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a b s t r a c t

A novel chitosan derivative was synthesized by crosslinking reaction of chitosan Schiff base and 
sodium alginate, and then used as adsorbent for Cd(II) ion. The structure of chitosan derivative 
was fully characterized and the adsorption behavior of Cd(II) ion was also investigated. The equi-
librium and kinetic data fitted well the Langmuir and pseudo-second-order model. The estimated 
maximum adsorption capacity is 262.47 mg/g. Thermodynamic parameters indicates that at higher 
temperatures, the process is spontaneous, hence the adsorption is easy. Additionally, the regenerated 
adsorbent after five cycles could retain 87.15% of the adsorption capacity compared with the freshly 
prepared adsorbent.
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1. Introduction

Among heavy metal ions, cadmium (II) (Cd(II)) is con-
sidered to be extremely toxic for the accumulation in living 
organisms, bioaccumulation symptoms [1], such as kidney 
disease, anemia, diminish of mental capacity and renal dys-
function [2,3]. Therefore, the removal of such heavy metal 
ions is considered a serious issue. Many techniques have 
been used on heavy metal ions removal, including chemical 
precipitation, some electrolytic methodologies, membrane 
filtration and adsorption [4–8]. Within these techniques, 
adsorption technique has attracted great attention of 
researchers for its low cost, easy availability and eco-friend-
liness [9–11]. Several adsorbents have been developed for 
different metals removal from aqueous solution [12,13] or 
organic solvent [14,15]. For instance, some functionalized 
polymers, such as dendrimer-like branched polymers [16], 

magnetic polymers [17,18], polyfibers [19] and silica gel 
composites [20] have been developed and used as adsor-
bents for different metal ions, furthermore, these com-
pounds have very stable structure in solution which could 
be recovered and regenerated easily.

In the quest of searching an effective adsorbent for 
Cd(II) ion with economic performance and renewability is 
still of vital importance. In this regard, the utilization of bio-
polymers as effective adsorbents is a rising technique and 
is of interest in studies on the removal of heavy metal ions 
from aqueous solution [21,22]. Compared with other acti-
vated carbon and molecular sieve techniques, the using of 
biopolymers also have several advantages such as biocom-
patible and biodegradable [23,24]. Among biopolymers, chi-
tosan is a natural biopolymer composed of β (1→4) linked 
2-amino-2-deoxy-d-glucopyranose (N-acetylglucosamine) 
[25]. Chitosan is an abundant biopolymer, hence it could be 
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found in the exoskeletons of insects, crustaceans and cell 
walls of yeast, which makes it, after cellulose, one of the 
richest natural polymers on the earth [26]. As a new type 
of renewable resource, it has many unique characteristics 
such as non-toxicity and antimicrobial biological activities 
[27]. For these reasons, chitosan has been widely investi-
gated for adsorption of heavy metal ions in water treatment 
[28,29]. Such as, chitosan was grafted onto a hyperbranched 
polymer for Cr(VI) removal [30]. Poly(maleic acid)-grafted 
cross-linked chitosan microspheres was used for Cd(II) 
adsorption [31]. Carbon disulfide-modified magnetic 
ion-imprinted chitosan-Fe(III) was designed and applied 
for simultaneous removal of tetracycline and cadmium 
[32]. In despite of these advantages and studies, chitosan 
still have some disadvantages such as poor chemical resis-
tance and high crystallinity, which has been a stumbling 
block in its appropriate use as an adsorbent [33]. To over-
come the disadvantages, some kind of chitosan derivatives 
were developed as effective adsorbents, Li and coworkers 
revealed that highly cross-linked thiocarbohydrazide-chi-
tosan gel could adsorbed Cd(II) and Cr(VI) ions (81.26 and 
144.68 mg/g, respectively) from aqueous solution [34], Li et 
al. [35] pointed out that aminothiourea chitosan strength-
ened magnetic biochar could be used as Cd(II) ions adsor-
bent for removal of cadmium(II) cations (137.3 mg/g). 

