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a b s t r a c t
A major obstacle to further incorporation of microfiltration (MF) membrane processes in water treat-
ment plants is trans-membrane pressure (TMP) increase due to membrane fouling. Modelling and 
simulation of changes in TMP may be useful to describe fouling through the identification of the most 
relevant operating conditions. In this study, M5P model tree was applied to predict the fouling of the 
pilot scale MF system for drinking water. A 500 m3/d MF pilot plant was operated for 1 year to analyze 
the performance of MF process under various operating conditions. The effects of operating parame-
ters on membrane performance were evaluated based on the comparison of TMP as a function of oper-
ating time. The M5P model tree used five input variables including turbidity (NTU), temperature (°C), 
total organic carbon (mg/L), total operating period (d) and operating period after clean in place (d). 
The results of application of the M5P model tree indicated high correlation coefficients between the 
measured and predicted output variables. Therefore, it appears that the M5P model tree is applicable 
in the long-term prediction of the membrane performance in the pilot-scale MF systems.

Keywords: Microfiltration; Fouling; Model tree; M5P model; Drinking water

1. Introduction

In the past decades, microfiltration (MF) has been applied 
as an advanced water treatment process for drinking water 
production for the efficient removal of particulate pollutants, 
turbidity and microorganisms under low operating pressures 
[1,2]. Although there has been a great deal of advancement in 
the development of MF membrane processes, the main fac-
tor that limits the membrane performance is fouling by con-
taminants in feed water [3,4]. Membrane fouling which is an 
unavoidable phenomenon in the membrane process causes 
a decrease of the permeability in time as a consequence of 
the deposit of the solutes on or in the membrane pores [5–7]. 
Moreover, understanding and predicting membrane foul-
ing is even challenging especially when the foulants in feed 
water vary with time [8,9]. Although prediction of fouling in 
MF membrane processes using mechanistic and statistical 

models has been widely developed, it is still difficult to gain a 
quantitative prediction results with various operational con-
ditions due to the complexity of fouling phenomenon [10,11]. 

This study focused on investigation of the fouling charac-
teristics of pilot-scale MF membrane process and prediction 
of the fouling using the M5P model tree from a long-term 
pilot-scale operation data. Factors affecting the extent of 
membrane fouling were examined in connection with the 
feed water quality and operational parameters such as tem-
perature, turbidity, total organic carbon (TOC), total operat-
ing period and operating period after clean in place (CIP).

2. Materials and methods

2.1. Model tree

In this study, M5P model tree was used to predict the 
membrane filtration performance from the MF pilot plant 
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data. The M5P model tree was created in WEKA software. It 
includes a wide variety of learning algorithms and preprocess-
ing tools [12]. The M5P model tree is a predictive technique 
that has become increasingly noticed since Quinlan introduced 
it in 1992 [13]. M5P model tree is a combination of data classi-
fication and regression which works shown as Fig. 1 [14–16]. 
M5P model tree has several advantages over other machine 
learning algorithms [15,16]. It is simple to understand and 
interpret the models because the relation rules can be explic-
itly observed from the tree. This method does not take many 
preprocessing steps. M5P model trees can be used for multiple 
output problems. It is possible to validate a model using statis-
tical test. The M5P model tree is a structured tree that depicts 
graphical if-then-else rules of the hidden or implicit knowl-
edge inferred from the dataset in a top–down way [15–17]. At 
each step, a decision is made whether to partition the training 
set or to introduce a regression function as a leaf node. 

2.2. MF pilot plant

A schematic diagram of the MF pilot plant used is pro-
vided in Fig. 2. A pilot-scale submerged filtration system 
that used hollow fiber modules with a nominal pore size of 
0.1 μm (Lotte Chemical, Korea) was operated for 1 year to 
examine the effect of seasonal variation in feed water quali-
ties and to analyze the performance of MF process under var-
ious operating conditions. The pilot plant was designed to 
produce 500 m3/d of product water with over 90% recovery. 
The system was automatically operated and the data was col-
lected using a computer. The results were analyzed in terms 
of the trans-membrane pressure (TMP). Operating condi-
tions are as follows: 40-min filtration, and 2-min backwash 
with permeate and pressurized air. The raw water collected 

from Han River in Korea was used as the feed water after the 
coagulation pretreatment using polyaluminum chloride. 

3. Results and discussion

3.1. Feed water quality

Fig. 3 shows the variations in turbidity, temperature and 
TOC of feed water used for membrane filtration. Online 
monitoring equipments (HACH, USA) were used to mea-
sure turbidity, water temperature and TOC. The data from 
the long-term membrane filtration system were collected for 
1 year, during which chemical washing was conducted one 
time. Turbidity, temperature and TOC in feed water signifi-
cantly changed with time; turbidity: 1.5–81.5 NTU, tempera-
ture: 2.1°C–26.9°C and TOC: 1.1–7.1 mg/L. In summer (from 
mid-July to mid-August), the feed water turbidity increased 
rapidly due to the frequent rains. TOC was high in spring 
(from March to April) and fall (from mid-September to 
mid-October) due to algae. The average temperature of the 
water in winter (from December to February) was only 3°C, 
and in summer, 24°C. Three distinct periods were observed 
over a year; high turbidity concentration period, high TOC 
concentration period and low temperature period.

