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a b s t r a c t
In this study, three different artificial neural network (ANN) including feed forward back-propagation 
(FFBPNN), recurrent neural network (RNN), and generalized regression neural network (GRNN) 
were proposed to estimate Cd removal efficiency through polymer inclusion membranes (PIMs). A 
multiple linear regression (MLR) statistical technique was also applied to evaluate PIMs efficiency. 
The proposed ANN models and MLR results were compared regarding statistical performance crite-
ria such as root-mean-squared error, mean absolute error and coefficient of determination (R2). In the 
modeling, time, film thickness, extractant type and amount, plasticizer type and amount and polymer 
molecular weight were considered as inputs while Cd removal efficiency was output. Furthermore, 
sensitivity analysis is performed to investigate the effect of each input parameter on the output regard-
ing magnitude. According to performance criteria of models, FFBPNN and RNN have the best pre-
diction capability as compared with GRNN and MLR. Sensitivity analysis results demonstrated that 
extractant amount, plasticizer type and plasticizer amount are more influential operating parameters 
than time, extractant type, film thickness, and polymer molecular weight. The results of FFBPNN 
and RNN models are superior and reliable in the prediction of PIMs Cd removal efficiency due to the 
nonlinearity of data set.

Keywords:  Feed forward back-propagation; Generalized regression neural network; Polymer inclusion 
membranes; Removal efficiency; Recurrent neural network

1. Introduction

Heavy metal pollution in water streams is mainly caused 
by electroplating, pigment, alloy, fertilizer and chemical 
industries. This is an extensively studied area of investiga-
tion [1], because heavy metals can pose serious health risks 
to the ecosystems that they are discharged [2]. Heavy met-
als are known to be accumulative within biological systems 
even at concentrations within regulated limits due to their 
potential for long-term accumulation in food chain [3–5], 
cadmium, zinc, copper, nickel, mercury, and chromium are 
often detected in industrial wastewaters, which are gener-
ated by metal plating, mining activities, smelting, battery 
manufacture, pesticides, and nuclear energy industries [1]. 

Cadmium (Cd) is one of the most toxic heavy metal and 
considered non-essential for living organisms [6]. The dis-
posal of wastewater containing cadmium to the inland water 
has increased cadmium concentration in the food and sub-
sequently in human bodies [1] posing a serious threat to 
human health [7]. The harmful effects of Cd include some 
acute and chronic disorders, such as “itai-itai” disease, renal 
damage, emphysema, hypertension, and testicular atro-
phy [8]. Therefore, cadmium has been added to the list of 
acknowledged endocrine disrupting chemicals [9].

The conventional physical and chemical treatment meth-
ods for removal of heavy metals include adsorption [10,11], 
bacterial biomass [1,12], electrocoagulation, electrodialy-
sis, flotation [13], [14,15], membrane technologies such as 
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nanofiltration and reverse osmosis [16–18]. However, it is 
uneconomical to treat low concentration (less than 5 mg/L) 
of Cd using chemical processes. Although reverse osmo-
sis technique can remove Cd to regulated standards, this 
method has high operational and maintenance costs [8,19]. 
Environmental engineers are challenged to develop more 
efficient techniques to combat this issue. Recently, supported 
liquid membrane (SLM) applications have been emerging as 
an alternative to the conventional methods due to its high 
selectivity, operational simplicity, low solvent inventory, 
low energy consumption, zero effluent discharge, a combi-
nation of extraction and stripping in a single unit [20,21]. In 
this direction, liquid membranes such as polymer inclusion 
membranes (PIMs) have effective carrier immobilization, 
easy preparation, versatility, stability, excellent chemical 
resistance, and better mechanical properties as compared 
with SLM [22]. Past studies showed that PIMs can be used 
for metal ion extraction, separation of inorganic species, bio-
chemical and biomedical applications [23,24].

