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a b s t r a c t
Knowledge of the complex characteristics of runoff is required to regulate water resources. To 
determine the complex characteristics of runoff, the natural annual runoff data from 1956 to 2005, 
taken from the Zhangjiashan hydrological station on the Jinghe River, China, were decomposed into 
multiple time scales using the empirical mode decomposition method. The results show that the 
natural runoff of Jinghe River has complex periodic fluctuations with multiple time scales; the short-, 
middle-, and long-term periodic fluctuations have periods of 2–4, 4–8, and 11–13 years, respectively. 
These fluctuations are consistent with the periodic variations of El Niño, air–sea interactions, and solar 
activity. A set pair analysis (SPA) shows that the relationships between the natural runoff of Jinghe 
River and its intrinsic mode function components predominantly fall into the “identity” aspect for the 
short-period fluctuations, the “contrary” aspect for middle-period fluctuations, and the “discrepancy” 
aspect for long-period fluctuations. Moreover, the SPA reveals that the short-period runoff fluctuations 
can adequately reflect the average state of the Jinghe River.
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1. Introduction

Runoff fluctuations are affected by factors including 
hydrological and meteorological factors, underlying surface 
conditions, and human activities [1,2], and therefore exhibit 
highly complex, random, and nonlinear characteristics [3] 
over long timescales. Laws that define runoff fluctuations 
and trend characteristics are key to improving runoff 
prediction accuracy [4,5] and are crucial in guiding regional 
water resource management and in the efficient protection 
and utilization of water resources.

Although considerable challenges exist, many researchers 
have used analytical methods for runoff predictions. These 

approaches can be divided into two categories: traditional 
statistical methods and artificial intelligence methods. 
Traditional statistical methods include hydrology techniques 
such as Mann-Kendall trend tests [6], regression analyses, and 
the exponential smoothing method [7,8]. Traditional statistical 
methods are simple and direct, but their availability, accuracy, 
and representativeness are dependent on the historical data. 
Owing to the nonlinear and complex characteristics of run-
off fluctuations, artificial intelligence methods, including 
artificial neural networks (ANNs) [9,10], least squares support 
vector machines (LSSVM) [11], support vector machines 
(SVM) [12], and wavelet analyses [13], provide useful alterna-
tives to conventional statistical techniques. However, ANNs 
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are restricted by slow learning, local convergence, and poor 
generalization ability. LSSVM can achieve a global optimum 
by solving a quadratic optimization problem, and must only 
solve a set of linear, rather than quadratic, equations [14]. 
SVM can be used for small samples because SVM are charac-
terized by non-linear kernels, high generalization ability, and 
sparse solutions. The wavelet analysis method is more com-
monly used for hydrological time series [15,16]. This method 
finds the variation characteristics and influencing factors for 
runoff data over multiple timescales, improving the runoff 
forecast accuracy and water regulation process [17,18].

Although the wavelet analysis method provides 
high-resolution results in both frequency and time domains, 
many false harmonics still exist. Moreover, the selection of 
wavelet base functions has a significant impact on the results 
[19–21]. Huang et al. [22,23] proposed a new signal analysis 
method called empirical mode decomposition (EMD). EMD 
is more effective than the wavelet analysis method, especially 
for local frequency and time domains [24]. EMD has 
successfully been applied to many hydrological time series.

Uncertainty contributes to the complexity of runoff 
analyses. In 1989, Zhao and Xuan [25] proposed the set pair 
analysis (SPA) method to measure this uncertainty. SPA 
explains the uncertainty relationships between variables 
from three aspects: “identity,” “discrepancy,” and “contrary” 
[26]. The SPA method gradually is widely used in the field 
of hydrology. Many scholars have used the SPA method 
to explain, for example, variations in annual runoff [27], 
the relationship between flood peak and volume [28], etc., 
showing that the SPA method is effective, objective, and 
reasonable in hydrologic uncertainty correlation analyses.