Schiff base-chitosan grafted L-monoguluronic acid was 
used as a novel solid-phase adsorbent for the removal of 
congo red [36]. Chitosan–sodium alginate complexes have 
been used as drug delivery [37] due to their excellent prop-
erties, such as anionic, non-toxic and solubility. For sodium 
alginate, when the pH value increases, the –COOH group 
is continuously dissociated, the hydrophilicity of sodium 
alginate increases, and the molecular chain stretches which 
may make the metal adsorption easier from aqueous solu-
tion. In our present study, the modification of chitosan was 
achieved by crosslinking sodium alginate onto chitosan 
Schiff base, which was obtained from chitosan and o-vanil-
lin. The resulting material (CSS/SA) has been characterized 
by FTIR, elemental analysis (EA), scanning electron micro-
scope (SEM) and thermogravimetry analysis (TGA). After 
fully characterization, obtained CSS/SA was applied to the 
adsorption of Cd(II) ion from aqueous solution. The result 
proved that it showed high adsorption capacity for Cd(II) 
ion. In addition, important parameters as pH, contact time, 
initial concentration recycle times, isotherm and kinetic 
studies were also investigated.

2. Experimental

2.1. Materials and methods

Chitosan (CS) was purchased from Sinopharm Chemi-
cal Reagent Co., Ltd. China, with a weight-average molecu-
lar weight (Mw) of 4.6 × 105 and a deacetylation degree (DD) 
of 90%. Sodium alginate and o-vanillin were purchased 
from Aladdin Industrial Corporation, Shanghai, China. Epi-
chlorohydrin, cadmium nitrate (Cd(NO3)2·4H2O), sodium 
hydroxide (NaOH), hydrochloric acid (HCl), methanol and 
ethanol were purchased from Tianjin Guan Fu Fine Chem-
ical Research Institute, Tianjin, China. All the chemicals 
were of analytical grade and were used without further 
modification.

2.2. Characterization

Fourier transform infrared (FT-IR) spectra were 
recorded on a Shimadzu IR Prestige-21 infrared spectrome-
ter using spectroscopic quality KBr powder in the range of 
4000–400 cm–1. Thermogravimetric analysis was conducted 
using a Q600 Simultaneous DSC-TGA from RT to 1000°C 
under N2 at a heating rate of 10°C min–1. Scanning electron 
microscopy (SEM) images were taken on FEI Quanta 200 
field-emission scanning electron microscope. Elemental 
analysis was performed by an Elemental Analysensysteme 
Varioel (Hanau, Germay).

2.3. Synthesis of chitosan Schiff base (CSS)

Chitosan powder (1.0 g, 6.2 mmol) was dissolved in 
methanol (20 mL) to swell at room temperature for 1 h. Then 
a solution of o-vanillin (1.3 g, 8.54 mmol) in methanol (10 mL) 
was added dropwise to the reaction mixture. After refluxing 
for 4 h at 65°C, yellow precipitate was obtained. After filtra-
tion, the powder was washed with methanol and ethanol, 
extracted in a Soxhlet extractor with ethanol. Further drying 
under vacuum for 6 h at 50°C yields chitosan Schiff base as 
yellow solid. Anal. found (%): C, 55.38; H, 6.01; N, 4.08.

2.4. Synthesis of ECH crosslinked chitosan Schiff base-Sodium 
alginate (CSS/SA)

The CSS/SA was prepared similar to the reported pro-
cedure [36], sodium alginate (1.0 g, 4.6 mmol) was dissolved 
in 20 mL NaOH (0.1 M) and stirred for 12 h. After elapsed 
time, CSS (1.0 g) was added into the solution under stirring, 
1 h later, eichlorohydrin (10 mL) was slowly added into the 
reaction system and then stirred at 50°C for 3 h. The mixture 
was filtered and washed with ethanol repeatedly. The CSS/
SA was obtained after oven vacuum drying at 50°C. Anal. 
found (%): C, 50.36; H, 5.91; N, 2.63.