The application of PIMs to remove Cd from aqueous 
solutions is a novel technique in wastewater treatment. There 
are various operating parameters that affect the efficiency of 
PIMs. To improve the performance of PIMs, estimation, opti-
mization, and analysis of the operating parameters should 
be accomplished by modeling and simulation, as well as, 
through laboratory experiments. Modeling is a valuable 
approach to develop a relation between parameters and effi-
ciency to optimize and control the process for efficient design 
and operation. Due to outstanding characteristics in process-
ing the non-linear relationships among variables in complex 
systems with reliable and robust results, artificial neural net-
works (ANNs) has been successfully employed in environ-
mental engineering [25–27]. In the literature, the ANN model 
has been applied for heavy metals removal through physi-
co-chemical processes [28] from drinking water and from 
wastewater treatment systems [29,30]. In other studies such 
as biosorption efficiency of Zea mays for the removal of chro-
mium from wastewater [31] and copper removal from aque-
ous solution by the ion-exchange process [32] was estimated 
by applying ANN modeling. ANN model was proposed to 
investigate copper removal from wastewater by adsorption 
on fungal biomass [33] and cadmium sorption by shelled 
Moringa oleifera seed powder from aqueous solution [34]. 

Moreover, ANN genetic algorithm and particle swarm 
optimization modeling was used for the prediction of cop-
per removal from aqueous solutions by reduced graphene 
oxide-supported nanoscale zero-valent iron (nZVI/rGO) 
magnetic nanocomposites [35]. Same material (nZVI/rGO) was 
studied for optimization of rhodamine B removal from aqueous 
solution by using ANN-genetic algorithm [36]. Furthermore, 
cadmium removal from aqueous solutions using nZVI/rGO 
composite was studied by applying ANN modeling and genetic 
algorithm optimization [37]. However, the efficiency of PIMs to 
remove Cd has not been studied previously by applying neural 
network models. In addition, the removal efficiency of PIMs 
cannot be determined by conventional mathematical tech-
niques alone due to the complexity of data. Therefore, ANN 
models were considered for the prediction of PIMs Cd removal 
efficiency from aqueous solutions in this study.

The objective of this study is to propose the best neural 
network model to predict the Cd removal efficiency from 

aqueous solution by using PIMs, and to optimize the process 
by considering the effect of various operating parameters on 
removal efficiency. The proposed models are trained against 
experimental data and then predicted results are compared 
with each other as well as with a statistical multiple lin-
ear regression (MLR) technique results to identify the best 
model. Also, sensitivity analysis has been applied to check 
the acceptable conformity and individual effectiveness of 
each operating parameter.

2. Materials and methodology

2.1. Experimental study and data preparation

In ANN model development, accurate experimental data 
are needed for network training, validation and testing [38]. 
In the present study, data were obtained from laboratory 
experiments regarding the selective extraction and stripping 
of Cd from acidic iodide solutions containing Cd by using 
liquid–liquid extraction technique [39]. The parameters 
including time, film thickness, extractant type and amount, 
plasticizer type and amount, and polymer molecular weight 
were considered as the most effective ones for the main 
transport of Cd ions. In this respect, key details of experi-
mental procedures are stated briefly as follows:

The experimental design was organized to illuminate 
PIMs-based Cd separation from acidic aqueous solutions 
containing iodide as a complexing agent. The data were 
provided by a set of experimental study regarding the selec-
tive transport of Cd through PVDF-co-HFP-based PIMs 
containing symmetric imidazolium bromide salts as a carrier. 
For this purpose, butyl, hexyl, octyl, and decyl substituted 
ionic liquids were synthesized and used in the production of 
PVDF-co-HFP based PIMs as ion carrier. The polymer inclu-
sion membrane was prepared by using previous methods 
available in the literature [40,41]. The experimental proce-
dures are explained in as follows.

