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In this paper, the potential of the principal component analysis (PCA) technique for the application 
of detecting leaks in water pipe networks was evaluated. For this purpose, the PCA was conducted 
to evaluate the relevance of the calculated statistical outliers of a PCA model utilizing the recorded 
inflows of district metered areas (DMAs) and the records of leak repair completion of a case study 
water pipe network. The PCA technique was enhanced by applying the computational algorithm 
developed in this study which was designed to use flow data in a time window from the original 
24-h flow data so that the effective outlier detection rate was maximized. Sensitivity analyses of the 
parameters of the PCA model and the developed algorithm on the results of the study were conducted. 
Consideration on how to apply the parameters in the practical applications was also presented. The 
developed algorithm may be applied in determining whether further leak detection field work for 
DMAs needs to be performed.

Keywords:  Principal component analysis (PCA); DMA; Water pipe network; Leak detection; 
Computational algorithm; Flow data

1. Introduction

Recently, smart water management technology has 
been actively developed worldwide in order to reduce 
unaccounted-for water quantity due to water leakage, pipeline 
rupture, and weighing error in the water supply networks. As 
one of the areas of smart water management technology, stud-
ies on the development of techniques for estimating the leakage 
in water pipe networks such as International Water Association 
method based on the top-down method of Lambert and Hirner 
[1], the bottom-up method of nighttime minimum flow analy-
sis by Covas et al. [2] had been developed. In addition, water 
leak detection techniques in water supply networks were devel-
oped based on the optimization and mathematical modeling 
techniques of Kapelan et al. [3] and Stathis and Loganathan [4], 
acoustic logging method of Muggleton et al. [5] and Pilcher et al. 
[6], and the correlation method of Muggleton and Brennan [7].

The use of computational algorithms to predict or detect 
water leakage in water supply networks has been attempted 
relatively recently. Some examples are the applications of an 
artificial neural network [8], fuzzy inference, and hydraulic 
simulation method of Xia and Guo-jin [9], the support vector 
[10,11], and the Kalman filtering technique [12]. However, in 
case of method of Kalman filtering, it is impossible to per-
form analysis if some portion of data is missing. In case of 
the method using artificial neural network, it is necessary to 
newly train the artificial neural network by using up-to-date 
data when the state of water supply pipe network, for exam-
ple, the status of valve and layout of pipe network, has been 
changed. In the case of support vector machines, hundreds 
or thousands of artificial leaks must be generated in the real 
water supply network in order to obtain the data sets needed 
to train the artificial intelligence. Due to the discussed lim-
itations, application of the above methods for the real water 
supply networks is severely limited. Contrary to the above 
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methods, the principal component analysis (PCA) technique, 
which is one of the statistical multivariate data analysis 
techniques, does not need to train an artificial neural net-
work and can still be applied to data sets that have missing 
values.

Palau et al. [13] used the PCA technique to analyze the 
flow data of the water supply network. Palau et al. [13] per-
formed PCA using the flow data observed from the laborato-
ry-scale water supply network. The T2 Hotelling and distance 
to model (DMOD) statistics was obtained and compared 
with the threshold value of each statistic to detect leakage. 
Park et al. [14] applied the PCA to the nighttime flow data 
observed for 4 months in four small district metered areas 
(DMAs) in real water pipe network to determine the optimal 
PCA period. Park et al. [15] developed a computational algo-
rithm to determine the minimum water use time in a day for 
a representative water use type within a water supply DMA 
in an attempt to more efficiently perform leak detection at 
nighttime.

In this study, the PCA technique was applied to the flow 
data observed in a water supply network, and the relationship 
between the detected statistical outliers and the maintenance 
records related to leakage of the water supply pipelines were 
evaluated. Based on the results of the analysis, the applica-
bility of the PCA to the early detection of leakage of water 
pipe network was analyzed. A computational algorithm that 
can improve the accuracy of leak detection by using the PCA 
model was also developed and applied to the flow data in the 
DMAs of an actual water distribution pipe network in Korea.