3.2. Changes in TMP of pilot-scale submerged MF plant 

Fig. 4 shows the variations in the TMP in whole operating 
period. It seems that the extent of fouling was significantly 
affected by the feed water quality. A rapid increase in TMP 
between mid-July and mid-August resulted from increased 
turbidity. From October to February, the TMP dramatically 
increased because of the decreased water temperature. 

Fig. 1. Induction of a M5P model tree as a modular model [15,16].

Fig. 2. Schematic diagram of the submerged MF pilot plant.
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From March to April, the TMP increase again due to high 
TOC while feed water temperature gradually increased. 
Accordingly, the TMP of pilot-scale submerged MF plant was 
found to be sensitive to the seasonal variation in feed water 
quality. Therefore, it can be concluded that the TMP of pilot-
scale submerged MF plant properly reflects the seasonal 
differences in the feed water quality.

3.3. Model fit to the experimental data using the model tree

As described, M5P model tree was developed to simulate 
the performance of the pilot-scale submerged membrane sys-
tem. The M5P model tree, unlike many commonly used data-
driven methods, can partly explain the system and reveal 
hidden patterns from the data [18].

The M5P model tree developed from collected data over 
1-year period which can cover all probable seasonal varia-
tions in the studied variables was primarily used for finding 
functional dependencies between the operating parameters. 
All on-line daily data, temperature, TOC, turbidity, total 
operating period (TOP) and operating period after CIP 
(OPAC) were used to induce the model tree. 

Tree model obtained from M5P tree model is given in 
Fig. 5. The model tree was composed of 25 multivariable lin-
ear equations (or linear models, LM) shown as Table 1, each 
of which is valid under specific operating conditions in the 
system given by specific values of the operation conditions 
(on-line daily data). The 10-fold cross-validations of the 
developed model tree led to a correlation of 0.97 and root 
mean square error of 22.87 conditions until reaching each LM 
in the leaves. The operating parameters at the top of the tree 
were the most discriminating [17]. In this study, total operat-
ing period was the most influential parameter affecting the 
TMP in the M5P model tree. And the second most discrimi-
nating variable was the operating period after CIP.

 

 
 

 

 

(a) (b)

(c)

Fig. 3. Seasonal variations in the feed water quality: (a) turbidity (NTU), (b) temperature (°C) and (c) TOC (mg/L).

Fig. 4. Changes in TMP for pilot-scale submerged MF plant.
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Each LM enables the estimation of the TMP as a lin-
ear regression of multiple operating parameters. LM 1, for 
example, is valid when the TOP is below 292.5 d, the OPAC 
is under 178.5 d, the TOP is under 55.5, the OPAC is under 
32.5 d, the OPAC is under 23 d and, finally, the OPAC is 

below 12.5 d. All of the LMs are listed in Table 1. From the 
LM equations, it is possible to know which parameters are 
the most influential because each parameter is multiplied by 
a weighting factor [18]. 

The comparison between measured and predicted TMP 
values is shown in Fig. 6. It is observed that the model predic-
tion results track the observed data very well (R value = 0.97) 
as shown in Fig. 6. The M5P model tree showed high strength 
and a linear relationship direction between the predicted data 
and experimental data. It is observed that the output tracks 
the targets very well. This suggests that the M5P model tree 
has the potential for long-term (order of month) prediction 
of the membrane performance in pilot-scale systems in the 
presence of seasonal variations of feed water quality.

4. Conclusions 

In this study, M5P tree model was used to describe foul-
ing phenomena as measured by TMP over 1 year at a sub-
merged MF pilot plant operated under different conditions. 
Results show that the seasonal differences in the feed water 
quality such as turbidity, temperature and TOC significantly 
affected the MF membrane fouling in pilot-scale plant.