The membrane glue was made by dissolution of PVDF-
co-HFP, purchased from Sigma-Aldrich (Sleaze, Germany) 
in different molecular weights, plasticizers “2-nitrophenyl 
octyl ether (ONPOE), 2-nitrophenyl pentyl ether (2-NPPE), 
bis (2-ethylhexyl) adipate (B2EHA), tris (2-ethylhexyl) 
phosphate (TEHP)” are also purchased from Sigma-Aldrich 
(Sleaze, Germany), and the synthesized room temperature 
ionic liquids in the literature in our previous paper [42] in 
20 mL of acetone. The polymer solution was vigorously agi-
tated by a magnetic stirrer at ambient temperature (25°C ± 
0.5°C) for an hour, and after that, the glue was sonicated 
for 30 min to obtain a homogeneous polymer solution. The 
PVDF-co-HFP membrane solution was poured into a glass 
petri dish having 15-cm internal diameter and placed on the 
well-adjusted flat table by water gauge to mold membrane 
film as more smooth and uniform thickness. After polymer 
solution was evaporated overnight, the remaining trans-
parent membrane film was peeled from the glass surface 
in cold water. The membrane was washed with deionized 
water (Milli-Q ultrapure water) and stored in a desiccator 
to provide their dryness. The membrane films waited in the 
0.1 mol HCl solution overnight. The membrane was placed 
into a semi-cell of the diffusion type transport unit and then 
clamped with the other semi-cell. First, the diffusion type 
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transport cell was controlled with deionized water toward 
any liquid leakage, and then 100 mL feed and stripping 
solutions were filled into each semi-cells mutually. After 
that, the samples were taken from each compartment of 
the set-up for quantitative elemental analysis by ICP-MS 
Agilent 7700 (Santa Clara, United States). All of the quan-
titative elemental analysis was triplicated in the standard 
deviation range of ±0.001 – 0.003.

The Cd transport conditions through the membrane were 
optimized with changing PIMs properties (time, membrane 
thickness, extractant type and amount, plasticizer type and 
amount along with polymer molecular weight) vs. constant 
aqueous phase (feed and stripping phase) properties, inves-
tigated in our previous study [43]. The experimental setup is 
shown in Fig. 1.

The experimental data for this study were obtained under 
different operating conditions such as time (range 0–8 h), film 
thickness of membrane (range 25.17–151.24 µm), extractant 
type range 1 to 4 (1-butyl, 2-decyl, 3-hexyl, and 4-octyl) and 
extractant amount (ranges 0–0.367 [w/w]), plasticizer type 
range 1–4 (1-TEHP, 2-NPPE, 3-B2EHA, and 4-ONPOE), plas-
ticizer amount (ranges 0–0.338 [w/w]) and polymer molecu-
lar weight range of 1–4 (1-low Mw; 2-Mw of 43,000; 3-Mw of 
62,000; and Mw of 80,000) were used as inputs and removal 
efficiency of Cd (range 0.13–1.00 [C/C0]) was used as output 
variable. Dataset is preprocessed before giving to the input 
layer. Some experimental data of operating parameters such 
as extractant type, plasticizer type, and polymer molecular 
weight were converted from characters to numerical data. 
Statistical information related to the data of each experiment 
is summarized in Table 1. In this work, three different ANN 
models including feed forward back-propagation (FFBPNN), 
recurrent neural network (RNN), and generalized regression 
neural network were developed to predict Cd removal effi-
ciency of PIMs. These approaches are briefly described as 
follows.

2.2. Feed forward back-propagation neural network

FFBPNN is a supervised learning procedure [44], and 
recently it has been practiced for the approximation of non-
linear data sets. Back-propagation of errors is a frequently 
applied technique in ANN training to calculate the gradient 
of predicted and measured values on all weights in the devel-
oped network. The topology of FFBPNN comprises an input, 
an output, and one or more hidden layers as shown in Fig. 2. 
During the training phase, an input prototype is specified as 
the input layer for the computation of output. Then the pre-
dicted output of the network is compared with the desired 
output pattern [45]. The endeavor of the back-propagation 
learning rule is to describe a technique of adjusting the 
weights of networks to minimize output error on the weights 
and thresholds [46]. Eventually, the network will give the 
output that matches the desired output pattern given any 
input pattern in the training set. The input Ik and output Ok 
to the kth neuron are determined by the following equations:

Ik i

n
=

=∑ µ i k iO,1
 (1)

O f Ik k k= +( )θ  (2)

where µi,k is the weight to f the connection from the ith neuron 
in the previous layer to the kth neuron, f(Ik + θk) represents the 
activation function of the neurons, Ok is the output of neuron, 
and the θk is the biases input to the neuron [46]. In order to 
improve performance, we adopted the bipolar sigmoid acti-
vation function, which is defined as follows:

f x
e x( ) =

+
−

−

2
1

1  (3)

FFBPNN method used to compute the network parame-
ters by an iterative Levenberg–Marquardt algorithm: from an 
initial set of parameters. The backpropagation learning tech-
nique is considered the most efficient technique for obtaining 
good results [47].

