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a b s t r a c t
In the present work, a new approach is presented for the optimization of multi-modal nonlinear 
programming problems with constraints or a nondifferentiable objective function. The model is 
applied in the optimization of water distribution networks (WDN). An algorithm is proposed to solve 
the problem, based on multi-swarm optimization (MSO) with multiple swarms that work corpo-
rately – a master swarm and several slave swarms – named multi-swarm corporative particle-swarm 
optimizer (MSC-PSO). There are discrete and continuous decision variables and the problem can be 
treated as a mixed discrete nonlinear programming (MDNLP) one. The combinations of the algo-
rithm search parameters are obtained in a simple manner, allowing viable and promising solutions. 
A benchmark problem from the literature is studied, in which the installation costs of a WDN are to 
be minimized with a computational time of 50 s. The implementation of the algorithm is proven to be 
efficient, with reduction in pipe installation cost up to 1.08% when compared with results from the 
literature. The algorithm is also implemented in a primary network, installed in the town of Esperança 
Nova, Paraná, Brazil, with reduction of 4.28% in the total cost when compared to the current WDN 
in operation. The computational time for this case was 69 s.

Keywords:  Multi-swarm optimization algorithms; Particle-swarm optimization; Water distribution 
network; Optimization; MDNLP

1. Introduction

The optimization of a water distribution network (WDN) 
is a multimodal nonlinear programming problem with 
a nondifferentiable objective function and with real and 
discrete decision variables. The analytical solution to the 
optimization problem is highly complex, requiring simul-
taneous analysis of the mass conservation equation in 
each node and of the energy conservation equation in each 
network loop. Furthermore, the minimum pressures in the 

demand nodes, as well as the minimum and maximum 
velocities in the pipes, must be considered.

In the 1970s, several researchers [1–3], among others, 
studied WDN optimization using deterministic methods 
such for solving linear programming (LP), nonlinear pro-
gramming (NLP), and dynamic programming (DP) problems 
formulations, with adaptations used in order to work around 
constraints or differentiability and continuity problems of the 
objective functions. In the case of the deterministic methods, 
the solution is strongly dependent on the initial proposition. 
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In the last four decades, however, heuristic methods have 
been used due to their efficiency in dealing with the afore-
mentioned problems. Nevertheless, the use of hydraulic 
simulators allows complex mathematical treatments to be 
avoided.

One of the most successful heuristic methods in the 
SI (swarm intelligence) group is PSO (particle swarm 
optimization). First introduced by Kennedy and Eberhart 
[4], the method is based on patterns found in the individual 
and social behaviors of certain natural species that require 
communication between individuals for the survival of the 
group. This behavior is observed in several animal species, 
some examples being schools of fish, flights of birds, and 
swarms of bees. Each particle (bird, bee, fish) represents a 
potential solution to the system, mathematically represented 
by a vector, xi, whose N components are the decision vari-
ables of the problem. At a certain instant, when the particle 
reaches its best position (best evaluation of the objective func-
tion), its coordinates are named Personal Best (Pbest) and are 
represented by vector pi. The best position reached by any 
particle in the group is named Global Best (Gbest) and is 
represented by vector g. The future location of particle i in 
the search space will be directed by these vectors pi and g. 
The particles of the PSO algorithm move towards a global 
or local optimum. When the leader particle (Gbest) stops 
at a local optimum, the group converges prematurely. This 
causes the search for the global optimum solution to be chal-
lenging, especially in highly nonlinear multimodal problems.

According to Xu et al. [5], PSO convergence is quicker 
than other evolutionary algorithms [6], such as genetic 
algorithms (GA), developed by Holland [7] inspired by the 
theory of evolution; ant colony optimizations (ACO), devel-
oped by Dorigo [8], based on ant foraging; simulated anneal-
ing (SA), developed by Kirkpatrick et al. [9], based on metal 
annealing; shuffled complex evolution (SCE), developed by 
Duan et al. [10]; harmony search (HS), the algorithm that 
mimics the musical harmony phenomenon, created by Geem 
et al. [11] inspired by the improvisation process of musicians; 
memetic algorithms (MA), developed by Dawkins, [12], 
inspired in GA with na individual learning procedure able 
to refine local search and the shuffled frog leaping algorithm 
(SFLA), developed by Eusuff and Lansey [13] was inspired 
in MA and PSO in global optima search.

