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a b s t r a c t
Polysulfone and polyethersulfone membranes with sponge-like and finger-like structures were used 
to filter bovine serum albumin (BSA) solution at a constant flow rate. The relationship between the 
adsorption–retention cumulant of BSA and the transmembrane pressure (TMP) during the filtration 
process was analyzed. The experimental results show that the specific resistance of the filter cake is 
related to the pressure on the per-unit-thickness pressure-bearing layer (PPTPBL) of the membrane. 
The PPTPBL of the membrane with finger-like structures is large, which resulted in a high-resistance 
filter cake and led to the resistance of the filter cake increasing rapidly in the first filtration stage. The 
filter-cake layer broke under the effect of the rapidly increasing TMP and entered into the membrane 
to form difficult-to-clean fouling. The repeated breaking and formation of the cake layer makes the 
TMP fluctuate violently and rise slowly in the subsequent filtration process. However, the PPTPBL 
of the sponge-like-structure membrane is small; which resulted in a low-resistance and easy-to-clean 
filter cake forming on the surface during filtration.
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1. Introduction

Microfiltration and ultrafiltration are commonly employed 
in the pharmaceutical, chemical, environmental, food, 
and dairy industries [1–4]. Membrane fouling restricts the 
further application of membrane separation technology. 
Membrane fouling is a process where a foulant is deposited 
on a membrane surface or into membrane pores, resulting 
in an increase in the filtration resistance and poor filtration 
performance. Blocking laws categorize fouling into four 
different regimes of complete blocking, standard blocking, 
intermediate blocking and cake filtration, which are based on 
the relative sizes of the foulants and pores and the process of 
surface deposition or cake accumulation [5–12].

Studies have shown that several factors make a difference 
in membrane fouling. The filtration liquid property is one such 
important factor that influences membrane fouling [13–16]. 
Changes in operating conditions such as transmembrane 
pressure (TMP), crossflow rates, filtrate concentration, 
temperature, and pretreatment, will also lead to changes 
in membrane fouling regimes [17–22]. Experiments have 
also shown that hydrophobic membranes and hydrophilic 
membranes have completely different performances when 
filtering solutions [23–26].

Through experiments, we found that the membrane 
structure also strongly affects the fouling character and 
cleaning effect. However, few articles have focused on these 
effects. Ho and Zydney [27,28] found that the fouling of 
track-etch membranes with straight-through pores occurred 



M. Zhuo et al. / Desalination and Water Treatment 152 (2019) 1–102

by pore blockage caused by the deposition of large protein 
aggregates on the membrane surface. Membranes with inter-
connected pores fouled more slowly since the fluid could 
flow around the blocked pores through the interconnected 
pore structure. Fan et al. [24] and Kang et al. [29] found that 
a thread-like morphology can limit the adsorption area and 
diminish irreversible fouling. The pore morphology may also 
affect the fouling by influencing the hydrophobic adsorption 
and size exclusion.

Membranes with finger-like and sponge-like pore struc-
tures are commonly used in engineering fields. However, the 
understanding of the morphological structure’s effect on the 
membrane fouling is still limited. In this paper, we use bovine 
serum albumin (BSA) as the fouling component. Hydrophilic 
polysulfone (PSF) and polyethersulfone (PES) microfiltration 
membranes with finger-like and sponge-like pore structures 
and the same pore size were used to filter BSA solution at a 
constant flow rate. The TMP and BSA concentration of the fil-
trate were monitored in real time during the filtration process 
and the phenomenon of fouling and the fouling mechanisms 
were analyzed based on measured data. The relevant block-
ing laws were used to analyze the influence of the membrane 
structure on the membrane fouling mechanism.

2. Materials and methods

2.1. Materials

Hydrophilic polysulfone membranes with finger-like 
pore structures (PSF-F) (pore size 0.31 μm) and sponge-like 
pore structures (PSF-S) (pore size 0.30 μm) and hydrophilic 
PES membranes with finger-like pore structures (PES-F) 
(pore size 0.30 μm) and sponge-like pore structures (PES-S; 
pore size 0.29 μm) were used in this experiment. They were 
manufactured by a nonsolvent-induced phase separation 
method, and their water contact angle reduced to 0° within 
1 min. Cross-sectional electron microscopy photomicro-
graphs of the four membranes are shown as a2, b2, c2, and 
d2, respectively, in Fig. 4. BSA, MW 68,000, was acquired 
from Solarbio Science & Technology Co., Ltd. (Beijing).