2.5. Adsorption experiments

Adsorption experiments were carried out by batch tech-
nique. To determine the optimum solution pH for Cd(II) 
removal, 25 mg of adsorbent was dispersed into Cd(II) solu-
tion (40 mL, 200 mg/L) in the pH range of 2–8. The solution 
pH was adjusted by addition of HCl (0.1 mol/L) or NaOH 
(0.1 mol/L). The dispersions were shaken at room tem-
perature for 4 h. Adsorption isotherms were obtained by 
changing Cd(II) concentration from 50 mg L–1 to 300 mg L–1, 
using Cd(II) solution (pH = 7, 40 mL) with 25 mg adsorbent. 
Adsorption kinetics were performed using 100 mL of Cd(II) 
solution (200 mg L–1, pH = 7) at different time intervals with 
25 mg adsorbent. To understand the effect of temperature 
on adsorption, experiments were carried out at tempera-
tures ranging from 25 to 45°C. After each adsorption test, 
the adsorbent was separated from the solution using filter 
and the concentrations of Cd(II) were measured using an 
ICP-MS (PE-Instruments ICP-OES Optima 2000DV). All the 
experiments were done at least three times. The adsorption 
capacities (mg/g) of adsorbent were calculated as follows:

Q V C C Me e= −( )0 /   (1)
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where Qe (mg/g) is the amount of Cd(II) adsorbed by the 
adsorbent, V (L) is the volume of the solution, Co (mg/L) 
and Ce (mg/L) are the initial and final concentrations of 
Cd(II), M (g) is the mass of adsorbent. 

2.6. Regeneration studies

To evaluate the reusability, regeneration of the spent 
adsorbent was studied. 20 mg of the recovered adsorbent, 
which the adsorbed metal ions have been eluted from the 
adsorbent surface with EDTA (0.1 M), was redispersed into 
40 mL of the Cd(II) solution then shakened at room tem-
preture for 4 h. After separation, the concentration of Cd(II) 
was determined via ICP-MS.

3. Results and discussion

3.1. Characterization of the adsorbent

3.1.1. IR data analysis

The FTIR peaks of CS and its derivatives between 4000 
and 400 cm–1 are shown in Fig. 2. The characteristic IR peaks 
of CS are: 3381 cm–1 (O-H stretch), 2873 cm–1 (C-H stretch), 
1664 cm–1 (amide I bend), 1593 cm–1 (N-H bend), 1155 cm–1 

(bridge-o stretch) and 1082 cm–1 (C-O stretch), which con-
sistent with the literatures reported [38,39]. The IR spectra 
of the CSS, presented a strong adsorption band at 1630 cm–1 
due to the C=N vibrations characteristic of azomethine 
which is not observed in chitosan. The bands at 1469 and 
745 cm–1 are attributed to the C=C and C-H stretching in 
the aromatic ring, respectively [40]. These characteristic 
peaks also exist in CSS/SA. For the IR spectra of CSS/SA, 
3200–3400 cm–1 shows that a broader and stronger coupling 
vibration, and the additional peak at 1111 cm–1 (-C-O-C-) 
becomes stronger. It could be confirmed by above argu-
ments that proved the crosslinking occurrence.

3.1.2. SEM analysis

The scanning electron microscopy of CS and its deriv-
atives are shown in Fig. 3. The surface change in the SEM 
micrographs suggests that the structure changes before and 
after chitosan modification. The general morphology of CS 
(Fig. 3a) before modification showed a smooth surface. For 
Fig. 3b, the surface of CSS could be characterized as rough 
and folded. From Fig. 3c, the surfaces of the CSS/SA have 
many pores, and the pore distribution is irregular. Such 
pores are helpful for the mass transfer of metal ions [41].