Fig. 1. Experimental setup for Cd transport through PIMs with 
SEM micrograph (2,500×).

Table 1
Data statistics of model variables (n = 460)

Variables Data statistics
xmin xmax xmean Σ

Input layer
Time 0.00 8.00 4.000 2.832
Extractant type 1.00 4.00 2.500 1.119
Extractant rate 0.00 0.367 0.261 0.065
Film thickness (µm) 25.17 151.24 49.000 21.159
Plasticizer type 1.00 4.00 3.739 0.736
Plasticizer rate 0.00 0.338 0.236 0.058
Polymer molecular weight 1.00 5.00 3.00 0.660 

Output layer
Removal efficiency 0.215 1 0.845 0.144

xmin, xmax, xmean: minimum, maximum and mean values.
σ: standard deviation.
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2.3. Recurrent neural network

The uniqueness of this RNN is that its structure is more 
analogous to the original biological neural network concept 
of massively parallel processing. In Fig. 3 basic architecture 
has shown a network of neuron-like units, in which each 
unit is connected to every other unit. At any specified time 
step, each non-input unit evaluates its current activation as a 
nonlinear function of the weighted sum of the activations of 
all concerned units. In each sequence, the generated error is 
the sum of the deviations of all activations calculated by the 
network from the related target signals. The total error of a 
training set in many sequences is the sum of the errors of all 
individual sequences. The gradient descent is used to vary 
each weight about its derivative concerning the error, to min-
imize the total error and provided the non-linear activation 
functions are differentiable [48].

2.4. Generalized regression neural network

The term GRNN for Nadaraya–Watson kernel regression 
[49,50], also reinvented in the neural network literature [51] 
and there is no need for iterative training procedure. It esti-
mates any arbitrary function between input parameters and 
output, by drawing a function that predicts directly from 
training data. Furthermore, it is consistent; as the size of the 
training set increases, the estimation error approaches zero, 
it is related to the radial basis network and is based on kernel 
regression statistical technique. GRNN basic architecture is 
shown in Fig. 4. The model has four layers, the first layer is 
the input layer, the second is pattern layer, the third layer 
is the summation layer and final layer is the output layer. The 
number of input units in the first layer is equal to indepen-
dent variables xi and connected to the pattern layer (hidden 
layer). Each pattern layer unit is attached to the two neu-
rons in the summation layer, known as S and D summation 
neuron. The S summation neuron computes the sum of the 
weighted outputs of the pattern layer while the D summation 
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neuron calculates the un-weighted outputs of the pattern 
neurons [52]. The output layer merely divides the output 
of each S summation neuron by that of each D summation 
neuron, yielding the predicted value expressed as:
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where n is the number of independent input variables, yi is 
the target output value corresponding to the ith input pattern 
and the Gaussian D function is defined as:
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where p is the total number of training patterns, and σj is 
referred to the smoothing parameter (width or spread), 
whose optimal value is often determined experimentally as 
presented in the literature [53].

2.5. Multiple linear regression

MLR is a mathematical equation that expresses the rela-
tionship between a dependent variable and some indepen-
dent variables. This technique is based on least squares: 
the model is fit such that the sum of squares of differences 
between observed and predicted values are minimized. MLR 
can be formulated by using general equation (Eq. (6)) as 
follows:

Y X Xo n n= + +…+ +β β β ε1 1  (6)

In this equation, Y denotes dependent the variable, X 
denotes independent variables, β denotes predicted param-
eters, and ε is the error term.

MLR calculations are made by using Eq. (7) where Y 
represents dependent variables (removal efficiency), and Xi 
represents independent variables (respectively, time, extract-
ant type, extractant amount, film thickness, plasticizer type, 
plasticizer amount, and polymer molecular weight).

