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a b s t r a c t
Water pollution models are generally nonlinear systems that incorporate some random bias. The 
most common modeling method is to use an augmented-state cubature Kalman filter, although 
the computational requirements of this approach can be excessive. In this paper, a two-stage 
cubature Kalman filter is proposed to overcome this problem. The estimates given by the two-stage 
cubature Kalman filter can be expressed as the output of an advanced bias-free filter and a bias filter. 
The two-stage cubature Kalman filter is equivalent to the augmented-state cubature Kalman filter 
in terms of accuracy, but with a much smaller computational load. Simulation results demonstrate 
the validity of the two-stage cubature Kalman filter for water pollution modeling, and prove the 
equivalence of the two algorithms.
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1. Introduction 

For problems involving nonlinear systems with random 
bias, a common approach is to use an augmented-state 
cubature Kalman filter (CKF), which treats the bias as part 
of the state, i.e., the state is estimated as well as the bias. As 
the complexity of a system increases in practical applica-
tions, the computational load of the augmented-state CKF 
will dramatically increase. This can easily cause overflows 
and failures when running models on digital computers. 
To avoid the need for the augmented-state CKF, research-
ers have proposed a two-stage filtering method. Friedland 
proposed a two-stage filter in which a bias-free filter oper-
ates in parallel with a bias filter. Although, this method is 
optimal for constant bias, it is suboptimal for random bias 
unless suitable algebraic constraints exist [1,2]. Hsieh and 
Keller have proposed an optimal two-stage Kalman esti-
mator that extends Friedland’s estimator and is optimal 

in general conditions [3,4]. Many other researchers have 
contributed in this area, leading Hsieh to present a gen-
eral two-stage Kalman filter that provides the optimal esti-
mate of the system state and can be applied to general, 
time-varying and linear dynamic systems [5]. The new 
filter reduces the computational complexity of models 
involving random bias.

In practical applications, nonlinear filter techniques 
are often required [6–8]. Hsieh extended the linear general 
two-stage filter to nonlinear systems and proposed a general 
two-stage extended Kalman filter that is mathematically 
equivalent to the extended Kalman filter [9]. Zhang et al. 
[10–13] proposed a new third-degree adaptive extended 
CKF algorithm, a novel class of interpolatory CKFs, a 
high-order unscented Kalman filtering method, and a 
quasi-stochastic integration filter. Xu et al. [14] presented 
a two-stage unscented Kalman filter that uses a forgetting 
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factor to compensate for the effects of incomplete informa-
tion. Chen et al. [15] proposed a novel two-stage extended 
Kalman filter algorithm that can be used to estimate bias 
faults and loss of effectiveness for reaction flywheels 
in satellite attitude control systems. Zhang et al. [16–18] 
extended the two-stage method to CKF and proposed a 
two-stage CKF. This overcomes several problems faced by 
the augmented-state CKF, and solves high-dimensional 
nonlinear filter problems with minimal computational 
effort.

In the numerical simulation of solute transport in ground-
water, there are unavoidable biases: the error of the model 
itself, the error in the field measurements, and the error in the 
solution process. To obtain better parameter values, identifi-
cation results, and water quality prediction results, it is nec-
essary to minimize the influence of these biases.

The Kalman filter algorithm essentially estimates the 
minimum variance in the state space. During the data pro-
cessing stage, Kalman filters have high computational 
complexity. The two-stage Kalman filter algorithm can be 
applied to nonlinear systems with unknown random bias in 
order to estimate the high-dimensional state and process the 
measurement values. When applied to the identification of 
water quality parameters, the main task is to find the state 
equations and observation equations. The state equation 
describes the variation of the estimated value (the parame-
ter to be considered) between the current time step and the 
next; the observation equation describes the relation between 
the estimated value and the actual observed value. Through 
“prediction correction,” the optimal parameter values are 
obtained.