A membrane pore size distribution apparatus based on 
the bubble point method and a membrane filter device were 
fabricated in our lab. The effective membrane filtration area 
was 1.13 cm2. Scanning electron microscopy (SEM) was carried 
out on an FEI SIRION 200 from Hitachi, Ltd. (Japan). The 

UV–Vis spectrophotometer was a L600-PDM from Beijing 
Purkinje General Instrument Co., Ltd. (China). The PPS-100 
metering pump was purchased from Hangzhou Pupu Science 
Technology Co., Ltd. (China). The TMP was measured in real 
time using a Honeywell 4040PC pressure sensor.

2.2. Methods

The pore size distributions of the PSF and PES micro-
filtration membranes were measured using the pore size 
distribution apparatus based on the bubble point method. 
The membranes were soaked in isopropanol, and SEM was 
conducted to observe the morphological structure of the sur-
face and cross sections of the PSF and PES microfiltration 
membranes. Specimens of representative membranes were 
cut out, their cross-sections were fractured after freezing 
with liquid nitrogen, and the surfaces were adhered to the 
sample stage with a conductive adhesive. The samples were 
placed in the electron microscope after they were plated with 
platinum under vacuum.

The BSA solution with a mass concentration of 1 mg mL–1 

was prepared and diluted to prepare solutions with differ-
ent concentrations. The absorbance of these BSA solutions 
was measured at a wavelength of 278 nm. The standard 
curve equation was established as A = 660.22 C according to 
the experimental data of the absorbance (A) and the mass 
concentration (C). The correlation coefficient R2 was 0.999, 
demonstrating a good linear relationship between the absor-
bance and the mass concentration in the BSA concentration 
range from 0 to 1 mg mL–1.

The experimental filter device is shown in Fig. 1. A triple 
valve was used to switch between line I, where the feed 
flowed directly to the UV–Vis spectrophotometer without 
passing through the membrane filter, and line II, where the 
feed passed through the membrane filter and the filtrate 
flowed to the UV–Vis spectrophotometer. A buffer tanker 
of volume 250 mL was used as a shock absorber to reduce 
the pressure fluctuations of the metering pump from ±2 to 
±0.25 kPa. At the beginning of the experiment, the membrane 
was filtered with deionized water at a constant flow rate of 
1 mL min–1, and a pressure sensor was used to simultane-
ously detect the TMP (P0). The BSA solution was pumped to 
the UV–Vis spectrophotometer directly through line I, and 
then the triple valve was rotated to allow the BSA solution to 
pump through line II for dead-end filtration. The absorbance 

Fig. 1 Schematic diagram of the experimental filter device.
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of the feed and filtrate over time was measured with the 
UV–Vis spectrophotometer in real time. The metering pump 
was maintained at a constant flow rate of 1 mL min–1, and 
the ambient temperature was 25°C. The pressure sensor was 
used to measure the pressure change on the upstream side of 
the membrane in real time.

The adsorption–retention cumulant of the membrane for 
BSA was calculated according to Eq. (1):

Q
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where Q is the adsorption–retention cumulant on the 
membrane surface at time t(n) (μg cm–2), C0 is the initial 
concentration of the BSA feed solution (mg mL–1), t(n) is 
the time at n(s), Ct(n) is the concentration of the filtrate at 
time t(n) (mg mL–1), q is the flow rate of the solution during 
filtration (mL s–1), and S is the effective membrane filtration 
area (cm2).

3. Results and discussion

Fig. 2 shows the variations of the absorbance and TMP 
of the four membranes of PSF and PES with finger-like and 
sponge-like pore structures during the filtration of the BSA 
solution. The BSA solution was passed through line I from 0 
to 5 min. At this point, the triple valve was turned to direct the 
BSA solution through line II. When the filtrate started to pass 

through line II, the absorbance value of the solution trended 
significantly upward. This behavior is attributed to the 
washing out of the soluble material in the membrane, which 
led to an increase in the absorbance. The corresponding data 
were ignored during the data processing.