Y =  1.02053 – 0.00397X1 + 0.00291X2 – 0.0759X3 
+ 0.000258X4 – 0.00285X5 – 0.05166X6 – 0.00846X7

 (7)

2.6. Proposed model architectures

Neural networks have brought about breakthroughs in 
processing images, video, speech, and audio, whereas recur-
rent nets have shown light on sequential data such as text and 
speech [54]. Since our dataset is in sequential format, recurrent 
neural networks are applied along with other models such as 
FFBPNN, GRNN which were selected by a literature review 
[47,55–62]. The purpose of using multiple models is to evaluate 
the model efficiency and propose the best model. In our work, 
we compared the model efficiencies by training the dataset and 
identified the best model for Cd removal efficiency. MATLAB 
programming was used for the configuration, training, and 

optimization of ANN models. Experimental data were ran-
domly divided into three groups for training (70%), validat-
ing (15%), and testing (15%). The dataset contains 460 rows; 
each row comprises seven features and an output label. All 
the 460 rows were used in MLR, since, it is a linear regression 
technique; therefore, a linear relationship is assumed between 
the dependent variable and the independent variables. In 
case of ANN, 322 data rows were selected for the ANN train-
ing process, 69 data rows for the validation process and the 
remaining 69 rows for testing the model. 

The number of layers and the number of nodes in each 
layer is used to determine the topology of the ANN model. 
The number of neurons (N) in the hidden layer is determined 
according to the minimum error prediction and considered 
a basic parameter for ANN structure. There is no standard 
method for finding the ideal number of hidden nodes in 
ANN modeling to determine the best activation function. A 
trial-and-error method can lead to inelegant ANN designs, 
but it is a time-consuming technique [63]. To determine the 
optimum number of neurons in the hidden layer, different 
topologies were examined, in which the number of nodes 
was varied from 3 to 45. Each topology was repeated three 
times, and RMSE was used as the error function [64] and 
found that 15 neurons in each hidden layer are the best topol-
ogy due to minimum RMSE for training and cross-validation. 
By using trial and error technique, it was found that (7-15-1) 
is the best topology in this study as represented in Fig. 5. In 
the proposed models, the input layer consists of 7 neurons, 
the hidden layer contains 15 neurons, and the final layer is an 
output layer with 1 neuron. In our proposed model different 
parameters are used, tuned and tested to attain the best per-
formance. These parameters include optimizers, activation 
functions, learning rate, and momentum. Table 2 shows the 
trained algorithms with different best-fit parameters where 
scaled conjugate gradient back-propagation performed better 
during testing and selected for proposed ANN models. The 
optimum structure of FFBPNN model is presented in Fig. 6. 
Similarly, Fig. 7 shows the proposed RNN model, and GRNN 
model architecture is shown in Fig. 8. Furthermore, the MLR 
technique was also applied to check the non-linearity of the 
dataset. SPSS statistics was used for MLR.

2.7. Model performance evaluation 

In this study, three performance measures have been 
used to validate models and their predictions. The root 

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

3 5 7 12 15 20 25 30 35 45

R
M

SE

Number of neurons

Fig. 5. RMSE vs. number of neurons.



53B. Eren et al. / Desalination and Water Treatment (2019) 48–58

means square error (RMSE), the coefficient of determination 
(R2) and the mean absolute error (MAE) are the common per-
formance measures for the evaluation of model performance. 
These are described as follows:

• The RMSE represents the error between model predic-
tions and target values. It ranges from 0 to 1, where lower 
RMSE values are preferable and can be computed using 
Eq. (8) [65].

RMSE sim obs=
−( )=∑ i

n i iX Y

n
1

2

 (8)

In this equation n represents the number of target values, 
Xisim and Yiobs are model predictions and their corresponding 
target values, respectively.