The method developed in this paper may be used to 
determine whether to perform preemptive pipe maintenance 
activity for a DMA. The analysis developed in this paper 
may be performed every day for accumulated flow and leak 
record data for a DMA to check if the flow data during the 
past day represent an outlier of a PCA model. The developed 
method can be used to discern whether a detected outlier is 
considered to be relevant to a leak incident, which can also 
be used to make a decision for preemptive pipe maintenance 
activity for a DMA. The sensitivities of the parameters for 
the PCA and the algorithm developed in this study were also 
performed.

2. Material and methods

2.1. The PCA and DMOD statistics

PCA is one of the analytical techniques for analyzing 
multivariate data. It is a technique for converting the data 
contained in multidimensional data to low-dimensional data 
with minimal loss of information. The principal concept of 
PCA is to represent the whole information through fewer 
variables than the original data. Principal components are 
statistically independent from each other, and there is no loss 
of information when all the main components of the data are 
used. The first principal component best describes the vari-
ability of the data, and the explanatory powers of the princi-
pal components diminish gradually.

The PCA consists of a principal component score matrix T 
of n × f dimensions and a loading matrix of n × m dimensions, 
where n is the number of observations and m the number of 
variables. Eq. (1) shows that an original data matrix may be 

factorized into loading matrix P of m × f dimensions and a 
residual matrix E of n × m dimensions.

X = T × PT + E (1)

where f is the number of principal components, and f < m. The 
column of the loading matrix P represents an eigenvector for 
the eigenvalue of the variance–covariance matrix of X. The 
eigenvectors, that is, the principal components are arranged 
in the order of the corresponding eigenvalues, and the prin-
cipal components can be selected only partially according to 
the purpose of analysis. The most optimal partitioning of the 
raw data is to minimize the residual matrix by partitioning. 
The T2 Hotelling statistic or DMOD statistics may be used to 
determine outliers of a PCA model.

According to Palau et al. [13], the T2 Hotelling statistic 
is more suitable for detecting abnormal demand in a pipe 
network, and the DMOD statistic is more suitable for detecting 
leakage in a pipe network. The equation for obtaining a 
DMOD statistic is given by Eqs. (2) and (3), respectively.
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where Si represents the absolute DMOD and S0 the nor-
malized distance of the model, K the number of primitive 
variables, A the number of principal components, N the 
number of observations, and A0 1 when it is normalized and 
0 otherwise. Eik residual of i-th observation of variable K. 
Eq. (4) represents the criterion for determining whether an 
estimated DMOD statistic is an outlier.
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where (Si/S0)2 has an F-Snedecor probability distribution with 
(N–A–1) (K–A) degrees of freedom and (K–A) as parameters. 
For example, if the calculated DMOD statistic (Si/S0)2 is larger 
than the p-value of the F-Snedecor probability distribution, a 
DMOD statistic of the flow data is determined to be an out-
lier. In this study, as shown in Palau et al. [13], it was consid-
ered that a DMOD outlier may be regarded as an indication 
of a leak incident in a DMA.

2.2. The flow data

This study used inflow data of 11 DMAs in a water pipe 
network in Korea. The flow measurement data are the 24-h 
flow data recorded every hour for 426 d from September 1, 
2011, to October 30, 2012. The leakage records for the study 
area present the dates of completion of leakage repair with 
a total of 120 dates of completion of leakage repair. Table 1 
shows some portion of the DMA inflow data of the water 
pipe network.
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3. Results and discussions

3.1. Analysis on the 24-h flow data

For each DMA of the study network, the dates that have 
reports of completion of leak repairs and the dates on which 
the flow data were determined as DMOD outliers of the PCA 
model were compared. As the first attempt for the analy-
ses, the PCA model was constructed using the hourly flow 
data measured for a whole day of the DMAs. The outliers of 
the PCA model used in the analyses were the outliers of the 
DMOD statistics.