3.1.3. TG analysis

The TG and DTG curves of CS and its derivatives are 
exposed in Figs. 4 and 5, respectively. From the TG-DTG 
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Fig. 1. Synthesis of ECH crosslinked chitosan Schiff base-Sodium alginate (CSS/SA).
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curves of all compounds, their thermal degradation 
stages are calculated and given in Table 1. TG-DTG curve 
of CS indicates that the thermal degradation takes place 
in three stages. In the first stage (~100°C) with a weight 
loss of 7.02%, this was related to the loss of physically 
adsorbed water molecules. In the second stage (258°C~ 
346°C) with a weight loss of 37.88% and reaches the max-
imum endothermic decomposition peak at 314°C, which 
was attributed to the decomposition of chitosan poly-
mer. In the last stage (346°C~1000°C) with a weight loss 

18.64%, this was due to the decomposition of the glucos-
amine residual. From TG-DTG graph of CSS, it showed 
three different mass loss stages. First mass loss (13.61%) 
below 100°C may be due to the loss of surface water mol-
ecules, and the second weight loss (50.01%) could be con-
sidered to the decomposition of free chitosan unit and 
third degradation stage may be attributed to the decay 
of condensed chitosan unit. Concerning thermal stabil-
ity, chitosan Schiff base is less stable than chitosan, which 
might be related to the decrease in the number of primary 

Fig. 3. The SEM images of CS(a), CSS(b), CSS/SA(c).

0 200 400 600 800 1000

20

40

60

80

100

 

 

W
ei

gh
t/%

Temperature/oC

 CS
 CSS
 CSS/SA

Fig. 4. TG curves of CS, CSS, CSS/SA.

0 200 400 600 800 1000

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

 

 

dm
/d

t

Temperature/oC

 CS
 CSS
 CSS/SA

Fig. 5. DTG curves of CS, CSS, CSS/SA.



W. Wang et al. / Desalination and Water Treatment 145 (2019) 169–178 173

amino groups after the chemical modification process 
[42]. TG-DTG curves of the CSS/SA exhibit three loses 
of mass during the thermal decomposition. First stages 
came from the loss of surface adsorbed water molecules, 
second one might be due to the main chains of polymer 
degraded seriously, and the last stage was due to the 
decay of the condensed chitosan unit. According to DTG 
curves of chitosan and its derivatives, all thermal decays 
are involved endothermic decomposition. However, the 
positions of endothermic peaks are different for differ-
ent samples. Besides, the elemental analysis revealed that 
CSS/SA had a lower nitrogen content (2.63%) than CSS 
(4.08%) or CS (8.47%), the obvious decreases of nitrogen 
content indicates CS was successfully introduced into the 
CSS/SA matrix.

3.2. Adsorption behaviors

3.2.1. Effect of pH

It is well known that pH has a significant influence on 
the adsorption process [43]. The effect of pH on the adsorp-
tion capacity of Cd(II) on the CSS/SA was observed over a 
pH range of 2–8 as exhibits in Fig. 6a. The adsorption capac-
ity of Cd(II) increased markedly from pH 2–7 and decreased 
dramatically over pH 7. This result may be attributed to the 
ion-exchange interactions exist between the adsorbent and 
the metal ions. In acidic medium, the competition from H+ 
ions at low pH may lead to the low adsorption of metal 
ions, while at higher values of pH, the complexation reac-
tion of Cd(II) with OH– ions could affect the adsorption [44]. 
Hence, 7.0 was determined to be the optimal value of pH 
for the experiments.

The variation of pH before and after the addition of 
adsorbent in Fig. 6b proved that the adsorbent surface pro-
tonation and deprotonation process occurred during the 
adsorption process [36]. The introduction of o-vanillin and 
eichlorohydrin groups into the structure of CSS/SA pro-
vided plenty of functional groups, which facilitated Cd(II) 
adsorption. 