Table 1
Linear models from M5P tree model for TMP prediction

No Linear models (LM)
1 TMP(kPa)=0.1386×OPAC(d)+0.0211×TOP(d)+0.0286×temperature(°C)-0.003×turbidity(NTU)+0.1917×TOC(mg/L)+18.8136
2 TMP(kPa)=0.1394×OPAC(d)+0.0211×TOP(d)+0.0286×temperature(°C)-0.003×turbidity(NTU)+0.1917×TOC(mg/L)+18.8335
3 TMP(kPa)=0.1689×OPAC(d)+0.0211×TOP(d)+0.0286×temperature(°C)-0.003×turbidity(NTU)+0.1917×TOC(mg/L)+18.2848
4 TMP(kPa)=0.1549×OPAC(d)+0.0211×TOP(d)+0.0328×temperature(°C)-0.003×turbidity(NTU)+0.1412×TOC(mg/L)+19.7686
5 TMP(kPa)=0.1455×OPAC(d)+0.0211×TOP(d)-0.0495×temperature(°C)-0.003×turbidity(NTU)+0.1917×TOC(mg/L)+22.5281
6 TMP(kPa)=0.1455×OPAC(d)+0.0211×TOP(d)-0.042×temperature(°C)-0.003×turbidity(NTU)+0.1917×TOC(mg/L)+22.2946
7 TMP(kPa)=0.0413×OPAC(d)+0.0195×TOP(d)+0.1695×temperature(°C)+0.093×turbidty(NTU)+0.2923×TOC(mg/L)+21.9295
8 TMP(kPa)=0.0437×OPAC(d)+0.0195×TOP(d)+0.1695×temperature(°C)+0.093×turbidity(NTU)+0.2923×TOC(mg/L)+22.131
9 TMP(kPa)=0.1606×OPAC(d)+0.0178×TOP(d)+0.1991×temperature(°C)+0.1892×turbidity(NTU)+1.0401×TOC(mg/L)+17.0525
10 TMP(kPa)=0.0424×OPAC(d)+0.0178×TOP(d)+0.2128×temperature(°C)+0.1669×turbidity(NTU)+0.6397×TOC(mg/L)+20.9027
11 TMP(kPa)=0.0424×OPAC(d)+0.0178×TOP(d)+0.2128×temperature(°C)+0.1669×turbidity(NTU)+0.661×TOC(mg/L)+20.9327
12 TMP(kPa)=0.0424×OPAC(d)+0.0178×TOP(d)+0.229×temperature(°C)+0.1736×turbidity(NTU)+0.6604×TOC(mg/L)+20.8734
13 TMP(kPa)=0.0882×OPAC(d)+0.0178×TOP(d)+0.1616×temperature(°C)+0.1736×turbidity(NTU)+0.8356×TOC(mg/L)+13.3852
14 TMP(kPa)=0.0621×OPAC(d)+0.0178×TOP(d)+0.1616×temperature(°C)+0.1736×turbidity(NTU)+0.8356×TOC (mg/L)+18.0456
15 TMP(kPa)=0.0242×OPAC(d)+0.0181×TOP(d)+0.2078×temperature(°C)+0.0926×turbidity(NTU)+0.2729×TOC(mg/L)+25.17
16 TMP(kPa)=0.0272×OPAC(d)+0.0181×TOP(d)+0.2078×temperature (°C)+0.0926×turbidity(NTU)+0.2285×TOC(mg/L)+25.0932
17 TMP(kPa)=0.0597×OPAC(d)+0.0202×TOP(d)+0.2078×temperature(°C)+0.0926×turbidity(NTU)-0.1103×TOC(mg/L)+23.3292
18 TMP(kPa)=0.0348×OPAC(d)+0.0187×TOP(d)+0.2078×temperature(°C)+0.0926×turbidity(NTU)+0.0227×TOC(mg/L)+26.1933
19 TMP(kPa)=0.0348×OPAC(d)+0.0189×TOP(d)+0.2078×temperature(°C)+0.0926×turbidity(NTU)+0.0899×TOC(mg/L)+26.0845
20 TMP(kPa)=0.1441×OPAC(d)+0.0172×TOP(d)+0.1467×temperature(°C)-0.003×turbidity(NTU)+0.176×TOC(mg/L)+4.7236
21 TMP(kPa)=0.2661×OPAC(d)+0.0172×TOP(d)+0.1467×temperature(°C)-0.003×turbidity(NTU)+0.176×TOC(mg/L)-16.6498
22 TMP(kPa)=0.1547×OPAC(d)+0.009×TOP(d)+0.0658×temperature(°C)-0.01×turbidity(NTU)+0.9987×TOC (mg/L)+22.9951
23 TMP(kPa)=0.2119×OPAC(d)+0.009×TOP(d)+0.0658×temperature(°C)-0.01×turbidity(NTU)+0.9987×TOC (mg/L)+19.0658
24 TMP(kPa)=0.0419×OPAC(d)+0.009×TOP(d)+0.0658× temperature(°C)+0.192×turbidity(NTU)+0.5789×TOC(mg/L)+33.5527
25 TMP(kPa)=0.1013×OPAC (d)+0.009×TOP(d)+0.0658×temperature(°C)+0.6571×turbidity(NTU)

Fig. 6. Comparison of experimental data with prediction results 
obtained from M5P model tree.
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The results of application of M5P tree model indicated 
high correlation coefficient (R value) between the measured 
and predicted output variables reaching up to 0.97. This means 
that the M5P tree model has great potential to the long-term 
(order of months) prediction of the membrane performance at 
different operating conditions of the pilot-scale system.
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