The main objective of this study was to apply EMD to the 
annual runoff data from 1956 to 2005 from the Zhangjiashan 
hydrological station (ZHS) on the Jinghe River in China. EMD 
decomposed the data into multiple temporal scales to obtain 
fluctuation components. The SPA method was then applied 
to study the uncertainty of the fluctuation components for 
different periods.

2. Data and methods

2.1. EMD method

As proposed by Huang et al. [22], the intrinsic mode 
functions (IMFs) must satisfy the following two conditions 
to obtain a meaningful instantaneous frequency: (1) over the 
whole data range, the number of local extrema and the num-
ber of zero-crossings must be equal, or at most have a differ-
ence of one; and (2) at any point, the mean value of the upper 
envelope formed by all local maxima, and the lower envelope 
formed by all local minima, must be zero.

The key step of EMD is to extract the IMF from the given 
time series x(t). First, the upper envelope and the lower 
envelope are constructed using identified local maxima and 
local minima with a cubic spline interpolation application. 
Then, the mean value of the two envelopes is calculated as 
m1. A new time series with the lower frequency removed is 
achieved [22]:

h t x t m1 1( ) ( )= − � (1)

Usually, h1(t) is not an expected IMF, so this shifting 
process must be repeated k times until the first IMF 
component, c1(t) = h1k(t), is achieved from the data x(t). The 
residue r1 = x(t)–c1 will be decomposed further until it satisfies 
the stopping standard deviation (SD). In this way, the IMF 
modes and one residue rn are obtained. The original series 
x(t) is then rewritten as follows:
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where T is the length of the time series and the SD value is 
between approximately 0.2 and 0.3.

2.2. Set pair analysis

A set pair H(A,B) refers to a couple that consists of two 
interrelated sets: A and B. The properties of these two sets 
include identity degree, discrepancy degree, and contrary 
degree. Additionally, the total number of characteristics in 
H is assumed to be N. The amounts of identical, discrepant, 
and contrary characteristics are then assumed to be S, F, and 
P, respectively. Based on the definition of SPA, the relation-
ship between S, F, P, and N is N = S + F + P. The calculation 
algorithm for the connection degree is then [29] expressed as 
follows:

µ = + +S N F N i P N j/ ( / ) ( / ) � (4)

where μ is the connection degree of the set pair, and i and j 
are the coefficients of the discrepancy degree F/N and of the 
contrary P/N, respectively. S/N denotes the identity degree, 
i is an uncertain value between –1 and 1 (i.e., i ∈ [–1,1]), and 
j is specified as –1.

Given a = S/N, b = F/N, and c = P/N, Eq. (4) can be rewritten 
as follows:

µ = + +a bi cj � (5)

In general, the steps of an SPA are as follows: (1) to 
construct two sets A and B and one set pair H(A,B); (2) to 
quantify each element of A and B with a certain classification 
standard; (3) to compare these quantified values with each 
other and calculate the values of S, F, and P; (4) to choose an 
appropriate value of i to obtain a, b, c, and μ.

2.3. EMD and SPA analysis

The natural runoff data series Y = (y1, y2, y3, …, yn) is 
denoted as set A, its IMF components Xm = (xm1, xm2, xm3, …, 
xmn) are specified as set Bm(m = 1, 2, 3, … M), and M is the 
quantity of IMFs. The set pairs are then defined as (A, B1), 
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(A, B2), …, (A, BM), and are formed by the decomposed IMF 
components and the natural runoff series. The mean SD 
method is adopted to classify these IMF components into 
three states: “rich” (I), “normal” (II), and “poor” (III). EX is 
the mean value of a set in a set pair, and d is the SD, so the 
corresponding classified ranges are, respectively, described 
as (–∞, EX – 0.5d), [EX – 0.5d, EX + 0.5d], and (EX + 0.5d, +∞).

