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a b s t r a c t
The textile industry is a rapidly developing industrial sector that produces – wastewater laden with 
various pollutants including synthetic dyes and heavy metals. Remazol Black-B (RB-B) is a group of azo 
dyes that are extensively used in textile industries. The objective of this study was to evaluate the poten-
tial of the Streptomyces hygroscopicus PTCC1132 to remove RB-B and to determine optimal conditions for 
decolorizing. The Taguchi optimization approach was used to reduce the number of experiments and the 
time needed to find optimum conditions. The effect of operating parameters such as temperature, pH, 
initial RB-B concentrations, and salt dosage were evaluated by defined factor 4 on four-level Taguchi L16 
orthogonal array. Qualitek-4 software was used for data analysis. Maximum efficiency for RB-B decol-
orization was obtained at 33°C; wherein the solution pH was set to 9.0; and RB-B concentration and salt 
concentration were 5,000 mg/L and 1%, respectively. The corresponding decolorization efficiency was 
obtained as 95.27% at under optimized conditions confirming that the bacteria exhibits resistance against 
the toxic effects of RB-B, especially at high dye concentrations. Our findings indicate of the effectiveness 
of the evaluated microorganisms for the removal of RB-B from dye-containing effluents.

Keywords:  Streptomyces hygroscopicus PTCC1132; Remazol Black-B; Azo dye; Biodecolorization; Taguchi 
method

1. Introduction

Declining water quality has become a global challenge 
due to population growth, urbanization, industrialization, 
agricultural activities, and climate change [1,2].

Industrial wastewater accounts for enormous burden on 
natural water resources due to the effects of direct discharges 
into water pathways without proper wastewater treatment. 
Textile industry is a highly polluting industry that gener-
ates large quantities of dye-containing effluents (DCEFs) 
and the former is considered as one of the main source of 
water pollution, having many adverse effects on the aquatic 
ecosystems [3]. Some of these adverse effects included 
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diminishing photosynthetic activity, depletion of dissolved 
oxygen, and decline in water quality due to reduction in sun-
light penetration upsetting the balance of aquatic flora and 
fauna [1,4]. Moreover, residues of reactive dyes increase total 
organic carbon, biological oxygen demand, and chemical 
oxygen demand of receptive waters [5].

Synthetic dyes are often highly toxic, and have carcino-
genic and mutagenic effects on mammals [2,5,6]. Textile dye 
effluents generally contain high levels of various organic 
and inorganic compounds [5,7]. One of the main class of 
organic colorants is the azo dyes that contain one or more 
nitrogen–nitrogen double bonds linked to aromatic rings. 
These chemicals have been widely applied as colorants for 
a variety of consumer goods including food, leather, cos-
metics, paper, rubber, plastic, and especially textiles [4,8,9]. 
Owing to their harmful health effects, it is crucial to treat 
dye-containing wastewaters through an appropriate method, 
before its discharge into the water resources. Various phys-
icochemical methods have been evaluated to treat DCEFs 
including filtration, sedimentation, membrane separation, 
ion exchange, oxidation, adsorption, photocatalysis, coagu-
lation-flocculation, electrocoagulation, electrofloatation, pre-
cipitation-flocculation, electrochemical treatment [10–12]. 
However, these methods have some limitations such as 
energy consumption, high operational costs, and excessive 
sludge formation. Even though, adsorption processes are 
commonly used to treat the polluted water and even air, the 
main challenges using these processes are as follows: they 
are merely a phase-transfer technique, which does not cause 
any change in the structure of the contaminant, and they 
produce high volume of concentrated contaminants, which 
requires specific consideration to be managed. Meanwhile, 
in some cases, the management of sludge is also a critical 
problem [13,14].

Commonly, azo dyes contain one or more sulfonic acid 
groups attached to the aromatic rings. Due to their structural 
properties, dye can act as detergents and thereby inhibit the 
growth of the microorganisms [15,16]. Nevertheless, a pure 
strain from a single-species or mixed-population of micro-
organisms, including bacteria, fungi, algae, actinomycetes, 
and plants have exhibited great potential to decolorize and 
degrade the azo dyes [1,3,5,7,16].

During the past two decades, several studies have been 
conducted to evaluate the ability of different species of bac-
teria to decolorize the synthetic organic dyes [1,5,12,17–20]. 
Biological treatment for decolorization of DCEFs is cost- 
effective, eco-friendly, and accompanied by lesser sludge 
production in comparison with the physicochemical treat-
ment techniques [1,5]. Therefore, biological process can be 
considered as a feasible treatment alternative.