It is considered normal that the time of completion of 
leakage repair is different from the time of leakage occur-
rence. Because the dates that have reports of completion of 
leak repairs of the study network may not be the dates on 
which actual leaks occurred, the dates within each week 
before and after a reported date of leakage repair completion 
were compared with the dates that have the outliers of the 
PCA model. Moreover, there may be an error in recording the 
correct date of completion of leakage repair.

Inclusion of the outliers occurred within 7 d prior to the 
recorded date of leakage repair in the analysis was due to an 
assumption that a report on the occurrence of a leak and/or 
completion of leakage repair may be recorded after up to 7 d of 
an actual outbreak of leakage depending on the leak size and 
the delay in recognition of leak occurrence. On the other hand, 
inclusion of the outliers occurred within 7 d after the recorded 
date of leakage repair in the analysis was due to the consider-
ation of the possibility that up to 7 d of an error might occur 
in recording the correct date of completion of leakage repair.

Eq. (5) shows the formula used to calculate the effective 
outlier detection rate (EODR) inside the outlier detection 
periods (ODPs).

EODR No. of Outliers inODP
Total No. of Outliers

 %( ) = × 100  (5)

Each ODP is 15 d which has the date on which comple-
tion of leakage repair was recorded in the center. Table 2 
shows the calculated EODRs for each DMA in the study area.

As shown in Table 2, the EODRs calculated from the PCA 
modeling using hourly flow data resulted in rather low val-
ues implying that the use of PCA in early detection of leaks 
will not be reliable.

In this study, a computational algorithm that utilizes var-
ious parts of the hourly flow data was developed to enhance 
the EODRs. Furthermore, the developed algorithm was exam-
ined to verify the applicability of the algorithms in detecting 
leaks of real-world water distribution pipe networks. For con-
venience, the term a “leak report” is also used in this paper to 
mean a “report on completion of leakage repair”.

3.2. The developed computational algorithm

In this study, a method to improve the efficiency of detect-
ing the outliers was developed which uses a portion of flow 
data among the hourly flow data rather than the whole 24-h 
flow data. The portion of flow data used in the algorithm was 
defined as the hourly flow data measured in a consecutive 
time window during a day which can be represented with 
the corresponding “center time” and “time range” of the time 
window. For example, if the “center time” and “time range” 
of a time window is 4 and 7, respectively, the data used for 
the analysis are the flows in the time window of Lambert and 
Hirner [1], Covas et al. [2], Kapelan et al. [3], Muggleton et al. 
[5], Muggleton and Brennan [7], Mounce et al. [8], and Borges 
and Ramirez [10].

Fig. 1 shows the computational algorithms developed in 
this study to improve the efficiency of detecting the outliers 
in the ODPs. Based on the developed algorithm, a computer 
program was developed using the Matlab programming soft-
ware. Using the computer program, the EODRs were calcu-
lated for the hourly flow data inside all of the possible time 
windows in a day which were generated for all possible com-
binations of center times and time ranges. The time range was 
increased from 3 to 23 h in the increment of 2 h. The center 
time of each time window was varied from 1:00 to 24:00.

An EODR was calculated using the flow data in each time 
window. The best time window (BTW) which has the highest 
EODR (maximum EODR, M-EODR) was obtained for each 
DMA using the developed algorithm. As with the analysis 
using the 24-h flow data, the outliers of the PCA model were 
checked if they reside in the ODPs of a DMA. Furthermore, 
the changes in the calculated M-EODRs were analyzed 
according to the amount of flow data used.

Table 1
Sample inflow data in the case study area water pipe network 
(m3/h)

Date Hour DMA A DMA B DMA C

2012-06-19 23:00 63 19 101
2012-06-19 24:00 36 11 23
2012-06-20 1:00 23 12 88
2012-06-20 2:00 23 12 13
2012-06-20 3:00 24 8 12
2012-06-20 4:00 22 9 12
2012-06-20 5:00 31 11 19
2012-06-20 6:00 44 21 35
2012-06-20 7:00 80 94 112
2012-06-20 8:00 68 148 169
2012-06-20 9:00 71 94 165

Table 2
EODRs using 24-h flow data for the case study water pipe network

Name of DMA A B C D E F G H I J K

Number of leak records 17 12 9 5 9 6 8 2 17 10 25
EODR using 24-h flow data (%) 54 55 51 32 10 9 38 15 19 39 92
Number of principal component 9 12 12 8 7 12 14 14 8 7 14
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Table 3 shows the calculated M-EODRs using the 426 d of 
flow data and the algorithm shown in Fig. 1.

