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a b s t r a c t

This study evaluated the spatial and temporal variations of water quality to understand further the 
water quality in the Changjiang River Basin in Luzhou, China. Data of 16 water quality parameters 
at nine monitoring stations from 2011 to 2016 were analyzed on the basis of the cluster analysis 
(CA) and discriminant analysis in multivariate statistical analysis methods, with 612 samples per 
parameter. Results showed that the CA divided the observation months into three periods according 
to the similarity of water quality characteristics. Periods 1 (December–May), 2 (July–September), 
and 3 (June, October, and November) corresponded to the dry, wet, and flat seasons, respectively. 
The nine sites were divided using space analysis into two groups (A and B),which corresponded to 
light and moderate pollution, respectively. The important parameters representing temporal and 
spatial differences were water temperature, flow rate, five-day biochemical oxygen demand, fecal 
coliform bacteria, electrical conductivity, ammonia nitrogen, oils, fluoride, and arsenic. Optimiz-
ing the monitoring frequency or sampling points, strengthening the monitoring of nine important 
parameters simultaneously, and controlling the pollution of polluted river are suggested on the basis 
of the results. This study can provide a scientific basis for water quality monitoring and functional 
zoning of the Luzhou section of the Changjiang River Basin.
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1. Introduction

The problem of river pollution has become increasingly 
serious with the rapid development of the modern econ-
omy. River water quality is affected not only by natural 
factors, such as precipitation and atmospheric deposition, 
but also by artificial ones,such as industrial wastewater, 
domestic sewage, and farmland surface runoff [1]. There-
fore, long-term monitoring and evaluation of river systems 
are needed to obtain reliable information to prevent and 
control river pollution [2]. Fundamentally, rivers are sea-
sonal and regional [3]. Studying the temporal and spatial 
variation characteristics of river water quality can provide 

dynamic information for the effective management of water 
environment. Therefore, effective evaluation of the tempo-
ral and spatial changes of river water quality has become 
an important means of water environmental management 
decision making [4,5].

Multivariate statistical techniques are effective for ana-
lyzing the spatial and temporal variations of water quality 
and have been used extensively in practical applications 
[1–2,6,7]. Solidoro et al. [8] studied the nutritional devel-
opment level of the Venetian Lagoon by using multivari-
ate statistical methods on the basis of the characteristics of 
spatiotemporal changes of water quality. Caccia et al. [9]
used regression analysis and found that the water quality 
of Biscayne Bay was influenced by land use. Shrestha et al. 
[10] used cluster analysis (CA) and discriminant analysis 
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(DA) to identify important changes in water quality param-
eters and studied the methods of optimizing the monitoring 
network. Bu et al. [11] used CA, factor analysis, and grid 
method to explain the deteriorating process of water qual-
ity from upstream to downstream. 

The Changjiang River enters the northern part of 
Luzhou from Yibin and flows from the west to the east 
through Naxi, Jiangyang, and Longmatan Districts and 
Hejiang Counties and then into Jiangjin City in Chongqing, 
wherein water quality will directly affect the Three Gorges 
Reservoir Area and the middle and lower reaches of Chang-
jiang River [12,13]. The Luzhou section of the Changjiang 
River Basin is an important water source for the people of 
Luzhou and for industrial and agricultural production, and 
its quality considerably influences the water downstream 
in Chongqing. Some tributaries of the Luzhou section of 
the Changjiang River Basin accept the perennial discharge 
of domestic sewage, industrial wastewater, and agricul-
tural water withdrawal along the coast, thereby causing 
the deterioration of river water quality and restricting the 
economic development of the basin [14,15]. At present, few 
researchers have evaluated the water quality of the area. 
However, the effect of the water quality in Luzhou on those 
of Chongqing, the Three Gorges Reservoir Area, and the 
middle and lower reaches of the Changjiang River cannot 
be ignored. Therefore, the Luzhou section of the Changjiang 
River was taken as the research object for this study and 

used the CA and DA in multivariate statistical methods to 
study the temporal and spatial variations of the water qual-
ity in Changjiang River. This study aims to understand the 
spatial and temporal differentiation characteristics of the 
water quality in the Luzhou section of the Changjiang River 
Basin and identify the source of pollution. The results of this 
study can aid in determining the main causes of water envi-
ronment pollution in the region to develop suitable water 
ecological environment management measures. They also 
provide a scientific basis for ecosystem management, envi-
ronmental protection, water pollution prevention, and opti-
mization monitoring points in Changjiang River Basin [16]. 
Furthermore, this study plays a protective and guiding role 
in the water quality of Chongqing. 