The Taguchi model can predict influence and optimum 
levels of operating parameters via specific number of the 
experiments. The Taguchi’s orthogonal array (OA) method 
has been employed to investigate the optimal design of 
experiments (DoE) and the effects of multiple variables 
as well as interactions among them. With this model, it is 
possible to minimize the whole testing time, thereby sig-
nificantly reducing experimental costs to find optimum 
conditions. Therefore, it was used as an acceptable way to 
optimize design variables [21]. In this regard, the effects of 
temperature, pH, initial RB-B concentration, and salt dosage 

were investigated. An analysis of variance (ANOVA) was 
performed for the raw and signal-to-noise (S/N) ratio data 
in order to indicate the significant parameters affecting the 
process, and their effects on the response characteristics were 
quantified.

Thus, the main focus of this work was to develop new 
method for biodecolorization of Remazol Black-B (RB-B) by 
Streptomyces hygroscopicus strain PTCC1132 (Persian Type 
Culture Collection) from aqueous medium using the Taguchi 
optimization approach to reduce the number of experiments 
and time required to find the optimum conditions.

2. Material and method

2.1. Bacterial strain and cultivation conditions

S. hygroscopicus PTCC1132 bacteria was prepared from 
Persian Type Culture Collection (PTCC). FZmsn medium 
was used to cultivate S. hygroscopicus PTCC1132 bacteria. 
Table 1 shows the main ingredients of culture medium.

2.2. Dye and chemicals

The chemical structure of nonhydrolyzed RB-B with 
molecular weight of 991.82 g/mol and absorbance wavelength 
(λmax) of 597 nm is shown in Fig. 1 [22–24]. The RB-B (Color 
Index (CI): 20407) used in this study was obtained from Ciba 
Geigy GmbH representative in Iran. The aqueous solution 
of RB-B dye with desired concentrations for the experiments 
was prepared by serial dilution of the stock solution. Doubly 
deionized water (18 MΩ/cm) was used to prepare the solu-
tions throughout all experiments.

2.3. Experimental design and statistical analysis

In this investigation, Taguchi method (TM) design was 
applied to predict the optimal combination of design factors 
affecting RB-B decolorization by S. hygroscopicus PTCC1132. 
The DoE methodology has generally been adopted to opti-
mize a predetermined response by controlling design vari-
ables. TM is a statistical approach to improve response rate 
and the quality of products or to determine the optimum 
conditions in the field of engineering and biotechnology. 
Therefore, Taguchi experimental design is a useful method 
for determining the effects of factors or variables or the com-
bination of them to achieve the best result [25–28]. Thus, an 
analysis of the S/N ratio is required to compute the experi-
mental results. The purpose of this study was to maximize 
the removal efficiency, where the S/N ratio with higher the 

Table 1
Culture medium ingredients

Ingredients Concentration (g/L) Purity (%)

NaCl 5 98
Soy flour 20 95
CaCO3 2 98.5
Agar 16 85
Mannitol 20 95
Nystatin 1 95
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better (HB) characteristics [29] is required, which is given by 
Eq. (1) [30] as follows:

SNL = −










=
∑10 2log 1 1

1n yii

n

 (1)

where in SNL is the signal to noise ratio or the performance 
characteristics as “the larger the better,” yi is the compara-
tive variable in experiment i for a certain combination of con-
trol factor levels (response), and n is the number of replicate 
under the same experimental conditions.

The DoE is based on the layout of an L16 OA in four lev-
els, that is, L16 (44), and was designed as presented in Table 2, 
and the experimental conditions were obtained. The mean 
from duplicate measurements of the efficiency and S/N 
ratio for each test condition are given in Table 3. Data was 
analyzed using Qualitek-4 software (version 17.1.0, Nutek 
Inc., USA).

2.4. Decolorization assay

For each experiment 20 mL of the FZmsn medium was 
added to 100 mL Erlenmeyer flask. Then, pH, RB-B, and 
salt concentrations were adjusted according to different 
levels shown in Table 1. The entire content was sterilized 
by autoclaving for 15 min at 15-PSI pressure and 121°C. 
Then, 5% of contamination was added to each Erlenmeyer 
flask. The flasks were then incubated for 5 d at four different 
temperatures, listed in Table 1.

To estimate the ability of bacteria to remove RB-B dye, the 
supernatant was separated by centrifugation at 13,000 rpm 
for 4 min. The supernatant was measured at 595 nm by 
the UV-visible spectrophotometer. The efficiency of RB-B 
removal (R) was calculated using Eq. (2) [31] as follows: 

R
C C
C

t%( ) = −( )
×0

0

100  (2)

where in C0 and Ct are the RB-B concentrations at the feed 
solution and at reaction time t, respectively.