• The coefficient of determination (R2) is estimated through 
Eq. (9). This value shows the percentage of variability 
between experimental data and model predictions. R2 
values range between 0 and 1 (i.e., 0%–100%) and how 

Table 2
Comparison of trained algorithms with best fit parameters using 15 neurons in the hidden layer

Algorithms Function RMSE
Train Validation Test

BFGS quasi-Newton back-propagation trainbfg 0.0432 0.0720 0.0554
Powell–Beale conjugate gradient back-propagation traincgb 0.0442 0.0607 0.0464
Fletcher–Reeves conjugate gradient back-propagation traincgf 0.0416 0.0712 0.0664
Polak–Ribiére conjugate gradient back-propagation traincgp 0.0450 0.0540 0.0391
Gradient descent back-propagation traingd 0.1373 0.0804 0.1682
Gradient descent with momentum back-propagation traingdm 0.1558 0.0903 0.1731
Gradient descent with adaptive learning rate back-propagation traingda 0.0769 0.0350 0.1145
Levenberg–Marquardt back-propagation trainlm 0.0398 0.0842 0.0926
Resilient back-propagation trainrp 0.0488 0.0464 0.0906
Scaled conjugate gradient back-propagation trainscg 0.0445 0.0478 0.0353
One-step secant back-propagation trainoss 0.0459 0.0593 0.0494

RMSE: root mean square error.
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much this value closes to 1 means the greater correlation 
and the stronger relationship between predictions and 
target values [65].
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The RMSE and R2 values provide information on general 
error ranges between model predictions and target values. 
Also, we used MAE to estimate the distribution of errors 
between model predictions and target values. 

• The MAE can be computed with Eq. (10) and its values 
can range from 0 to 1. Similar to RMSE, lower values of 
MAE indicate a good correlation between model predic-
tions and experimental data [65].

MAE sim obs= −
=∑1 1n
X Yi i

i

n  (10)

2.8. Sensitivity analysis 

Sensitivity analysis computes the uncertainty in all com-
plex models that is beneficial to recognize the impact of 
critical input parameters to output [66]. To identify primary 
input–output association, the technique of considering one 
parameter at a time was employed manually in the present 
study. It provides information about the significance of each 
parameter among the seven operating parameters to predict 
PIMs efficiency. The sensitivity was defined as the R2 value, 
which indicates the performance of the network and the more 
important parameter shows higher R2 values stating that the 
network is affected to a greater extent [67].

3. Results and discussion

3.1. Modeling results

The predicted results of PIMs removal efficiency of dif-
ferent models are evaluated by RMSE, MAE, and R2 values. 
RMSE and R2 values provide information on general error 
range between model predictions and measured results to 
assess the performance of developed ANN model while MAE 
value estimates the distribution of errors between model pre-
dictions and target values [68]. Similar to RMSE, lower values 
of MAE indicate a good correlation between model predic-
tions and experimental data [69].

Results of the proposed ANN models and MLR are shown 
in Table 3. FFBPNN is the best option with maximum R2, and 
minimum RMSE and MAE followed by RNN model while 
GRNN was the least ANN model. The correlation coefficient 
R2 for MLR results showed the lowest value of 0.787 as com-
pared with ANN models having values of 0.988, 0.981, and 
0.861 for FFBPNN, RNN, and GRNN models, respectively. 
MLR results showed that it is not an appropriate technique 

to predict PIMs removal efficiency because no linear relation-
ship was found due to non-linearity of data sets. 

The comparison of the experimental results of three ANN 
models for the testing data is graphically presented in Fig. 9. It 
showed that ANN model results are well distributed around 
X = Y line in a narrow area. Experimental results also show 
that FFBPNN model is very appropriate for the prediction 
of Cd removal from aqueous solution by using PIMs with 
seven input variables (time, film thickness, extractant type 
and amount, plasticizer type and the amount and polymer 
molecular weight). From this comparative study, it is shown 
that overall ANN prediction values are closer to the exper-
imentally measured values. The reliability of the proposed 
FFBPNN model is shown in Fig. 10. It shows that FFBPNN is 
the best fit model since the model predicted values are closer 
to the experimental values.

3.2. Sensitivity analysis

Table 3 presents the results of the determination coeffi-
cient for each developed model for all parameters affecting 
Cd removal efficiency of PIMs. The sensitivity analysis was 
performed using one by one approach that considers only 
one variable at a time to determine the percentage of contri-
bution posed by the variable that would affect the R2 values. 