The center time and range in Table 3 correspond to the 
time window that resulted in the M-EODR shown in Table 3. 
Comparing Tables 2 and 3, the EODRs in Table 3 resulted 
in higher EODRs than the ones in Table 2 except one DMA. 
Therefore, it was found that there is a specific time zone (or 
BTW) for each DMA in which the residuals (DMOD statistics) 
of a PCA model and the leak records have a stronger relation-
ship than the case of using 24-h flow data.

3.3. Analysis on the EODRs for various amounts of flow data

Additional analyses were performed to check if the com-
puted M-EODRs and BTW show stable results as more data 
are accumulated. It was considered that if the computed 
M-EODRs and the BTW are drastically different depending 

on the amount of data used, the method may not be reli-
able to use in determining whether to perform physical leak 
detection activity based on the occurrence of the outliers of 
the PCA model. Table 4 shows the computed M-EODRs for 
the monthly accumulated flow data starting from September, 
2011, to October, 2012.

In Table 4, the value 90% for DMA I at Month 14 rep-
resents the M-EODR for DMA I using the flow data from 
September, 2011, to October, 2012.

Analysis of Table 4 reveals that the DMAs show stable 
values for the center times and time ranges after the 9th 
month except DMAs F and H. The 9th month indicates May. 
Therefore, this phenomenon is considered to be due to the 
change of the season which results in less frequent number 
of leak reports.

The changes in the EODRs with time were estimated as 
the difference of the EODRs in consecutive months. Fig. 2 
shows the change of the EODRs according to the amount of 
accumulated data over time. As Fig. 2 shows, the EODRs 
have less variability after the 9th month. Therefore, the vari-
ability of the EODR of each DMA over time is also considered 
to be affected by the accumulated number of leak reports.

However, by analyzing Table 3 general relationship 
between the EODRs and the number of leak reports for a 
fixed time was not found other than DMA H and K. In other 
words, as the number of leak reports increased among the 
DMAs for a fixed time, the EODRs of the different DMAs 
did not show any noticeable increase or decrease for a given 
amount of data used.

DMA H and K showed an exceptional trend from other 
DMAs. It is conjectured that the EODR of DMA H is consid-
erably low due to the low number of leak reports and the 
EODR of DMA K is very high because of the high number 
of leak reports. It is considered that if the number of leak 
reports is too small, the EODR tends to be estimated as very 
low because the most of the outliers tend to reside outside of 
the ODPs resulting in non-effective outliers.

In addition, Table 4 shows that the EODRs of the DMAs 
tend to have relatively higher values in the early period 
of flow data observations. The reason of this trend is con-
sidered to be due to the characteristics of the developed 
algorithm and the specific phenomenon of the study area 
where the outliers and other leak reports coexist inside an 
ODP in the early period. In this case, the outliers are double 
counted as effective outliers leading toward higher EODRs 
than 100%, which is the case DMA K belongs to. Because the 
occurrences of the outliers and the leak reports were con-
centrated during the early period of flow data, the effects 
of the detected outliers diminish as more data are accumu-
lated and the calculated EODRs resulted in a decreasing 
trend.

Fig. 1. Computational algorithms for assessing the capability of 
the PCA for detecting leaks in the DMAs.