If the classified results of the set pairs (A, B1), (A, B2), …, 
(A, BM) are in same state (i.e., rich [I], normal [II], or poor 
[III]), they are called identical, and S is then the amount of 
identical characteristics. If the classified results of the set 
pairs (A, B1), (A, B2), …, (A,BM) are in different states (i.e., rich 
[I] and normal [II], or normal [II] and poor [III]), they are 
called discrepant, and F is then the amount of discrepant 
characteristics. If the classified results of the set pairs (A, B1), 
(A, B2), …, (A, BM) are in opposing states (i.e., rich [I] and poor 
[III]), they are called contrary, and P is then the amount of 
contrary characteristics.

3. Application

3.1. Data series

Jinghe River, the largest tributary of the Weihe River (one 
of the tributaries of the Yellow River in China), originates 
from Liupanshan Mountain in the Ningxia Hui Autonomous 
Region of China. It is 451 km long with a catchment area 
of 45,400 km2. Jinghe River is known for its violent floods 
and large sediment volumes. Its average annual runoff is 
2.14 billion m3 and its average annual sediment transport 
is 3.09 t. Therefore, it is a major source of floodwater and 
sediments for the Weihe River and the Yellow River. The 
ZHS, the main control station covering the lower reaches of 
Jinghe River, is located at the river mouth where it flows into 
the Weihe River. Fig. 1 shows the natural runoff data series 
from ZHS between 1956 and 2005.

3.2. Multiple timescale analyses of natural runoff

Using the EMD method, we analyzed the natural annual 
runoff for multiple timescales with an evaluated SD value 
of 0.25. Border issues were addressed using the boundary 
extension method. The decomposed results obtained for 
rainfall using the EMD method, as shown in Figs. 2–5, 
include three IMF components (shown in Figs. 2–4) and 
one residue (Fig. 5). These results show that the fluctuation 
period of the first IMF (IMF1) component is short, the IMF2 
component shows a middle period, and the IMF3 component 

shows a long period. The residue shows no obvious periodic 
fluctuation.

A quasi-periodic fluctuation of 2–4 years is present in 
the IMF1 component. The largest fluctuations appeared 
in the mid-1960s, but from the 1970s to the late 1980s, the 
fluctuations were relatively stable, and exhibited little change 
from the beginning of the 1990s.

A quasi-periodic fluctuation of 4–8 years is clearly present 
in the IMF2 component. The fluctuations can be clearly seen 
over the majority of the observation period. Larger fluctua-
tions occurred in the late 1950s, the mid-1970s, the mid-1980s 
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Fig. 1. Natural runoff data from the Zhangjiashan hydrological 
station (ZHS).
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Fig. 2. The first IMF component (IMF1) for the runoff data.
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Fig. 3. The second IMF component (IMF2) for the runoff data.
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Fig. 4. The third IMF component (IMF3) for the runoff data.
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Fig. 5. The residue component for the runoff data.
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and in the early 21st century, compared with smaller fluctua-
tions observed in the 1990s.

A quasi-periodic fluctuation of 11–13 years is present in 
the IMF3 component. The largest fluctuation appeared in 
the mid-1960s; subsequently, the fluctuation size began to 
decrease. From the 1990s, the fluctuations decreased further.

The residue component indicates overall variations in the 
annual runoff. The results show that the runoff from Jinghe 
River has decreased since the mid-1960s.

3.3. SPA of annual runoff for multiple timescales

The classification results for the Jinghe River annual run-
off Y = (y1, y2, y3, …, y50) and its IMF components Xm = (xm1, xm2, 
xm3, …, xm50) (m = 1, 2, 3) are shown in Table 1.

The set pairs (A, B1), (A, B2), and (A, B3) are formed by 
three decomposed IMF components and the natural runoff 
series. The values of S, F, and P are shown in Table 2.

Specifying i as 0.5, the identity degree a, the discrepancy 
degree b, the contrary degree c, and the connection degree μ 
are shown in Table 3.