2. Experimental site, materials, and methods

2.1. Study site and monitoring parameters

Luzhou (27°39’ N–29° 20’ N, 105° 08’ E–106° 28’ E) is 
located in the southeast of Sichuan Province (Fig. 1) at the 
intersection of Changjiang and Tuojiang Rivers [17]. It is an 
important port in the Hainan Channel and the upper reaches 
of Changjiang River. The total area of the city’s administra-
tive division is 12,236.2 km2, the cultivated land is 4,110 km2, 
and the water area is 376 km2. In addition, the total topogra-

Fig. 1. Map of the study area and surface water quality monitoring stations in Changjiang River Watershed (Luzhou).
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phy is high in the south and west and low in the north and 
east. Luzhou City belongs to the tropical climate in South 
Asia. The average annual temperature is 17.4°C–19.0°C, with 
an average annual rainfall of 677–1,262 mm. The spatial and 
temporal distribution of rainfall is extremely uneven during 
the year. Moreover, approximately 70–80% of the rainfall 
is concentrated in May–October, the sunshine duration is 
871–1396 h, and the frost-free period is 300–358 d. The riv-
ers in the city are distributed in branches, which are trans-
ferred from south to north or vice versa into the Changjiang 
River. The length of the Luzhou section of Changjiang River 
is 133 km, the river surface width is 450–800 m, the average 
annual inflow water volume is 240.8 billion m3, and the exit 
water volume is 268 billion m3 [18]. From January 2011 to 
August 2016, the Luzhou Environmental Monitoring Cen-
ter collected water samples every month from nine loca-
tions: DaDuKou (DDK), ShouPaYan (SPY), ShaXiKou (SXK), 
DaMoZi (DMZ), TuoJiangYiQiao (TJYQ), TianZhuSiDaQiao 
(TZSDQ), HuShiDaQiao (HSDQ), LuTianHuaDaQiao 
(LTHDQ), and XingJueXi (XJX). DDK, SPY, and SXK are the 
monitoring points of Changjiang River. DMZ and TJYQ are 
the monitoring points of Tuojiang River, which is a tributary 
of Changjiang River. TZSDQ and HSDQ are the monitoring 

points of Laixi River, which is a tributary of Tuojiang River. 
LTHDQ and XJX are the monitoring points of Yongning and 
Chishui Rivers, respectively, which are tributaries of Chang-
jiang River. Tuojiang, Yongning, and Chishui Rivers flow into 
Changjiang River. LTHDQ and XJX are monitoring points for 
tributaries flowing into the Changjiang River. DDK, DMZ, 
and TJYQ are the monitoring points of Luzhou River.

Sixteen parameters were selected on the basis of the 
sampling continuity of all selected monitoring points. These 
parameters included water temperature (TEMP), flow rate 
(Q), pH, electrical conductivity (EC), dissolved oxygen 
(DO), permanganate index (CODMn), five-day biochemical 
oxygen demand (BOD5), ammonia nitrogen (NH3–N), oils, 
biochemical oxygen demand (CODCr), total nitrogen (TN), 
total phosphorus (TP), copper (Cu), fluoride (F), arsenic (As), 
and fecal coliform bacteria (F. coli), which were expressed in 
mg/L except for Q (m3/s), pH, EC (μS/cm), TEMP(°C), and 
F. coli (cfu/L). The collection, preservation, and analysis of 
water samples complied with the relevant requirements of 
the Technical Specification Requirements for Monitoring of 
Surface Water and Waste Water [19–21]. Table 1 presents the 
specific analysis method, and Table 2 shows the environmen-
tal quality standards for surface water [22]. 