Fig. 2 further shows that the absorbance of the filtrate 
tended to decrease with respect to the feed during the filtra-
tion process of the four membranes. This trend demonstrates 
that the four membranes had a certain adsorption–retention 
effect on the BSA. The retained BSA caused membrane foul-
ing and led to an increase in the TMP. Eq. (1) was used to 
calculate the adsorption–retention cumulant Q during the 
filtration process. The correlation between Q and TMP over 
time is shown in Fig. 3.

Figs. 2 and 3 show that the TMP increased linearly with 
the filtration time during the filtration process of the PSF-S 
membrane and the PES-S membrane with sponge-like pore 
structures. By contrast, during the filtration process of the 
PSF-F membrane and the PES-F membrane with finger-like 
pore structures, the TMP varied in two stages. The TMP of 
the PSF-F membrane and the PES-F membrane showed a 
rapid linear increase in the first filtration stage (Fig. 3). In 
the second filtration stage, the TMP of the PSF-F membrane 
showed a severe fluctuation within a certain range during fil-
tration. The TMP of the PES-F membrane also appeared to 
severely fluctuate but slowly increased.

Several different mechanisms for membrane fouling 
have been proposed: complete blocking, standard block-
ing, intermediate blocking, and cake filtration, as shown in 
Table 1 [6].

Fig. 2. Variation of absorbance and TMP when the BSA solution was filtered with four membranes, a: PSF-S, b: PSF-F, c: PES-S, 
d: PES-F.
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The equations in Table 1 show that the TMP increases 
linearly with the filtrate volume only in the cake filtration 
model. Fig. 3 reveals that the TMP increased linearly with 
Q in the filtration process of the PSF-S membrane and the 
PES-S membrane and in the first filtration stage of the PSF-F 
membrane (the range of Q was 0–104 μg cm2) and the first 
filtration stage of the PES-F membrane (the range of Q was 
0–397 μg cm2). The TMP of the PSF-F membrane fluctuated 
drastically in the second filtration stage within the range 
from 93 to 140 kPa and no longer increased and the TMP of 
the PES-F membrane in the second filtration stage also fluc-
tuated but continued to slowly increase. The entire filtration 
process of the PSF-S membrane and the PES-S membrane 
as well as the first filtration stages of the PSF-F membrane 
and the PES-F membrane all show typical cake filtration 
characteristics.

In Table 1, the cake filtration model is given by Eq. (2):

∆ ∆P P
q a c
S

Vb= + ×0 2

µ *

 (2)

The adsorption–retention cumulant of BSA (Q = Cb × V) 
can be directly calculated from Eq. (1) according experimental 
data. Thus, Eq. (2) can be simplified to Eq. (3):

∆ ∆P P K Q= +0
*  (3)

where

K q
S
a* *=

µ
2  (4)

The experimentally measured ∆P and the calculated 
Q are correlated according to Eq. (3) for the entire filtration 
stage of the PSF-S membrane and the PES-S membrane with 
sponge-like pore structures and for the initial filtration stages 
of PSF-F membrane and PES-F membrane with finger-like 
pore structures. During the experiment, q = 1/60 mL s–1, 
μ = 0.8949 × 10–3 Pa s, and S = 1.13 cm2. a* was directly 
calculated according to the fitting result of K*, and the results 
are shown in Table 2.

The values in Table 2 reveal that the a* for the cakes on 
the PSF-S membrane and the PES-S membrane with sponge-
like pore structures were smaller, whereas those for the cakes 
on the PSF-F membrane and the PES-F membrane with fin-
ger-like pore structures were larger. These results show that 
the a* of the filter cake differs for membranes composed of 
the same material but with different structures. However, 
the values of a* were roughly equivalent for the membranes 
composed of different materials but with the same structure. 
Thus, the specific resistance of the filter cake is related to the 
membrane structure.

SEM micrographs of the used membranes are shown in 
Fig. 4. The morphological structures of the PSF-S membrane 

Fig.3. Variation of TMP of four membranes with Q, a: PSF-S, b: PSF-F, c: PES-S, d: PES-F.
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and the PES-S membrane still contained uniform sponge-
like pore structures, but the membrane structures of the 
PSF-F and PES-F membranes contained a dense surface layer 
together with the finger-like macropores.