2. Determination of water pollution model 

2.1. Determination of state equation 

It is assumed that hydrogeological conditions in the 
study area remain stable. The horizontal and vertical 
dispersion coefficients, seepage velocity, and nitrification/
denitrification coefficients also remain unchanged. The 
model parameter of solute transport is regarded as the state 
vector, and the observed solute concentration is regarded as 
the observation vector of the system. Thus, the corresponding 
state equation is:

x f x D bk k k k k
x

+ = ( ) + +1 ω � (1(a))

where x D D u u q Rk x y x y s+ =1 1( , , , , , , ) is the unknown parameter 
vector to be identified. The nonlinear function f(∙) is the state 
transition function. The noise sequence ωk

x is the zero-mean 
uncorrelated Gaussian random sequence.

The error of the model itself, the error in the field 
measurements, and the error in the solution process mean that 
the model has some unavoidable bias. The bias equation is:

b bk k k
b

+ = +1 ω � (1(b))

where the noise sequence ωk
b is the zero-mean uncorrelated 

Gaussian random sequence.

2.2. Determination of observation equation 

Consider the following solute transport equation: 
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where Dx,Dy are dispersion coefficients in the X and 
Y directions, respectively; ux,uy are the seepage velocities in 
the X and Y directions, respectively; qs represents the source 
and sink term; R represents the coefficient of decay reaction; 
and C represents the concentration of contaminants.

The equation of solute transport in a groundwater system 
is nonlinear, and so a CKF can be used to solve the problem. 
The observation equation is:

z h x F bk k k k k= ( ) + + υ � (1(c))

where the nonlinear function h(∙) is the observation transition 
function. The noise sequence υk is a zero-mean uncorrelated 
Gaussian random sequence.

The noise sequences ωk
x, ωk

b, and υk are such that
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where Q Q Rk
x

k
b

k> > >0 0 0, , , and δkj is the Kronecker’s delta. 
The initial states x0 and b0 are assumed to be uncorrelated 
with the white noise processes  ωk

x, ωk
b, and υk. We assume that 

the initial conditions x0 and b0 are Gaussian random variables 
with

E x x E x x x x PT x
0 0 0 0 0 0 0 0  = − −  = >, ( )( ) �

E b b E b b b b PT b
0 0 0 0 0 0 0 0  = − −  = >, ( )( ) �

E x x b b PT xb( )( )0 0 0 0 0 0− −  = > �

3. Augmented-state cubature Kalman filter 

Define
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The model given by Eqs. ((1) and 1(a)–(c)) can be 
rewritten as

X f Xk k x+ = ( ) +1 ω � (3(a))
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Z h Xk k k= ( ) + υ � (3(b))

where

W E
Q

Qk j
k
x

k
b kj= ( ) = 











ω ω δ
0

0 �

Treating xk and bk as the augmented system state, the 
augmented-state CKF is described as follows.

3.1. Time update

(1) Assume that, at time k, the posterior density function 
p x X Pk k k k k k− −

∧

− − − −( ) =1 1 1 1 1 1| | |( , )ℵ  is known, and factorize
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(2) Evaluate the cubature points (i = 1, 2, ···, m)
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(3) Evaluate the propagated cubature points (i = 1, 2, ···, m) 
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* � (6)

(4) Estimate the predicted state
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(5) Estimate the predicted error covariance
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3.2. Measurement update

Factorize
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(1) Evaluate the cubature points (i = 1, 2, ···, m)
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(2) Evaluate the propagated cubature points (i = 1, 2, ···, m) 
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(3) Estimate the predicted state 
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(5) Estimate the cross-covariance matrix
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(6) Estimate the Kalman gain

K P Pk xz k k zz k k= − −
−

, | , |1 1
1 � (15)

(7) Estimate the updated state
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(8) Estimate the corresponding error covariance
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The dimension of the above filter is n+p. When p is 
comparable to n, the dimension of the new state vector 
Xk becomes substantially larger than that of the initial 
system state, and the computational requirements of the 
augmented-state Kalman filter may become excessive. To 
overcome this problem, a large number of two-stage filter 
algorithms have been proposed. Although, the two-stage 
CKF (TSCKF) is optimal under an algebraic constraint, this 
constraint is too restrictive in practice, so TSCKF is usually 
suboptimal. In the next section, we describe a modified 
TSCKF that is equivalent to the augmented-state CKF.