3.2.2. Adsorption isotherms

The adsorption isotherm is fundamental to understand 
how Cd(II) interact with adsorbents. For the adsorption 
isotherm studies, the initial Cd(II) concentrations are in the 
range of 60–200 mg L–1 at room temperature (Fig. 7). The 
adsorption isotherms are analyzed by Langmuir and Freun-
dlich. The mathematical form of Langmuir equation is [45]:

C
Q

C
Q Q b

e

e

e= +
max max

1
 (2)

where Ce is the equilibrium concentration of the Cd(II) 
(mg/L), Qe is the amount of Cd(II) adsorbed at equilibrium 
(mg/g), and b and Qmax are the Langmuir constants, which 
are related to adsorption bonding energy and the maximum 
adsorption capacity, respectively. By linear fitting, the plot 
of Ce/Qe vs. Ce indicates a straight line with high correlation 
coefficient (R2 = 0.99) (Fig. 8a). The values of Qm and b are 
calculated to be 262.47 mg/g and 0.1164 L/mg, respectively. 
The results indicate that the Cd(II) adsorption on CSS/SA 
fitted well with the Langmuir model.

Table 1
Thermal degradation stages of chitosan, chitosan Schiff base and CSS/SA between 0°C and 800°C

Sample 1st stage 
(Wt. loss, %)

2nd stage 
(Wt. loss, %)

3rd stage 
(Wt. loss, %)

Residue% 
(at 1000 °C)

CS 0–100 (∼7.02) 258–346 (∼37.88) 346–1000 (∼18.64) 36.46
CSS 0–100 (∼13.61) 244–458 (∼50.01) 458–1000 (∼25.9) 10.48
CSS/SA 0–100 (∼9.64) 203–478 (∼61.62) 478–1000 (∼10.38) 18.36
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Fig. 6. Effect of pH value on adsorption capacity of Cd(II).
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The mathematical form of Freundlich isotherm equa-
tion is [46]:

ln ln lnQ K
n

Ce F e= +
1  (3)

where KF and n are empirical constants which indicate the 
relative sorption capacity and sorption intensity, respec-
tively. Qe is defined as in equilibrium (mg/g).

The plot of lnQe vs. lnCe gives a relatively low correlation 
coefficient (R2 = 0.98) and a n value of 2.33 by linear fitting 
(Fig. 8b), indicating that the adsorption of Cd(II) on CSS/
SA does not preferably follow the Freundlich model. The 
parameters obtained from fitting the Langmuir and Freun-
dlich models are presented and confronted in Table 2. Higher 
correlation coefficients indicate that Langmuir model fits the 
adsorption data better than Freundlich model.

Table 3 gives the adsorption capacities of some of the 
materials studied for the adsorptions of Cd(II) ion, includ-
ing CSS/SA. CSS/SA has a relatively large adsorption 
capacity of 262.47 mg/g for Cd(II), illustrating that CSS/
SA can be a promising material in comparison with well-
known adsorbents for removal of metal ions from aqueous 
solutions.

3.2.3. Adsorption kinetics

The adsorption kinetics offers useful information about 
the solute uptake rate and the reaction pathways [49]. The 
effect of contact time on the adsorption capacity of Cd(II) by 
CSS/SA is shown in Fig. 9. The adsorption processes were 
divided into two phases. The first is a fast increase phase 
which lasts for 180 min, and the second one is a slower stage 
standing for 240 min to reach equilibrium. To examine the 
kinetics mechanism which is attributed to direct the adsorp-
tion process, the pseudo-first-order and pseudo-second-or-
der models were used to evaluate the experimental data. 
The pseudo-first-order equation (4) and the pseudo-sec-
ond-order (5) are expressed as [50]:

ln lnQ Q Q k te t e−( ) = − 1   (4)

t
Q k Q

t
Qt e e

= +
1

2
2

  (5)

where Qt (mg/g) is the amount of Cd(II) adsorbed by the 
adsorbent at time t (min), t is the adsorption time, k1 (1/
min) and k2 (g/mg/min) are the rate constants for pseu-
do-first-order and the pseudo-second-order models, 
respectively. The graphs of the pseudo-first-order and the 
pseudo-second-order can be seen in Fig. 10, and the con-
stant and correlation coefficients are summarized in Table 
3. It was found that experimental data and the correspond-
ing parameters calculation fits perfectly with the pseu-
do-second-order model.