3. Results and discussion

In this study, the effect of temperature, pH, dye, and salt 
concentration on bioremediation of RB-B by S. hygroscopicus 
PTCC1132 was investigated under an aerobic condition. The L16 
(44) OA was designed, and the experimental conditions were 
obtained by combining Table 2 and the L16 (44) OA. The OA of 
the Taguchi experimental design including the values obtained 
for different parameters are presented in Table 3. Various lev-
els of the parameters had different effects on the efficiency and 
% average decolorization was found to be 72.24(±11.39)%. The 
OA results (Table 3) indicated that S. hygroscopicus PTCC1132 
exhibits the highest decolorization (91.56%) in experiment 
No. 12 wherein the experimental conditions were: tempera-
ture: 33°C, pH: 9.0, RB-B and salt concentration: 5,000 mg/L 
and 1%, respectively. Minimum decolorization (50.28%) 
was obtained for experiment 15, wherein the experimen-
tal conditions were set as: temperature: 35°C, pH: 8.0, RB-B  
and salt concentration: 10,000 mg/L and 3%, respectively.

In Table 4, the effect of factors and interaction at different 
levels on RB-B bioremoval are presented. The magnitude of 
the difference between the average effects of different fac-
tors shows the relative influence of the factor or interaction 
to the variability of results. It is clear from Table 4 that, the 

Fig. 1. Chemical structure of Remazol Black B [22].

Table 2
Controllable factors and their levels used for design of experiments

Factors Level

1 2 3 4

Temperature (°C) 28 30 33 35
pH 6 7 8 9
RB-B (mg/L) 500 1,000 5,000 10,000
Salt (%) 0.5 1 1.5 3

Table 3
The orthogonal array of Taguchi experimental design and 
corresponding RB-B decolorization

Experiment 
number

Temperature pH Salt RB-B Decolorization 
(%)

1 1 1 1 1 61.62
2 1 2 2 2 70.40
3 1 3 3 3 82.40
4 1 4 4 4 69.38
5 2 1 3 2 66.26
6 2 2 4 1 54.63
7 2 3 1 4 78.20
8 2 4 2 3 74.46
9 3 1 4 3 79.03
10 3 2 3 4 76.03
11 3 3 2 1 83.63
12 3 4 1 2 91.56
13 4 1 2 4 81.74
14 4 2 1 3 77.05
15 4 3 4 2 50.28
16 4 4 3 1 59.12
Average 72.24
Standard deviation 11.39

The bolded run exhibits the highest decolorization efficiency.
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RB-B concentration in level 3 has the highest effect on decol-
orization, where, the maximum removal efficiency (78.74%) 
was obtained at initial RB-B concentration of 5,000 mg/L. 
Furthermore, the obtained data confirms that increasing the 
RB-B concentration (from level 1 and 2 to level 3 and 4) leads 
to an increase in dye removal.

Many studies [16,32–34] in which the ability of bacteria 
to decolorize DCEFs in anaerobic conditions has been inves-
tigated to infer that most of the bacterial strains have the 
ability to decolorize at dye concentrations below 100 mg/L 
which are significantly lower than the concentrations 
applied in this study. To further evaluate the microbial sur-
vival ability, the bacteria were exposed to high dye concen-
trations (5,000 and 10,000 mg/L) and it was observed that 
even at such high concentrations, these microbial cells accli-
mate themselves to the toxic effects of dye which could be of 
immense value.

The increase of temperature from 28°C up to 33°C leads to 
an increase in decolorization from 70.95% to 82.57% (Table 3). 
However, further increases in temperature have negative 
effects on decolorization and led to a decrease of decoloriza-
tion efficiency. Thus, these organisms have a dominant effect 
on the temperature of 33°C.

The solution pH also affects microbial growth and decol-
orization of DCEFs. Prior studies have shown that microor-
ganisms, including Micrococcus sp., Micrococcus luteus and 
Paenibacillus polymyxa have the ability to decolorize RB-B 
over a wide pH range: 6.5–8.0 [32,35,36]. The results from 
this study indicate that decolorization of RB-B occurs in the 
pH range of 6.0–9.0 with the maximum remediation capacity 
occurring at pH 9.0 (Table 3).

In Table 5, all possible interactions between two fac-
tors are calculated. As evident, the severity index (SI) for 
RB-B concentration and salt concentration is equal to 52.28, 
which demonstrate the highest interaction effects on dye 

remediation, while the temperature and RB-B concentration 
have the lowest interaction effects.

