mechanism 
of HNMs through chlorination suggest that the process can 
be described by two steps: disinfectant oxidation and halogen 
atom substitution. Ammonia derived from the precursors is 
first oxidized by the disinfectant into nitro compounds, which 
are then formed into nitroalkanes. The increased acidity of the 
C–H bond on the α-C makes it easier for halogen atoms to 
substitute for H atoms on the C–H bond, deprotonating the 
compound [64] and ultimately forming TCNM.

Three pathways forming nitromethane intermediates 
have been described [65]. –3 amino was oxidized into +3 
nitro by the action of disinfectant. When there is NO2

– in the 
water, it reacts with chlorine to form ClNO2, which is then 
oxidized into N2O4. During UV disinfection, photolysis can 
form NO· and OH from NO2

−; the OH can continue to react 
with NO2

− to form N2O4, which can be further decomposed 
into nitrating agents such as NO2· and ONOOH. These two 
disinfectant processes can, therefore, accelerate the nitration 
of HNM precursors.

There have been relatively more studies on the forma-
tion mechanism of HNMs during chlorination disinfection 
than during ozone or UV disinfection. Thus, further study 
is needed on the formation mechanisms of HNMs during 
ozone disinfection and UV disinfection to determine the 
similarities to, and differences from, the formation of HNMs 
during chlorination. Such studies will lay a foundation for 
understanding the formation of these byproducts and for 
improving the removal of HNMs produced through different 
disinfection methods.

4.3. Formation mechanism of NDMA

NDMA is a typical representative of the NAs. Recent 
studies have revealed that the formation of NDMA can be 
divided into two processes. In the first, nitrite reacts with 
hypochlorous acid to generate a nitrating agent, which then 
reacts with DMA to generate NDMA. Lü et al. [66] studied 
the reaction mechanism of NDMA generated by DMA and 
nitrous acid using the quantum chemical calculation method 
and found that this reaction is divided into two steps. In the 
first step, two molecules of nitrous acid react to generate 
an activated nitrite intermediate, N2O3; in the second step, 
N2O3 then reacts with DMA to form NDMA. However, this 
process is less likely to occur in drinking water, because the 

concentration of nitrite in treated, filtered water is relatively 
low, resulting in much lower NDMA production. There 
have also been studies showing that nitrosation is catalyzed 
when HClO, CO2 and CH2O are present in the water [67,68], 
although these studies could not directly prove that nitrosa-
tion is a primary mechanism of NDMA formation in drink-
ing water. In the second process, UDMH is oxidized into 
NDMA indirectly. Free chlorine and amine in water react to 
form monochloramine, which reacts with DMA to generate 
UDMH. UDMH then reacts with monochloramine to ulti-
mately form NDMA. Studies have also found that formation 
of an asymmetrically chlorinated dimethylhydrazine inter-
mediate (Cl-UDMH) occurs from a nucleophilic substitution 
reaction between dimethylamine and NHCl2. However, the 
production rate of NDMA generated by this reaction path-
way is very low (less than 1%), suggesting that it may not be 
important for NDMA generation [63]. Therefore, some schol-
ars have proposed another pathway: dichloramine + DMA 
→ UDMH + O2 → NDMA [69]. The precursors of NDMA are 
specific and mainly contain DMA, UDMH, and other func-
tional groups. Future research should focus on the precise 
mechanisms that generate NDMA from its precursors.

5. Prospects

N-DBPs in drinking water have become increasingly 
complicated in their speciation, and their combined concen-
trations are sufficiently high to confer cytotoxicity and geno-
toxicity. The presence of N-DBPs in drinking water has thus 
attracted significant concern. To complement current studies 
on the precursors and formation mechanisms of N-DBPs, fur-
ther studies should be carried out in several areas. First, the 
structural characteristics of the precursors of N-DBPs should 
be identified by different quantitative and qualitative analysis 
methods. Moreover, improved and targeted treatment tech-
nology should be proposed to remove the precursors from 
water sources. Second, the formation mechanisms of HNMs 
and N-DBPs during ozone and UV disinfection should be 
explored to determine the similarities and differences among 
N-DBPs and ultimately to enable the development of targeted 
combined disinfection technology. Third, a targeted analysis 
method and evaluation system should be established that 
combines the characteristic structures of N-DBP precursors 
and the formation processes of various N-DBPs. Some new 
disinfectants and disinfection methods should also be devel-
oped, such as extracts of tea polyphenols [70].
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