Table 3
M-EODRs using hourly flow data for the case study DMAs

DMA A B C D E F G H I J K

Number of leak records 17 12 9 5 9 6 8 2 17 10 25
M-EODR (%) 83 81 104 60 104 24 58 9 90 40 163
Center time (h) 15 12 21 7 6 21 21 18 9 16 21
Time range (h) 5 3 3 3 5 3 3 3 3 5 3
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In summary, it was concluded that the changes in the 
number of leak reports over time, or the change of season, 
had influence on the changes in the BTWs and the M-EODRs 
for a DMA. Meanwhile, there were no noticeable differences 

in the BTWs and M-EODRs among the DMAs with regard to 
the number of leak reports.

According to Table 4, DMAs A, B, C, E, and I had rela-
tively higher values of M-EODRs for the 14 months of the 

Table 4
M-EODRs, center time, and time duration for the flow data

DMA Category Cumulative number of months
1 2 3 4 5 6 7 8 9 10 11 12 13 14

A M-EODR (%) 100 250 167 150 200 211 143 124 124 105 94 85 79 83
Center time (h) 4 13 13 12 15 15 15 14 14 10 10 12 15 14
Time range (h) 3 3 3 5 3 3 7 5 5 3 3 5 5 7
Cumulative number of leaks 2 7 7 9 12 13 13 14 15 15 16 16 16 17

B M-EODR (%) 100 100 100 109 108 100 83 80 81 81 81 81 81 81
Center time (h) 11 11 3 16 16 16 12 14 11 14 14 14 14 15
Time range (h) 3 5 3 9 9 9 7 5 19 5 5 5 5 5
Cumulative number of leaks 1 2 3 5 8 8 8 8 9 9 10 10 10 12

C M-EODR (%) 200 150 167 140 133 120 119 122 112 108 107 107 104 104
Center time (h) 12 17 17 4 10 17 10 22 22 22 22 22 22 22
Time range (h) 3 19 19 3 5 19 23 5 5 5 5 5 5 5
Cumulative number of leaks 2 3 6 7 8 8 8 8 8 8 9 9 9 9

D M-EODR (%) N/A 300 263 233 210 147 129 92 86 71 63 63 63 60
Center time (h) N/A 12 10 10 10 8 8 7 7 7 7 7 7 7
Time range (h) N/A 3 3 3 3 3 3 3 3 3 3 3 3 3
Cumulative number of leaks 0 3 3 4 4 4 4 4 4 4 4 4 4 5

E M-EODR (%) 400 200 144 167 188 208 200 207 200 173 173 157 109 104
Center time (h) 6 8 5 6 23 2 1 3 3 2 2 2 6 6
Time range (h) 3 3 9 5 9 13 13 11 11 13 13 13 5 5
Cumulative number of leaks 5 6 6 7 7 9 9 9 9 9 9 9 9 9

F M-EODR (%) N/A N/A N/A 0 0 0 0 50 31 33 31 31 29 24
Center time (h) N/A N/A N/A 1 1 1 1 22 21 21 21 21 21 21
Time range (h) N/A N/A N/A 3 3 3 3 5 3 3 3 3 3 3
Cumulative number of leaks 0 0 0 1 1 1 1 4 5 5 6 6 6 6

G M-EODR (%) 100 100 100 100 91 92 85 83 70 63 65 59 58 58
Center time (h) 9 5 13 20 4 17 22 15 11 17 17 15 13 13
Time range (h) 3 3 5 3 17 17 5 13 5 17 17 13 7 7
Cumulative number of leaks 1 3 4 5 5 6 7 7 7 7 7 7 7 8

H M-EODR (%) N/A N/A N/A 33 25 25 20 17 10 10 17 17 10 9
Center time (h) N/A N/A N/A 1 1 1 1 1 4 1 12 12 2 2
Time range (h) N/A N/A N/A 5 5 5 5 5 5 7 3 3 9 9
Cumulative number of leaks 0 0 0 1 1 1 1 1 1 2 2 2 2 2

I M-EODR (%) 200 200 200 200 200 150 200 200 150 144 136 117 94 90
Center time (h) 2 6 2 6 1 14 1 17 17 17 17 15 9 9
Time range (h) 3 3 3 3 5 7 5 7 7 7 7 11 3 3
Cumulative number of leaks 3 5 5 8 9 9 11 13 15 15 16 17 17 17