Tables 2 and 3 show the following: (1) As the fluctuation 
period increases, the identity degrees of the natural runoff 
and IMF components decrease. For the identity degree, a 
maximum of 0.62 is seen for the short-period fluctuations. 
(2) Alongside the increase in the fluctuation period, the dis-
crepancy degrees for the natural runoff and IMF components 
decrease initially before increasing. The largest discrep-
ancy degree (0.46) exists in the long-period fluctuations. (3) 
Alongside the increase in the fluctuation period, the con-
trary degrees for the natural runoff and IMF components 
initially increase before decreasing. For the contrary degree, 

a maximum of 0.12 is seen for the middle-period fluctua-
tions. (4) The connection degree initially increases and then 
decreases. For the middle-period fluctuations, the maximum 
connection degree increases to 0.84. This is consistent with 
the contrary degree.

4. Discussion and conclusions

The EMD method was used to determine the complex 
periodic fluctuations over multiple timescales for the natural 
runoff from Jinghe River from 1956 to 2005. Quasi-periodic 
fluctuations of 2–4, 4–8, and 11–13 years were found for the 
short-, middle-, and long-period fluctuations, respectively. 
The overall variation in the runoff shows a gradual decrease. 
Some researchers [30,31] have found quasi-periodic fluctua-
tions of 3.5 years and 4–8 years in the runoff. These periodic 
variation characteristics are almost identical to the periods of 
the El Niño-Southern Oscillation phenomenon and of sunspot 
activity [31], which illustrates that climate change has a major 
influence on local runoff variation characteristics. Therefore, 
the fluctuation periods of the IMF1 and IMF2 components 
show marked similarities to the period of the El Niño phe-
nomenon. This demonstrates a close relationship between El 
Niño and the runoff of Jinghe River. Mei et al. [32] concluded 
that the daily values of solar radio flux and sunspot areas for 
the time interval from February 1, 1947 to September 30, 2016, 
both solar radio flux and sunspot areas are governed by the 
domain 11-year solar cycle. Solar magnetic activity indicators, 
from the lower atmosphere (photosphere and chromosphere) 
to the upper atmosphere (transition region and corona), are 
coupled in various styles of dynamical processes operating 
in the solar dynamo. Moreover, the IMF3 component may be 
related to air–sea interaction and long-period solar activity.

The SPA of the annual runoff for multiple timescales 
shows that the relationships between the natural runoff of 
Jinghe River and its IMF components predominantly fall 
into the “identity” aspect for the short-period fluctuations, 
the “contrary” aspect for middle-period fluctuations, and 
the “discrepancy” aspect for long-period fluctuations. These 
results also reveal that short-period runoff changes can ade-
quately reflect the average state of Jinghe River. Therefore, 
the short-term forecast accuracy for runoff changes should 
be enhanced to aid regulation and planning for Jinghe River’s 
water resources.

Due to limited data, only runoff is analyzed, which is 
the shortcoming of the paper; however, the obvious peri-
odicity and correlation have been analyzed through EMD-
SPA method. In the later stage, with the acquisition of more 
hydrological and meteorological data, the change rule of the 
hydrological and meteorological elements and their correla-
tions will be further revealed.

Table 1
Classification results for annual runoff and its IMF components

Classification Y X1 X2 X3

Rich (I) (–∞, 13.64] (–∞, –0.27] (–∞, –0.10] (–∞, –0.20]
Normal (II) (13.64, 20.25) (–0.27, 0.22) (–0.10, 0.16) (–0.20, 0.05)

Poor (III) [20.25, +∞) [0.22, +∞) [0.16, +∞) [0.05, +∞)

Table 3
SPA of annual runoff for multiple time scales

Set pairs a b c µ

AB1 0.62 0.36 0.02 0.82
AB2 0.56 0.32 0.12 0.84
AB3 0.44 0.46 0.10 0.77

Table 2
Values of S, F, and P for each set pair

Set pairs S F P N

AB1 31 18 1 50
AB2 28 16 6 50
AB3 22 23 5 50
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