ANOVA for all factors is presented in Table 6. As shown, 
temperature, salt, and dye concentration have the high-
est contribution on RB-B decolorization by S. hygroscopicus 
PTCC1132, whereas pH has minimum influence on the 
decolorization efficiency.

The results of the S/N ratio for various designed exper-
iments after ANOVA calculations are shown in Table 7. 
The third level of temperature (33°C), the fourth level of 
pH (9.0), the third level of RB-B concentration (5,000 mg/L), 
and the second level of salt concentration (1%) were con-
sidered as optimum conditions for RB-B deodorization by 
S. hygroscopicus PTCC1132, in which the expected removal 
efficiency was 95.27%.

3.1. Application of the optimized procedure 

As suggested by Taguchi [25,26], a crucial step is the con-
firmation test which is conducted to verify the experimental 
results. As can be verified from Table 7, the optimum com-
binations of factor levels were not previously tested, thus, a 
series of checking experiments were carried out using the ini-
tial solution and the different noise levels, as well as solutions 
from student laboratories in order to check their reliability. 
The decolorization efficiency, in terms of the observed effi-
ciency, was found to be 92.15%, as an average value, which 
validates the proposed conditions.

3.1.1. Analysis of variance

The contribution of individual factors is the deciding 
control key to be enforced to attain high wastewater treat-
ment efficiency. In Taguchi approach, the main purpose of 
the ANOVA was to assess the effect of each parameter on 

Table 4
Main effects (average effect of factors and interaction) of the factors on RB-B decolorization

Factor Level 1 Level 2 Level 3 Level 4 L2-L1 L3-L1 L4-L1

Temperature 70.95 68.89 82.57 67.04 –2.56 11.61 –3.90
pH 72.17 69.53 72.63 74.13 –2.63 1.46 1.46
RB-B (mg/L) 64.75 69.63 78.74 76.34 4.87 13.48 11.58
Salt (%) 77.11 78.06 70.96 63.33 0.45 –6.15 –13.77

Table 5
Interaction between two factors for RB-B bioremoval

Column Interaction factor pairs Columns SI%a Colb Opt.
1 RB-B conc. × salt conc. 3 × 4 52.28 7 [2,1]
2 pH × salt conc. 2 × 4 33.42 6 [4,1]
3 Temperature × pH 1 × 2 24.72 3 [3,4]
4 Temperature × salt conc. 1 × 4 15.16 5 [3,1]
5 pH × RB-B conc. 2 × 3 13.48 1 [4,2]
6 Temperature × RB-B conc. 1 × 3 3.45 2 [3,2]

aSI-Interaction severity index (100% for 90° angle between the lines, 0% for parallel lines).
bShow columns that should be reserved if this interaction effect were studied.
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the variance of the OA experiments results to determine 
the variation in the contribution of each factor with respect 
to total variance of all the parameters. From the calculated 
ratios (F) (Table 6), it can be concluded that all factors and 
interactions considered in the experimental design are statis-
tically significant at a 95% CI, indicating that the variability of 
the experimental data can be explained in terms of significant 
effects. The general trend of influencing factors can be char-
acterized by studying the main effects of each factor. Table 6 
depicts the results of the ANOVA analysis, with the percent-
age contribution of each factor, which was calculated by the 
ratio of the sum of squares of that factor to the total sum of 
squares, and their interactions.

4. Conclusions

Due to the presence of the aromatic ring in the chemi-
cal composition of many dyestuffs such as RB-B, these com-
pounds are resistant to biological degradation or uptake, 
hence, the purpose of this study was to examine the capa-
bility of S. hygroscopicus PTCC1132 to remove RB-B from 
the industrial effluent. An L16 OA was applied to investigate 
the effect of main operational parameters including initial 
RB-B concentration, pH, and salt concentration on decolor-
ization efficiency. According to the Taguchi model, through 
few numbers of well-defined experimental sets, as well as 
the results obtained from the evaluation of each parameter 
effect using ANOVA, temperature and solution pH were 
shown to have, respectively, the most and least contribution 
on RB-B removal efficiency. The removal efficiency of about 
92.15% was observed under the optimal conditions which 
reveal that S. hygroscopicus PTCC1132 can tolerate the harsh 

environmental conditions such as toxicity, salinity, relatively 
high azo dye concentration, and high solution pH. In conclu-
sion, our findings show that S. hygroscopicus PTCC1132 has 
the ability to remove RB-B from the DCEFs. However, the 
mechanism of dye removal through such bacteria could be 
evaluated in future research works.
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