Table 1
Monitoring methods for water quality parameters

Parameters Monitoring methods Method source

TEMP Thermometer method GB13195-1991
DO Electrochemical probe method HJ 506-2009
EC Portable conductivity meter method Water and Wastewater Monitoring and Analysis Methods  

(Fourth Edition) State Environmental Protection Administration (2002)
pH Portable pH meter method Water and Wastewater Monitoring and Analysis Methods  

(Fourth Edition) State Environmental Protection Administration (2002)
CODMn Acid method GB11892-1989
CODCr Dichromate method GB11914-1989
BOD5 Dilution and inoculation method HJ505-2009
NH3–N Nessler’s reagent spectrophotometry HJ535-2009
TP Ammonium molybdate 

spectrophotometry
GB11893-1989

F Ion chromatography HJ/T84-2001
As Atomic fluorescence method
Cu Inductively coupled plasma optical 

emission spectrometry
HJ776-2015

Oils Infrared spectrophotometry HJ 637-2012
F. coli Multi-tube fermentation method Water and Wastewater Monitoring and Analysis Methods (Fourth 

Edition) State Environmental Protection Administration (2002)
Q Acoustic Doppler flow test specification SL 337-2006
TN Alkaline potassium persulfate digestion 

ultraviolet spectrophotometry
HJ 636-2012

Table 2
Standard of surface water environment quality (GB3838-2002, China)

DO CODMn BOD5 NH3–N TP TN Cu Zn F As Pb oils F. coli

I 7.5 2 3 0.15 0.02 0.2 0.01 0.05 1 0.05 0.01 0.05 200
II 6 4 3 0.5 0.1 0.5 1 1 1 0.05 0.05 0.05 2000
III 5 6 4 1 0.2 1 1 1 1 0.05 0.01 0.05 10000
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2.2. Analytical methods

Multivariate statistical methods require the water qual-
ity indicators to be normal or near normal distribution 
[23–25]. Therefore, before the CA and DA, the distribution 
characteristics of water quality indicators must be exam-
ined. The methods used in this study were kurtosis and 
skewness test [13]. When the data structure is particularly 
deviated from the normal distribution, the water quality 
index can be approximated to a normal distribution by log-
arithmic transformation x‘ = log10(x), which improves the 
credibility of the subsequent multivariate statistical method 
[23,26]. At the same time, in view of the differences in the 
magnitude and unit of measurement of different water 
quality indicators, standardizing the data during CA is 
helpful to improve its credibility [27,28]. All mathematical 
and statistical calculations in this study were conducted 
using IBM SPSS Statistics 23.0.

CA is based on the degree of similarity or dissimilarity 
among research objects to determine the distance between 
them, thereby closing the objects as a cluster. Objects of dif-
ferent clusters are far from one another [29]. The ratio of the 
case chain lock distance ( Dlink ) to the maximum chain lock 

distance ( Dmax ) is the degree of difference (
D
D

link

max
), and 

the clustering analysis results can be classified according to 

the degree of difference of 100 times ( 100D
D

link

max
) [13]. This 

approach aims to combine objects with the closest proper-
ties according to the degree of affinity among variables or 
samples and form the closest ones until they are grouped 
together [30,31]. In water quality assessment, CA is often 
performed according to sampling stations and time to 
analyze the temporal and spatial variation characteristics 
of water quality or according to evaluation parameters to 
analyze the similarity among parameters [1,2,32,33]. In this 
study, the Euclidean distance method among groups was 
used to analyze the temporal and spatial similarity of the 
Luzhou section of the Changjiang River basin by CA. Mean-
while, DA is a multivariate statistical method that classifies 
the subjects under the conditions of classification and iden-
tification, establishes a suitable discriminant function (DF) 
on the basis of certain discriminant criteria, and discovers 
the undetermined coefficients in the DF by using substan-
tial raw data [34]. In comparison with CA, DA should ini-
tially distinguish the classification of samples. At the same 
time, the DF can be used to discriminate the sample attribu-
tion and identify the prominent pollution parameters. The 
expression is as follows:

f G k w pi j ij ij
j

n( ) = +
=∑ 1

  (1)

where i is the number of group types (G), n is the number 
of pollution parameters used to classify a set of data into a 
given group, wij is the weight coefficient, pij is the concen-
tration of the main pollution indicator, f is the DF, and kj is 
the constant inherent to each group [20]. The discriminant 
criterion can be used to divide the process into distance 
discrimination and Fisher discriminant. The verification 
methods for the effect of DF include self- and external 
verifications, sample dichotomy, and cross-validation. DA 
is usually performed on the test data using standard, for-

ward, and backward methods. The results are applied to the 
spatial analysis of water quality, and the optimal DF and 
matrix are obtained to verify the results of CA and identify 
critical pollutants among various sampling stations [35]. In 
the present study, a step-by-step model was used for DA in 
manipulating the raw data to confirm the clusters found in 
CA and evaluate the spatiotemporal variations on the basis 
of the discriminant variables. The monitoring periods (tem-
poral) and points (spatial) were the grouped variables, and 
the measured parameters were the independent variables.