Being one of the most used optimization heuristic methods, 
particle swarm optimization (PSO) was used Trigueros et al. 
[14] and Ravagnani et al. [15] for the optimization of reuse 
water networks. Several studies presented solutions to the 
WDN optimization problem using PSO, such as [16] and [17]. 
Surco et al. [18] presented a modified PSO algorithm, poten-
tializing the particles for better exploration of the search 
space and described the influence of the parameters in the 
optimization process.

Considering other evolutive algorithms applied on WDN 
optimization, Zheng et al. [19] used ACO with parameters 
adaptive strategies in searching better results. Reca et al. [20] 
developed a GA jointly with search space reduction meth-
ods by limiting pipe diameters. El-Ghandour and Elbeltagi 
[21], used five evolutionary algorithms (GA, PSO, ACO, MA 
and SFLA) to solve the WDN optimization and concluded 
that PSO has the best performance in achieving the better 
results.

Multi-Swarm Optimization is an extension of the PSO 
algorithm. Interacting with several swarms, it is adequate for 
multimodal problem optimization. Chen et al. [22] presented 
a model inspired by mutualism, which is the occurrence 
of information exchange between the particles of a certain 
swarm as well as between particles from a swarm and the 
best ones from other swarms. The authors used 17 mathe-
matical benchmark functions to prove the efficiency of the 
model.

In the present work, a new approach is presented for 
the optimization of nonlinear programming problems of a 
multi-modal nature, with constraints or a nondifferentiable 
objective function, where variables are mixed (discrete and 
continuous numbers). The model is then used to optimize 
WDN at small and large scales. An algorithm based on MSO 
is proposed in order to solve the problem. A new model is 
proposed, named Multi-Swarm Corporative Particle Swarm 
Optimizer (MSC-PSO). An initialization strategy for the par-
ticles is also employed for better distribution throughout the 
search space, increasing the particles search of exploration. 
Results obtained for a case study from the literature shown 
the applicability of the proposed approach in finding better 
optima when compared to previous evolutive algorithms.

2. PSO algorithm

The coordinates of particle i are represented by the 
components of vector xi = (xi,1,…,xi,j,…,xi,N) in N-dimensional 
space. When component xi,j is a real number (continuous), 
it is limited by xj

L (lower limit) and xj
U (upper limit), that is, 

xi,j ∈ [xj
L,xj

U]. When xi,j is a discrete number, it belongs to 
the set xj

SET = {xj1, xj2,…,xjND}, which has ND elements.
According to Kennedy and Eberhart [4], the new position 

of particle i at (t + 1) is represented by Eq. (1):

x t x t v ti j i j i j, , ,+( ) = ( ) + +( )1 1  (1)

where vi,j(t + 1) is the velocity of component j of particle i, 
given by Eq. (2):

v t v t c r p x t c r g x ti j i j i j i j j i j, , , , ,+( ) = ( ) + − ( )( ) + − ( )( )1 1 1 2 2  (2)

where c1 and c2 are, respectively, the cognitive and social 
acceleration coefficients and r1 and r2 are uniformly 
distributed random numbers in the interval (0,1). The use of 
Eq. (2) requires prior knowledge of the values of variables 
pi,j (component j of vector Pbest) and gj (component j of 
vector Gbest). The velocity of the particles is limited, that is, 
vi,j ∈ [vL,vU], where vL and vU are the predetermined lower 
and upper limits.