4. Two-stage cubature Kalman filter

Theorem 1. Two-stage cubature Kalman filter
Let Xk k|

1  be the output of the advancd bias-free filter:
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The blending matrices Uk and Vk are given as follows:

U M Q M Qk k k k k= + +− − − −
−( )( )1

12
1

12
1

22
1

22 1

V U K P K Pk k k zz k k k

T

k k= − ( )− −
−1

1
2

1
2 1

, | |( )

Proof. The key idea for our advanced TSCKF is based on 
the state transformations that make the covariance matrices 
block diagonal.

In linear systems, a two-stage Kalman filter can be 
obtained by the following T transformation:
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Thus, using two-stage transformations, the CKF can be 
rewritten in the following form:
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where P diag P P= { , }.1 2

To extend the two-stage transformations to nonlinear 
systems, the T transformation of Eq. (18) is written as: 
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where X = {(X1)T,(X2)T}T, X1 ∈ Rn–p and X2 ∈ Rp, and F(X2) is 
the nonlinear function of the substate X2.

From Eq. (24), we can infer the following properties:
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Using the T transformation with Eq. (24), the two-stage 
transformation Eqs. (19)–(23) becomes
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where Φ and Ψ are given nonlinear functions. 
Next, based on Eqs. (28)–(32), the improved TSCKF can 

be obtained via the following method.
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In the first step, substitute Eqs. (7) and (16)  into the left-hand 
side of Eqs. (28) and (29) such that, using Eq. (24), we obtain:
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Expanding Eqs. (33) and (34)  and using Eqs. (26) and (32)  
gives:
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which can be written in matrix form as:
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Using Eqs. (25) and (30) then yields:
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Expanding the transformation Eq. (31) using Eqs. (30) 
and (32) gives:
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According to Eqs. (13)–(15), writing

N P Pk xz k k zz k k= − −
−

, | , |1 1
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gives
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and using Eq. (29), we deduce that:

K N V Nk k k k
1 1 2= − � (50)

K Nk k
2 2= � (51)

This completes the proof.
The problem of obtaining Φ and Ψ remains. This can be 

solved using Eq. (32) and the backward difference equation 
as follows:

Φ Φ( ) ( ) ( )| | | |X X U X Xk k k k k k k k k− − − − − −= + −1
2

1 2
2

1
2

1 2
2

Ψ Ψ( ) ( ) ( )| | | |X X V X Xk k k k k k k k k
2

1 1
2 2

1 1
2= + −− − − −

5. Equivalence proof of two-stage cubature Kalman filter

The TSCKF algorithm is obtained by a nonsingular 
two-stage transformation of the CKF algorithm, so their 
equivalence can be proved mathematically.

Theorem 1. The TSCKF algorithm is equivalent to the 
CKF algorithm.

Proof. By inductive reasoning, suppose that, at time k:

X Xk k k k

∧

=| | � (52)



337L. Zhang et al. / Desalination and Water Treatment 151 (2019) 332–341

Then, by Eqs. (5)–(7), (24), (35)–(37) and (52), we have that:
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Eqs. (16), (29), (32), (38), (49) and (53) gives
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According to Eq. (54), the expression in Eq. (52) is also 
true at time k+1.

This completes the proof.

6. Simulation examples 

6.1. Experiment to demonstrate the effectiveness of the TSCKF 
algorithm

The true value and estimated value of the dispersion 
coefficients along the X and Y directions, the seepage veloc-
ity along the X and Y directions, and the source and sink term 
are illustrated in Figs. 1–10 alongisde the estimation error. 