The fluid flow in membrane pores can be characterized 
by Hagen-Poiseuille’s law:

J r P
Lm

= ×
ε
µτ

2

8
∆

 (5)

and

ε
π

=
n r
S
p

2

 (6)

where J is the fluid flux, r is the pore size, ΔP is the TMP 
over membrane thickness Lm, τ is the pore tortuosity, ε is the 
surface void rate, and np is the through-hole number. The 
relationship between ΔP and r can be expressed as:
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The ∆P at a constant flux is inversely proportional to 
r4 in Eq. (7). The membrane structure is evenly distributed 

and the pore size of the membranes with sponge-like pore 
structures is approximately the same. Thus, the TMP over the 
membrane thickness was evenly distributed. The thickness of 
the pressure-bearing layer could be considered the thickness 
of the membrane (see a2, c2 in Fig. 4). The pore size in the 
finger-like macropores was much larger than that in the sur-
face layer for the membrane with finger-like pore structures. 
Therefore, the pressure drop produced in the finger-like 
macropores was much smaller than that in the surface pores 
and can be ignored. We considered the surface layer to be the 
pressure-bearing layer.

We measured the initial TMP (P0) of the clean membrane 
filtering deionized water. The thickness of the pressure- 
bearing surface layer (L) of the membrane with finger-like 
pore structures was measured from the surface of the mem-
brane to the position where the pore size changes drastically 
according to the SEM photograph (see b2 and d2 in Fig. 4). 
The pressure on the per-unit-thickness pressure-bearing layer 
(PPTPBL) was calculated and the result is shown in Table 3. 
We related the a* of the filter cake to the PPTPBL (P0/L) as 
shown in Fig. 3. The PPTPBL exhibited good correlation 
with a* for the PSF-S, PSF-F, PES-S, and PES-F membranes. 
The PPTPBL and the a* were large for the membranes with 
the finger-like pore structures and small for the membranes 
with the sponge-like pore structures. The PPTPBL strongly 
influenced the a* of the filter cake. We correlated the a* of the 

Table 1
Summary of constant flux blocking laws [6]
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P is the TMP, P0 is the initial TMP, q is the filtration rate, R is the clean membrane resistance, Cb is the amount of material deposited 
on (or within) the membrane per unit filtrate volume, V is the cumulative volume filtered, μ is the absolute viscosity, σ is the clogging 

coefficient, a* is the specific cake resistance on a mass basis, a* = βΔPn1 where β and n1 are compressibility parameters, K C
LNr

C
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2 2
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2 2π ε

, and K
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Table 2
Correlated results according to Eq. (3) and the related parameters

ΔP = ΔP0 + k*Q R2 K* (kPa cm2 μg–1) a* × 10–12 (m kg–1)

PSF-S ∆P = 19.01149 + 0.01366Q 0.96911 0.01366 19
PSF-F ∆P = 27.8125 + 1.05518Q 0.94032 1.05518 1,507
PES-S ∆P = 6.26323 + 0.0332Q 0.99307 0.0332 47
PES-F ∆P = 5.71149 + 0.13138Q 0.86424 0.13138 187
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filter cake according to the compressible cake model [30].  

The correlation result was a
P
L

*
.

. .= −1020 89 21 080
0 859

, where the 

correlation coefficient R2 was 0.99943, see Fig. 5. It could be 
seen that the a* of the filter cake was related to the PPTPBL 
with a compressibility factor of 0.859 when the BSA solution 
was filtered through membranes with different structures.

The specific resistance of the filter cake represents the 
filtration resistance caused by a unit mass of the adsorption–
retention cumulant per unit membrane area. The PPTPBL 
represents the pressure drop generated from a unit thickness 
of the pressure-bearing layer of the membrane. The PPTPBL 
could be reasonably deemed to characterize the pressure 
exerted on the surface layer of the membrane. The experi-
ment found that the PPTPBL has a close relationship with 
the specific resistance of the filter cake. This is because BSA 
is a macromolecular substance. The accumulation form of 
BSA that is initially deposited on the membrane surface layer 
changes under different pressures. BSA forms a thinner and 
denser filter cake under higher pressure, resulting in a higher 
specific resistance, while a looser cake is formed and the 

specific resistance is lower under a lower pressure. Thus, the 
BSA filter cake layer shows compressibility.