3. Results and discussion

3.1. Temporal similarity and period grouping

Temporal CA was used to cluster a dendrogram (Fig. 2) 
that grouped the months into three clusters with similar 
physiochemical water quality characteristics. When is ≥2 
and <3, the time month is divided into three periods. When 
is ≥3 and ≤25, the time month is divided into two periods. 
In this study, the month was divided into three time peri-
ods. Periods 1 (December–May), 2 (July–September), and 
3 (June, October, and November) corresponded to the dry, 
wet, and flat seasons, respectively. The results showed that 
the water quality of Changjiang River Basin was not only 
subjected to hydrological conditions (i.e., dry and wet sea-
sons) but also by evident seasonal changes [32]. Fig. 2 shows 
that Period 2 was consistent with the wet season, whereas 
Periods 1 and 3 were slightly deviated but in line with the 
actual situation [34]. Therefore, sampling frequency should 
be appropriately increased for the dry and flat-water sea-
sons to improve the water monitoring quality in the future.

As shown in Table 3, the value of Wilks’ lambda for 
the DF was small (0.178). The chisquare value was high 
(166.604), and the p level (0.000) was less than 0.05. There-
fore, the results of the temporal DA of the study were sig-
nificant. Tables 4 and 5 present the DFs and classification 
matrixes (CMs) obtained by temporal DA, respectively. 
From the tables, stepwise DA only needed four main water 

Fig. 2. Dendrogram showing the clustering of monitoring peri-
ods in Changjiang River watershed (Luzhou).
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quality indicators to construct the DFs. Its discriminating 
capability would not be significantly reduced, and correct 
assignments could still be maintained at above 72%. Step-
wise DA could show an excellent capability to judge; how-
ever, the correct allocation was slightly lower than other 
reports [35]. Temporal DA showed that TEMP, Q, BOD5, and 
F. coli were the most important water quality parameters to 
distinguish Periods 1, 2, and 3 and explained most of the 
expected changes in water quality time.

Fig. 4 shows the results of temporal DA. The mean 
TEMP (25.286°C) and Q (7,855.530 m3/s) in Period 2 were 
higher than those in Periods 1 (15.062°C, 2,027.179 m3/s) 
and 3 (21.204°C,3,831.698 m3/s; Figs. 4a, 4b) and showed 
a significant time effect because Period 2 contained warm 
months and covered the rainy season. BOD5 refers to the 
amount of DO consumed by microorganisms to decompose 
certain oxidizable substances, especially organic ones, in a 
certain volume of water within five days. It is a compre-
hensive index the reflects the content of organic pollutants 
in water [36]. The average BOD5 in Period 1 (1.656 mg/L) 
was higher than those in Periods 2 (1.457 mg/L) and 3 
(1.313 mg/L; Fig. 4c), because Period 1 included the dry 
season of the river and the pollutant dilution capability 
was reduced. The pollution in Period 1 was slightly heavier 
than the other periods. However, the average value of the 

three periods was within the first national standard limit 
(3.000 mg/L, GB3838-2002). The F. coli index is one of the 
most important indicators to evaluate water quality. The 
number of F. coli in Period 2 (21,216.680 cfu/100 mL) was 
more than those in Periods 1 (12,340.17 cfu/100 mL) and 
3 (20,000 cfu/100 mL; Fig. 4d), which exceeded the third 
national standard limit (10,000 cfu/100 mL, GB3838-2002). 
The main sources of F. coli were domestic sewage and live-
stock waste water [37,38].