3.2.4. Adsorption thermodynamics

The dependence of the adsorption capacity of Cd(II) with 
the temperature is shown in Fig. 11. The adsorption capacity 
of Cd(II) by CSS/SA rises up as temperature increases, indi-
cating the adsorption reaction is endothermic.
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The adsorption thermodynamics parameters were cal-
culated with equations [51]: 

log / . / .K S R H RTd = ° − °Δ Δ2 303 2 303  (6)

ΔG RT Kd° = − ln  (7)

where R (8.314 J/mol K) is the idea gas constant, T (K) is 
the temperature and k (dm3/g) is the distribution coeffi-
cient of the adsorbate (Qe/Ce), ΔG° is the Gibbs free energy 
change, ΔS° is the entropy change, and ΔH° is the enthalpy 
of adsorption process.

Fig. 12 shows the plot of lnKd vs. 1/T according to Eq. 
(6). As shown in Table 5, the values of ΔG° are negative, 
which indicates Cd(II) is adsorbed by CSS/SA sponta-

neously. Additionally, the values of ΔG° became more nega-
tive with increasing temperature, hence, the spontaneity of 
the Cd(II) adsorption increases with the temperature [52]. 
On the other hand, the positive value of ΔH° explains an 
endothermic of adsorption while the positive value of ΔS° 
indicates an increase in disorder at the adsorbent/liquid 
interface [53].

3.3. Reusability of the adsorbent

Regeneration and reuse of adsorbents are significant 
parameters from the economic point of view. Fig. 13 shows 
the adsorption capacity of Cd(II) after five consecutive 
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Table 2
Constants and correlation coefficients of adsorption isotherms for adsorption Cd(II) on CSS/SA

Adsorbent Isotherm model

Langmuir Freundlich

Qmax (mg/g) b (L/mg) R2 n 1/n K ((mg/g/mg)1/n) R2

CSS/SA 262.47 0.1164 0.99 2.33 0.4284 19.05 0.98

Table 3
Comparison of maximum adsorption capacities of Cd(II) on 
various adsorbents

Adsorbent Adsorption 
capacity (mg g–1)

References

CTS-ECH-TPP 98.16 29
Nanofibrillar chitosan 60.86 44
Crab shell 154.0017 47
MMC 288.7 38
Chitosan-silica hybrid 
materials

73.07 39

Cr-pillared betonite 47.55 48
CSS/SA 262.47 This work
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cycles. It can be clearly seen that recycled CSS/SA did not 
show remarkable decrease in efficiency, maintaining high 
adsorption capacity. However, the loaded amount of Cd(II) 
by regenerated CSS/SA after five cycles was 87.15% of the 
amount by the fresh adsorbent. The results also prove that 
CSS/SA could be applied in the heavy metal ions removal.

4. Conclusions

In summary, a novel chitosan derivative was syn-
thesized from chitosan Schiff base and sodium alginate 
through cross-linking reaction. The CSS/SA revealed 
porous structure, leading to the efficient adsorption capac-
ity of Cd(II). The maximum adsorption capacity for Cd(II) is 
262.47 mg/g. The adsorption isotherms of Cd(II) followed 
the Langmuir adsorption isotherms, the kinetics adsorption 
fits the pseudo-second-order kinetic model. The positive 
enthalpy energy change for the adsorption process confirms 
the exothermic of adsorption, and a free energy change indi-
cates the spontaneity of the process. Additionally, recycled 
CSS/SA still exhibits high adsorption capacity for Cd(II) 
even after five cycles. The high adsorption capacity, simple 
and convenient synthesis makes CSS/SA more competitive 
for removal of heavy metals from aqueous solution. This 
study provides an important method related to the water 
treatment and the environmental protection through a sta-
ble, inexpensive and recyclable bio-based adsorbent.
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CSS/SA 12.3 3.36 293 –253.34
298 –297.31
303 –403.06
308 –435.32
313 –494.43
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