Fig. 1. X-axis dispersion coefficients.

Fig. 2. X-axis dispersion coefficients error.

Fig. 3. Y-axis dispersion coefficients.

Fig. 4. Y-axis dispersion coefficients error.
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Fig. 5. X-axis seepage velocity.

Fig. 6. X-axis seepage velocity error.

Fig. 7. Y-axis seepage velocity.

Fig. 8. Y-axis seepage velocity error.

Fig. 9. Source and sinkt.

Fig. 10. Source and sinkt error.
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It can be seen from Figs. 2, 4, 6, 8, and 10 that the estimated 
error is within a small range that can be neglected in practi-
cal applications. In fact, this error is caused by the numerical 
method of solution. Therefore, the estimate given by TSCKF 
is the same as the state value, and the estimation results can 
be accepted.

Figs. 11 and 12 show the bias value and bias error value. 
The state values are derived from the augmented-state com-
putation and the estimated values are derived from TSCKF. 
As in the previous estimated error figures, the bias error are 
within a small range and the estimated value of the bias is 
similar to the bias state value. 

6.2 Comparison between CKF and TSCKF algorithm

Using the same simulation model as described in section 
6.1 and a simulation time of 200 s, 1000 Monte Carlo simula-
tions of the TSCKF algorithm were carried out.

Figs. 13, 15, 17, 19, and 21 compare the state estimates 
between the CKF and TSCKF algorithms. From these figures, 

Fig. 11. Bias value.

Fig. 12. Bias error.

Fig. 13. Comparison of two algorithms for Xk estimation.

Fig. 14. Comparison of RMSE of two algorithms for Xk estimation.

Fig. 15. Comparison of two algorithms for Yk estimation.

Fig. 16. Comparison of RMSE of two algorithms for Yk estimation.
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Fig. 17. Comparison of two algorithms for Vl,k estimation.

Fig. 18. Comparison of RMSE of two algorithms for Vl,k estimation.

Fig. 19. Comparison of two algorithms for Vy,k estimation.

Fig. 20. Comparison of RMSE of two algorithms for Vy,k estimation.

Fig. 21. Comparison of two algorithms for θk estimation.

Fig. 22. Comparison of RMSE of two algorithms for θk estimation.

Fig. 23. Comparison of two algorithms for bk estimation.

Fig. 24. Comparison of RMSE of two algorithms for bk estimation.
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we can see that the two algorithms give similar estimated 
values of the state vector, which proves the applicability of 
the TSCKF algorithm. Figs. 14, 16, 18, 20, and 22 compare the 
root mean square error (RMSE) between the CKF and TSCKF 
algorithms. From these figures, it is clear that the accuracy of 
the two algorithms is comparable, which proves the equiva-
lence of the two algorithms.

Fig. 23 compares the deviation vector bk of the estimates 
given by the two algorithms. Fig. 24 compares the RSME of 
the deviation vector bk. As can be seen from these figures, the 
RMSE of the two algorithms is equal, which demonstrates 
the equivalence of the two algorithms.

7. Conclusion 

This paper has described a two-stage cubature Kalman 
filter for water pollution models, which are nonlinear 
systems with random bias. Our TSCKF is equivalent to the 
augmented-state CKF and provides optimal results. The 
simulation results demonstrate the validity of the TSCKF 
algorithm and prove the equivalence with the augment-
ed-state CKF algorithm.

Acknowledgments

This work was partially supported by the National 
Nature Science Fund of China (NSFC) (Grant No. 61503213) 
and Zhejiang Natural Science Foundation Project (Grant No. 
LY15F020041). We thank Stuart Jenkinson, PhD, for editing 
the English text of a draft of this manuscript.

References
[1]	 B. Friedland, Treatment of bias in recursive filtering, IEEE. 