In the filtration process for membranes with sponge-
like pore structures, the PPTPBL was small because the 
TMP was evenly distributed over the entire membrane. 
The small PPTPBL leads to a loose filter cake and a small a*. 
However, the PPTPBL was large due to the uneven pressure 
distribution in the membrane with finger-like structures. 
The resulting filter-cake layer was dense and a* was large. A 
small amount of adsorption–retention cumulant would thus 
cause a rapid increase in the TMP. The dense and thin layer 
of the filter cake formed quickly as the filtration progressed. 
The extremely high pressure on the ultrathin cake layer led 
to the cake on the surface pores of the membrane breaking 
and being pushed into the membrane. A new cake layer was 
rapidly formed on the membrane surface in the subsequent 
filtration process. The phenomenon of the cake layer repeat-
edly forming and breaking caused the TMP on the membrane 
with finger-like pore structures to fluctuate in the second 
filtration stage. The contaminants that are pushed into the 
macropores are further taken out from the bottom layer of 
the membrane, thereby causing an increase in the filtrate 
concentration of BSA in the membranes with finger-like pore 
structures. This phenomenon was observed in the experi-
ment as shown in ‘b’ and ‘d’ in Fig. 2, where the absorbance 
of the filtrate increased in the second filtration stages of the 
PES-F and PSF-F.

As shown in Fig. 4, cake layers were observed on the 
top surfaces of the four membranes. The SEM micrographs 
of the cross sections of the PSF-S membrane and the PES-S 

Fig. 4. SEM micrographs of the four membranes after filtration, a: PSF-S, b: PSF-F, c: PES-S, d: PES-F, where 1 is the upper surface, 2 is 
the cross section, 3 is the upper cross section, and 4 is the lower cross section.

Table 3
PPTPBL and a* for four types of membranes

P0 (kPa) L (μm) P0/L (kPa μm–1) a* × 10–12 (m kg–1)

PSF-S 14 433 0.0316 19
PSF-F 16 10 1.6 1,507
PES-S 16 409 0.0342 47
PES-F 20 126 0.158 187
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membrane show no residual fouling inside the membrane 
pores. However, residual fouling remained inside the 
finger-like pores of the PSF-F membrane and the PES-F 
membrane, with the residual fouling in the PSF-F membrane 
being more serious. We reasonably speculated that the 
residual fouling in the membrane with the sponge-like 
structure generated a low-specific-resistance loose filter cake 
on the membrane surface. The increased TMP was evenly 
distributed on the filter cake, and the pressure drop on the 
surface of the membrane was not large. Therefore, the foulant 
was not pressed into the membrane pores.

The surface pressure-bearing layer of the PSF-F membrane 
was thinner than that of the PES-F membrane (Fig. 4). The 
PPTPBL of the PSF-F membrane was therefore greater, which 
resulted in a denser cake layer with a larger a*. The increase 
in the TMP was faster with Q in the first filtration stage. 
The ultrathin layer of cake was more likely to break and be 
pushed into the finger-like pores of the PSF-F membrane. 
The residual fouling in the PSF-F membrane was more seri-
ous than that in the PES-F membrane. In contrast, only part 
of the cake on the membrane surface pores was broken in 
the PES-F membrane. This part of the foulant was pressed 
into the membrane pores, but the unbroken part of the cake 
layer continued to accumulate, and the TMP of the PES-F 
membrane fluctuated substantially but still slowly increased.

The residual fouling inside the membranes made the 
membranes difficult to clean. To demonstrate this effect, we 
cleaned the used membranes with flowing deionized water 
and measured the water fluxes again. The flux recovery 
rate was calculated by comparison with the initial fluxes of 
the clean membranes, and the results are shown in Table 4. 
The flux recovery rates of the PSF-S membrane and PES-S 
membrane with sponge-like pore structures were 88% and 
93%, respectively, whereas the flux recovery rates of the 
PSF-F membrane and PES-F membrane with finger-like pore 
structures were 33% and 45%, respectively. The membranes 
with sponge-like pore structures were easier to clean than the 
membranes with finger-like pore structures. Furthermore, 
the PSF-F membrane was harder to clean than the PES-F 
membrane. These results confirm previous assumptions 
that the fouling of the membranes with sponge-like pore 
structures occurred only on the membrane surface and was 
easy to clean, whereas the fouling of the membranes with 
finger-like pore structures occurred both on the membrane 

surface and inside the membrane pores, making it difficult 
to clean.