FFBPNN proposed model shown best match between 
predicted and experimental results and considered for sen-
sitivity analysis. In sensitivity analysis, one by one technique 
was applied, and the results are presented in Fig. 11 for all 
operating parameters. It was observed that three of them 
including extractant amount, plasticizer type, and plasti-
cizer amount are significant parameters as indicated by 
higher R2 values shown in Figs. 11(c), (e) and (f). In contrast, 
time, extractant type, film thickness, and polymer molecu-
lar weight do not have much influence on removal efficiency 
as presented in Figs. 11(a), (b), (d) and (g). The extractant 
amount, plasticizer type, and plasticizer amount are more 
significant due to their effects on transport phenomenon 
depending on the Fick’s second law. Also, these parameters 
affect the membrane pore structure, and extraction capacity. 
On the other hand, extractant type, film thickness, and poly-
mer molecular weight are also insignificant because of their 

Table 3
Evaluation criteria used in prediction of PIMs Cd removal 
efficiency by the ANN and MLR models

Model Data Performance criteria
RMSE MAE R2

FFBPNN Training 0.01370 0.00926 0.98856
Validating 0.01165 0.00804 0.98625
Testing 0.01419 0.00575 0.98866

RNN Training 0.02537 0.01641 0.97257
Validating 0.01365 0.01086 0.98181
Testing 0.01842 0.01034 0.98137

GRNN Training 0.09215 0.05483 0.70102
Validating 0.04808 0.02946 0.75759
Testing 0.05950 0.03501 0.86148

MLR Testing 0.07774 0.05213 0.78772
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less effectiveness in the membrane structure compared with 
the other membrane operating parameters.

Graphical representation showed the results of SA depict-
ing the influence of operating parameters on removal effi-
ciency and comparison between predicted and experimental 
values. The regression coefficient R2 for time, extractant type, 

film thickness, and polymer molecular weight was observed 
as 0.4208, 0.2984, 0.538, and 0.0076, respectively, as shown in 
Figs. 11(a), (b), (d) and (g). The effect of extractant amount, 
plasticizer type, and plasticizer amount are major operating 
parameters showing R² values as 0.8834, 0.8574, and 0.8941 
presented in Figs. 11(c), (e) and (f).

Fig. 9. Comparison of the measured, all ANN and MLR predicted results of testing data.
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Fig. 10. Comparison of experimental and predicted results by ANN models and MLR.
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Fig. 11. Sensitivity analysis of FFBPNN model results for each input parameter (a) time, (b) extractant type, (c) extractant amount, 
(d) film thickness, (e) plasticizer type, (f) plasticizer amount, and (g) polymer molecular weight.
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4. Conclusion

In this paper, we studied ANN models and MLR technique 
for the prediction of Cd removal efficiency of the PIMs and 
sensitivity analysis to find major affecting parameters. Three 
different ANN models were proposed to predict Cd removal 
efficiency of PIMs. The developed FFBPNN and RNN models 
predicted Cd removal efficiency with the highest R2 and the 
lowest RMSE and MAE values rather than GRNN and MLR 
model. FFBPNN model results are in perfect match with an R2 
value of 0.988 that provides a meaningful supplement for the 
conventional and complicated mathematical patterns in the 
prediction of removal efficiency. Moreover, a sensitivity anal-
ysis was performed using one by one approach. Sensitivity 
analysis showed that extractant amount, plasticizer type, and 
plasticizer amount are major operating parameters while 
extractant type and polymer molecular weight were the least 
impacting operating parameters. Also, time and film thick-
ness presented R2 value approximately 0.50, so they could be 
considered for future studies to investigate their impact on 
PIMs removal efficiency of other heavy metals.

In future work, the least important parameters can be 
excluded for further research work while other parameters 
may be included at laboratory scale level. Furthermore, we 
will explore feasible, stable, and more economical models at 
industrial scale with a focus on other heavy metals removal 
by using optimum and significant inputs to maximize the 
efficiency.
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