Trans. Autom. Control., 14 (1969) 359–367.
[2]	 A.T. Alouani, P. Xia, T.R. Rice, W.D. Blair, On the Optimality 

of Two-Stage State Estimation In the Presence of Random Bias, 
IEEE. Trans. Autom. Control, 38 (1993) 1279–1282.

[3]	 C.S. Hsieh, F.C. Chen, Optimal solution of the two-stage Kalman 
estimator, IEEE. Trans. Autom. Control., 44 (1999) 194–199.

[4]	 J.Y. Keller, M. Darouach, Optimal two-stage Kalman filter in the 
presence of random bias, Automatica, 33 (1997) 1745–1748.

[5]	 C.S. Hsieh, F.C. Chen, General two-stage Kalman filters, IEEE. 
Trans. Autom. Control., 48 (2000) 819–824.

[6]	 C.B. Wen, Z.D. Wang, Q.Y. Liu, F.E. Alsaadi, Recursive 
distributed filtering for a class of state-saturated systems with 
fading measurements and quantization effects, IEEE. Trans. 
Syst. Man. Cybern. Syst., 48 (2018) 930–941.

[7]	 Q.B. Ge, D.X. Xu, C.L. Wen, Cubature information filters with 
correlated noises and their applications in decentralized fusion, 
Signal. Process., 94 (2014) 434–444.

[8]	 Q.B. Ge, C.L. Wen, S.D. Chen, Cubature Kalman fusion for 
bearings only tracking networks. 3rd IFAC International 
Conference on Intelligent Control and Automation Science, 
Chengdu, China, 2013.

[9]	 C.S. Hsieh, General Two-Stage Extended Kalman Filters, IEEE. 
Trans. Autom. Control., 48 (2003) 289–293.

[10]	 Y.G. Zhang, Y.L. Huang, N. Li, L. Zhao, Embedded cubature 
Kalman filter with adaptive setting of free parameter, Signal. 
Process., 114 (2015) 112–116.

[11]	 Y.G. Zhang, Y.L. Huang, N. Li, L. Zhao, Interpolatory cubature 
Kalman filters, Control. Theory. Appl. Iet., 9 (2015) 1731–1739.

[12]	 Y.G. Zhang, Y.L. Huang, N. Li, L. Zhao, A high order unscented 
Kalman filtering method, Acta. Automatica. Sinica., 40 (2014) 
838–848.

[13]	 Y.G. Zhang, Y.L. Huang, N. Li, L. Zhao, Quasi-stochastic 
integration filter for nonlinear estimation, Math. Prob. Eng., 
(2014) 816–830.

[14]	 J.H. Xu, Y.W. Jing, G.M. Dinirovski, Two-stage unscented 
Kalman filter for nonlinear system in the presence of unknown 
random bias, American Control Conference, Washington, 
American, 2008, pp. 3530–3535.

[15]	 X.Q. Chen, R. Sun, W.C. Jiang, Q.X. Jia, J.X. Zhang, A novel two-
stage extended Kalman filter algorithm for reaction flywheels 
fault estimation, Chinese. J. Aeronaut., 29 (2016) 462–469.

[16]	 L. Zhang, M.L. Lv, Z.Y. Niu, W.B. Rao, Two-Stage Cubature 
Kalman Filter for Nonlinear System with Random Bias. 2014 
IEEE International Conference on Multisensory Fusion and 
Information (MFI 2014), Beijing, China, 2014, pp. 47–55.

[17]	 I. Arasaratnam, S. Haykin, Cubature Kalman Filters. IEEE 
Transactions on Automatic Control, 54 (2009) 1254–1269.

[18]	 L. Zhang, W.B. Rao, H.l. Wang, D.X. Xu, A Novel Two-stage 
Cubature Kalman Filter for Nonlinear System, J. Resid. Sci. 
Technol., 13 (2016) 206.1–206.8.