3.2. Spatial similarity and site grouping

The dendrogram in Fig. 3 shows that spatial CA divided 
the monitoring sites into two main clusters to analyze the 
spatial characteristics of river water quality. Group A con-
sisted of SXK, SPY, DDK, LTHDQ, and XJX, and Group B 
comprised DMZ, TJYQ, TZSDQ and HSDQ. The classifica-
tion of these groups varied with the level of significance, 
with Groups A and B having similar squared Euclidean dis-
tances. In Group A, except for the three monitoring sites in 
Changjiang River, the remaining sites were all monitoring 
sites where some tributaries flow into the Changjiang River. 
The water quality in Group A was mainly Grade II or III, and 
all the indicators met and remained stable, thereby indicat-
ing that it was mildly polluted. Meanwhile, the water qual-
ity in Group B was between Grades III and V and showed 
a fluctuating trend, which indicated that it was moderately 
polluted. After flowing through Fuji Town in Lu County, 
Laixi River was affected by industrial wastewater, domestic 
sewage, and its tributaries, Jiuqu and Maxi Rivers [18]. The 
main pollution indicators were TP, CODCr, and CODMn. The 
water quality of Tuojiang River was affected by the produc-
tion and living activities in Luzhou, which were the main 
pollution indicators for TP, and the concentration of TP 
remained stable [39,40]. As shown in Table 6, the value of 
Wilks’ lambda for the DF was small (0.134). The chisquare 
value was high (190.942), and the p level (0.000) was less 
than 0.05, which indicated that DA had high discriminative 
power and significance. Tables 7 and 8 present the DFs and 

Fig. 3. Dendrogram showing the clustering of monitoring sites 
in Changjiang River Basin (Luzhou).

Table 3
Wilk’s lambda and chisquare values of DA of temporal 
variations in water quality

Temporal

Fun. (s) 1
Wilks’ lambda 0.178
Chisquare 166.604
Sig. 0.000

Table 4
Classification function coefficients for DA of temporal variations

Parameters Period 1 Period 2 Period 3

TEMP 1.569 3.129 2.531

Q 0.001 0.001 0.001

BOD5 0.269 −0.603 −0.481
F. coli 0 0 0

Constant −13.802 −48.536 −32.267

Table 5
CM for DA of temporal variations

Percent 
correct

Period assigned by DAa

Period 1 Period 2 Period 3

Period 1 70 317 0 9
Period 2 74.5 0 143 35
Period 3 74.3 136 49 127
Total 71.9 453 192 171

Note: aChecked by cross-validation method.
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CMs obtained by spatial DA, respectively. In comparison 
with temporal DA, the DFs and CMs generated by spatial 
DA had a correct discriminating capability of more than 

98%, which is slightly higher than other reports [35]. The 
results of spatial DA showed that the discriminative param-
eters of Groups A and B were differentiated by TEMP, Q, 
EC, NH3–N, oils, F, As, and F. coli.

The spatial variability of the river water quality was 
evaluated by using the discrimination parameters identi-
fied by spatial DA (Fig. 5). The average TEMP of Group A 
(18.526°C) was lower than that of Group B (20.407°C; Fig. 
5a); however, the average Q value of Group A (5417.536 
m3/s) was considerably greater than that of Group B 
(199.959 m3/s). The water flow was larger than other trib-
utaries because Group A included the Changjiang River 
or into the Changjiang Estuary monitoring sites. EC is the 
reciprocal of resistivity that reflects the amount of salt in 
water, which is a highly important indicator of water qual-
ity [41]. The average values of EC and NH3–N in Group 
B (58.733 μS/cm, 0.4016 mg/L) were higher than those 
in Group A (35.214 μS/cm, 0.12436 mg /L). NH3–N was 
the main pollutant in the water body of the monitoring 

Fig. 4. Temporal variations: (a) temperature, (b) Q, (c) BOD5, (d) F. coli Note: Significance level at 0.05 (p < 0.05).

Table 6
Wilk’s lambda and chisquare values of DA of spatial variations 
in water quality

Spatial

Fun. (s) 1

Wilks’ lambda 0.134

Chisquare 190.942
Sig. 0.000

Table 7
Classification function coefficients for DA of spatial variation

Parameters Group A Group B

TEMP 0.972 1.553
Q 0 −0.001
EC 0.634 0.888
NH3–N −9.626 −18.938
Oils 118.25 172.211
F 31.389 70.122
As 1846.379 3804.762
F. coli 0 5.86E-05
Constant −28.98 −67.21