J M-EODR (%) 200 125 167 167 150 150 133 120 85 65 71 47 38 40
Center time (h) 12 12 3 5 19 2 23 3 11 12 13 15 12 13
Time range (h) 3 5 3 9 3 13 9 11 5 3 7 9 3 3
Cumulative number of leaks 2 5 7 8 9 9 9 10 10 10 10 10 10 10

K M-EODR (%) 200 300 220 257 233 213 214 200 185 200 200 200 200 163
Center time (h) 3 1 7 8 23 10 7 10 19 15 15 15 15 13
Time range (h) 3 3 15 15 21 7 15 7 7 7 7 7 7 9
Cumulative number of leaks 4 6 9 13 14 14 17 17 19 21 22 22 22 25
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flow data, and the BTWs did not show much fluctuation in 
recent months. Therefore, if a criterion of 70% of M-EODR 
was used, it is considered that preemptive leak detection may 
be performed for DMAs A, B, C, E, and I in the case study 
network if the flow data of the precious day turns out to be an 
DMOD outlier of the PCA method developed in this paper.

3.4. Sensitivity analysis of the parameters of the model and 
algorithm

The sensitivities of the explanatory power of the eigen-
vector and the p-value of the F-distribution that was used to 

determine DMOD outliers were analyzed for the BTWs and 
M-EODRs. Additional analysis on the sensitivity of the ODPs 
was analyzed for the BTWs and M-EODRs.

Figs. 4–6 show the changes of the BTWs according to dif-
ferent values for the explanatory power of the eigenvalues 
using the p-value of 0.1 and the whole flow data. Fig. 3 shows 
the changes of the M-EODRs according to different values for 
the explanatory power of the eigenvalues using the p-value 
of 0.1 and the whole flow data. As can be analyzed from 
Figs. 3–6, the sensitivities of the explanatory power of the 
eigenvector analyzed for the BTWs and M-EODRs were not 
high.

Fig. 2. Change of the M-EODRs according to the amount of accumulated data over time.

Fig. 3. M-EODRs according to the explanatory power of the eigenvectors.
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Table 5 shows the changes in the BTWs and M-EODRs 
according to different p-values of F-distribution using 
the whole flow data. As can be analyzed from Table 5, the 
sensitivity of the p-value for the BTWs and M-EODRs were 
relatively high.

Table 6 shows the changes in the BTWs and M-EODRs 
according to different ODPs using the whole flow data. As 
can be analyzed from Table 6, the sensitivity of the ODPs for 
the BTWs and M-EODRs were relatively high.

As Table 5 shows, the M-EODRs calculated using the 
p-value of 0.05 resulted in higher M-EODRs with less number 

of M-EODRs that are greater than 100% than the case of the 
p-value of 0.03. It is better to have the values of the M-EODRs 
as less than or equal to 100% because the M-EODRs that are 
greater than 100% may not represent the realistic EODR due 
to the double-counted outliers.

If the manager of a water pipe network will rely on the 
estimated M-EODRs in performing preemptive pipe leak 
detection, he/she needs to be able to distinguish DMAs 
of higher priority for preemptive action due to a limited 
budget. Therefore, it is recommended that the manager will 
choose the p-value of F-distribution that produces various 
values of M-EODRs among the DMAs and less number of 
M-EODRs that are greater than 100%. The ODP is consid-
ered to be dependent on the reliability of leak records in a 
water pipe network. For instance, a network that has leak 
reports recorded on time will have a relatively short ODP. 
Therefore, it is recommended that the manager will choose 
an appropriate ODP based on the condition of the leak 
records keeping of the pipe network.

4. Conclusions

In this paper, we have developed a computational 
algorithm to detect leak in a water pipe network using 
flow data of the DMAs in a case study area. The algorithm 
developed in this study was based on the PCA, one of the 
multivariate data analysis techniques, and was designed to 
improve the leak detection efficiency of a PCA which uses 

Fig. 5. BTW for the explanatory power of the eigenvectors of 80%.