4. Conclusions

The fouling performance of BSA solution on mem-
branes with different structures was studied. The concept 
of the pressure-bearing surface layer is proposed. The 
PPTPBL is calculated to characterize the pressure exerted 
on the surface layer of a membrane. The entire filtration 
process of the membranes with sponge-like pore structures 
(PSF-S and PES-S membranes), as well as the first filtration 
stages of the membranes with finger-like pore structures 
(PSF-F and PES-F membranes) show typical cake filtration 
characteristics.

The experiment shows that the specific resistance of the 
filter cake in the initial filtration stage is positively related 
to the PPTPBL of the membrane. This caused differences 
in the membrane fouling model and cleaning performance 
between the membranes with finger-like and sponge-like 
morphological structures.

The structures of the membranes with sponge-like pore 
structures are uniform and the PPTPBL is small. This caused 
the formation of a loose filter cake and low specific resistance. 
The fouling cake remained on the membrane surface and thus 
could be easily cleaned. The TMP increases linearly with the 
adsorption–retention cumulant of fouling during filtration.

The membranes with finger-like structures contained 
finger-like macropores and dense surface layers. The TMP is 
distributed mainly on the dense surface layer, which results 
in a large PPTPBL and led to the formation of a dense cake 
layer of high specific resistance in the first filtration process. 
A small adsorption–retention cumulant of fouling resulted in 
a rapid increase in the TMP. The high pressure broke the cake 
layer on the membrane pores, and the foulant was pushed 
inside the membrane pores. A new cake layer rapidly formed 
on the membrane surface in the subsequent filtration process. 
The phenomenon of the cake layer repeatedly forming and 
breaking caused the TMP on the membranes with finger-like 
pore structures to fluctuate in the second filtration stage. The 
foulant that remained inside the membrane pores made the 
membrane cleaning more difficult.
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Fig. 5. Relationship between the membrane structure and the 
specific resistance of the filter cake. 

Table 4
Water fluxes of membranes and their recovery rates

Initial water 
flux (L h–1 m–2)

Water flux for cleaned 
membranes (L h–1 m–2) 

Water flux 
recovery rate (%)

PSF-S 2,484.07 2,197.45 88
PSF-F 2,866.24 955.41 33
PES-S 3,057.32 2,866.24 93
PES-F 2,292.99 1,050.95 45
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Symbols 

ΔP — Transmembrane pressure (TMP), kPa
Q — Adsorption–retention cumulant (ARC) on the 

membrane surface, μg cm–2

C0 — Initial concentration of the BSA feed solution, 
mg mL–1

t(n) — Filtration time, s
Ct(n) — Concentration of filtrate at time t(n), mg mL–1

q — Flow rate of the solution during filtration, mL s–1

S — Effective membrane filtration area, cm2

Cb — Amount of material deposited on (or within) the 
membrane per unit filtrate volume, ug m–3

V — Cumulative volume filtered, mL
μ — Absolute viscosity, Pa·s
σ — Clogging coefficient
n1 — Compressibility parameter
β — Compressibility parameter
a* × 10–12 — Specific cake resistance, m kg–1

J — Fluid flux, m s–1

τ — Pore tortuosity
r — Pore size, μm
ε — Surface void rate
np — Through-hole number
Lm — Membrane thickness, μm
L — Length of the thickness of the pressure- 

bearing surface layer, μm
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Supplementary Information

Fig. S1. Repeated experiments, variation of absorbance and TMP when the BSA solution was filtered with PSF-S1, PSF-F1, 
PES-S1, PES-F1 membranes.

Fig. S2. Variation of absorbance and TMP when the BSA solution was filtered with PVDF membrane and PVC membrane with 
finger-like pore structure.
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The repeated experiments of PES-F1, PSF-F1 membranes and PVC, PVDF membranes with finger-like pore structure and 
the repeated experiments of PES-S1, PSF-S1 membranes with sponge-like pore structure reveal the same law described in the 
paper, see Figs. S1 and S2. The water contact angle of polysulfone membrane and polyethersulfone membrane are shown in 
Fig. S3.

Fig. S3. Water contact angle of polysulfone membrane and polyethersulfone membrane.
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