Table 8
CM for DA of spatial variation

Percent correct Regions assigned by DAa

Group A Group B

Group A 98.7 157 3
Group B 96.9 2 95
Total 98.1 159 98

Note: aChecked by cross-validation method
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sites included in Group B. The average concentration of F. 
coli in Group A (17,021.050 cfu/100 mL) was higher than 
that in Group B (14,510.860 cfu/100 mL, p = 0.000), which 
was higher than the third national standard limit (10,000 
cfu/100 mL, GB 3838-2002). These results suggested that 

human and animal activities had a negative effect on 
water quality. The concentrations of oils and F were within 
the second national standard, which were lower than 
those reported by other authors [42]. The trend of these 
parameters demonstrated that the average concentrations 

Fig. 5. Spatial variations: (a) temperature, (b) Q, (c) EC, (d) NH3–N, (e) oils, (f) F, (g) As, and (h) F. coli. Note: Significance level at 0.05 
(p < 0.05).
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of oils and F in Group B were higher than those in Group 
A (FigS. 5e, 5f). Therefore, Group B should strengthen the 
management of rational drug use and control of oil pol-
lution. As mainly originates from mineral processing, 
metallurgy, waste treatment, food additives, pesticides, 
and herbicides, which pollute rivers and cause harm to 
the human body [43]. The average concentration of As in 
Group B (0.941 mg/L) was considerably larger than that 
in Group A (0.499 mg/L), which were markedly larger 
than the third national standard limit (0.05 mg/L, GB 
3838-2002). Therefore, the government should strengthen 
the treatment of As in wastewater, standardize the opera-
tion and waste treatment of the As industry, and increase 
supervision. Group A was far from pollution sources, and 
the concentration of pollutants was reduced by river con-
fluence dilution. In comparison with Group A, Group B 
was more affected by anthropogenic activities. The river 
sections included in Group B were easily affected by agri-
cultural irrigation, industrial wastewater, and municipal 
wastewater; and both groups should monitor and control 
F. coli. In addition, the construction and management of 
many municipal sewers, waste water, and waste treatment 
plants should also be effectively supervised. The wide-
spread use of agricultural machineries is the source of oils 
and F. The use of pesticides, herbicides, and animal food 
additives is the main source of As.

4. Conclusions

The temporal similarity analysis of the Changjiang 
River Basin showed that the monitoring months were 
divided into three periods: December–May (Period 1); 
July–September (Period 2); and June, October, and Novem-
ber (Period 3). TEMP, Q, BOD5, and F. coli were the most 
important discriminant variables to differentiate the three 
periods. The spatial similarities demonstrated that the nine 
monitoring sites could be divided into two clusters; that is, 
SXK, SPY, DDK, LTHDQ, and XJX (Group A) were mildly 
polluted areas, whereas HSDQ, TZSDQ, DMZ, and TJYQ 
(Group B) were moderately polluted areas. In this region, 
sampling and monitoring were conducted for three types 
of temporal periods and two typical spatial regions. The 
representativeness is the clustering relationship; thus, it 
can reduce the monitoring stations, improve the monitor-
ing efficiency, reduce the cost of large-scale monitoring, and 
facilitate water quality control. The significant parameters 
for characterizing temporal and spatial differences using 
backward DA analysis were TEMP, Q, BOD5, F. coli, EC, 
NH3–N, oils, F, and As. Therefore, only the above 10 param-
eters and DFs were needed to characterize the spatial and 
temporal differences in the water quality in the Luzhou-
section of Changjiang River Basin. In future water quality 
management, strengthening the monitoring of such param-
eters is necessary.

In brief, the management should focus on monitoring 
TEMP, Q, BOD5, and F. coli as functions of time and TEMP, 
Q, EC, NH3–N, oils, F, As, and F. coli as functions of space. 
The sources of pollution in heavily polluted areas and 
months can be further explored and the main causes of pol-
lution can be further differentiated by analyzing the spatio-
temporal differences of these representative water quality 

indicators to classify domestic sewage, livestock husbandry 
pollution, industrial pollution, and surface runoff. On this 
basis, targeted measures can be taken to control pollution. 
Monitoring the key pollution indicators during the dry sea-
son and Group B areas, such as increasing monitoring fre-
quency, accuracy, and points, is also suggested. This study 
raises awareness of the temporal and spatial variations of 
the Luzhou section of Changjiang River Basin.
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