Fig. 4. BTW for the explanatory power of the eigenvectors of 75%.

Fig. 6. BTW for the explanatory power of the eigenvectors of 85%.

Table 5
Changes in the BTWs and M-EODRs according to the p-value

p-value Category A B C D E F G H I J K

0.1 M-EODR (%) 83 81 104 60 104 24 58 9 90 40 163
Center time (h) 14 15 22 7 6 21 13 2 9 13 13
Time range (h) 7 5 5 3 5 3 7 9 3 3 9

0.05 M-EODR (%) 100 89 118 100 105 29 100 13 200 100 217
Center time (h) 13 16 23 11 5 21 11 6 19 1 14
Time range (h) 3 9 5 5 7 3 5 9 3 3 15

0.03 M-EODR (%) 65 109 150 200 111 100 200 13 129 133 250
Center time (h) 16 16 20 8 5 21 19 4 14 9 23
Time range (h) 7 9 5 9 7 3 5 5 13 3 21
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24-h flow data. It is an algorithm that compares the dates 
which have outliers of the DMOD statistics from the PCA 
and the dates of completion of leak repair using only the flow 
data of a specific time window in a day.

The technique developed in this study may be used by 
a manager of a water pipe network to confirm whether the 
flow data of the previous day at present analysis time is cal-
culated as the DMOD outliers by performing the developed 
PCA algorithm. Occurrence of the outliers and the calculated 
values of the M-EODRs may assist the manager of a water 
pipe network in deciding whether to conduct a leakage test 
for a suspected leak zone in a DMA.

Sensitivity analyses on the results of this study showed 
that the explanatory power of the eigenvectors did not have 
a high sensitivity on the BTWs and M-EODRs. Meanwhile, 
the sensitivity of the p-value and ODP for the BTWs and 
M-EODRs were relatively high. Therefore, it was concluded 
that the generally accepted value of 80% may be used for the 
explanatory power of the eigenvectors for the analyses. In the 
meantime, it is considered that the p-value of F-distribution 
needs to be chosen so that various values of the M-EODRs 
among the DMAs are produced. It is also considered that the 
manager will choose an appropriate ODP based on the condi-
tion of the leak records keeping of the pipe network.

Considering the analyses on the changes in the BTWs and 
M-EODRs according to the amount of data accumulated over 
time, applications of the developed method are considered to 
be dependent on the accuracy of the calculated M-EODR and 
the variability of the BTW for each DMA. In other words, a 
manager of a water pipe network may be able to perform a 
preemptive leak detection for a DMA with confidence if the cal-
culated M-EODR is good enough, for example, more than 70%, 
and the estimated BTW does not change in a recent period, say 
for the last 6 months. However, the exact criteria regarding 
the M-EODR and BTW to use for preemptive maintenance 
activities for a DMA must be decided based on the rational 
knowledge and experience of the managers on the financial 
condition and maintenance practices of a water pipe network.

The method developed in this paper examined the 
changes in the BTW which resulted in the highest EODR 
(M-EODR) for a DMA. It was considered that if the BTWs 
do not change much in a recent period, say for 6 months, the 
calculated M-EODR may be used to determine whether pre-
emptive leak detection is performed for a DMA. Therefore, 
BTW was used in the analyses under the assumption that 

there will be a specific time zone of each DMA in which the 
residuals (DMOD statistics) of a PCA model and the leak 
records have a stronger relationship than the case of using 
24-h flow data. The leak records used in this study have only 
the dates of completion of leak repair.

Therefore, the specific reasons why some specific time 
zones had stronger relationship between the DMOD outliers 
and the leak records were hard to be analyzed due to limited 
information on the leak records used. It is conjectured that 
the estimated BTWs of a DMA may represent the time zone 
in which leakage can be distinguished more easily than the 
normal flows in a DMA. It is considered that further analy-
ses need to be performed using more detailed information 
regarding the actual leak occurrence times.
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