Kennedy and Eberhart [23] implemented the PSO algorithm 
for discrete binary variables by introducing Eq. (3):

x
if rand S v

if rand S v
i j

i j

i j

,

,

,

=
( ) < ( )
( ) ≥ ( )







1

0
 (3)

where S(vi,j) is a sigmoid limiting transformation represented 
by Eq. (4) and rand( ) is a uniformly distributed random 
number in the interval (0,1).
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S v
ei j vi j, ,

( ) =
+

1
1

 (4)

Shi and Eberhart [24] presented a modified PSO algorithm 
with the introduction of a new parameter named inertial 
weight (w), recommending that it decrease along the iter-
ation process instead of being static. This modification 
is shown in Eq. (5), which replaces Eq. (2).

v t wv t c r p x c r g xi j i j i j i j j i j, , , , ,+( ) = ( ) + −( ) + −( )1 1 1 2 2  (5)

Due to the importance of this parameter, several for-
mulations have been proposed for w as a function of the iter-
ation number. According to Suribabu and Neelakantan [16], 
the inertia weight influences the exploration of the search 
space. A larger inertia weight makes global exploration 
easier, while a smaller one improves local exploration.

3. Multi-swarm optimization

Considering multi-swarm optimization, Niu et al. [25] 
presented the multi-swarm cooperative particle swarm opti-
mizer (MCPSO) model, inspired by the symbiosis existing in 
natural ecosystems. It is based on the master-slave model, 
where the total population comprises a master swarm and 
several slave swarms. Each slave swarm moves as a single 
PSO would, while the master swarm moves according to 
its own knowledge added to those of the slave swarms. Six 
30-dimensional mathematical benchmark functions were 
used to evaluate the performance of the model.

Kaveh and Laknejadi [26] presented the multi-objective 
optimization multi-swarm charged system search (MO-MSCSS) 
algorithm for problems that use several PSO swarms, in an 
attempt to solve optimization problems for metallic struc-
tures. Four unconstrained multi-objective problems were 
used to evaluate the performance of the model. The results 
were compared with those of six known multi-objective 
models from the literature (MOEA/D, NSGA-II, SPEA2, 
MOPSO, sMOPSO, and cMOPSO) and of two constrained 
multi- objective problems of dimensioning metal structures.
Niu et al. [25] proposed two versions of MCPSO:

•	 Competitive version (COM-MCPSO), whose particle 
movement is guided by Eqs. (6) and (7):

v t wv t c r p x t c r g x ti j
M

i j
M

i j
M

i j
M

i
M

i j
M

, , , , ,+( ) = ( ) + − ( )( ) + − (1 1 1 2 2Φ ))( )
+ −( ) − ( )( )1 3 3Φ c r g x tj

S
i j
M
,  (6)

x t x t v ti j
M

i j
M

i j
M

, , ,+( ) = ( ) + +( )1 1  (7)

where M corresponds to master swarm, S corresponds to 
slave swarm, r3 is a uniformly distributed random number 
in the interval (0,1), c3 is the acceleration coefficient, pM

i,j 
is component j of vector PbestM corresponding to parti-
cle i, gj

S is component j of vector GbestS (the best Gbest of 
all the slave swarms), gj

M is component j of vector GbestM, 
F is the migration factor given by Eq. (8) (for minimization 
problems):

Φ =

<

=

>










0

0 5

1

Gbest Gbest

Gbest Gbest

Gbest Gbest

S M

S M

S M

.  (8)

•	 Collaborative version (COL-MCPSO), whose trajectories 
are adjusted according to Eqs. (9) and (10):

v t wv t c r p x t c r g x ti j
M

i j
M

i j
M

i j
M

i j
M

i j
M

, , , , , ,+( ) = ( ) + − ( )( ) + −1 1 1 2 2 (( )( )
+ − ( )( )c r g x tj

S
i j
M

3 3 ,

 (9)

x t x t v ti j
M

i j
M

i j
M

, , ,+( ) = ( ) + +( )1 1  (10)

In COM-MCPSO and COL-MCPSO, the particles move 
drawing information from the master swarm and from the 
leader of each slave swarm. Each slave swarm carries out a 
competition, without information exchange between swarms. 
Each slave swarm sends its best local particle to the master 
swarm. The master swarm selects the best leader among the 
slave swarms to compose the new orientation of the particles 
of its swarm.

4. MCPSO improvement proposal: multi-swarm 
corporative particle swarm optimizer (MSC-PSO)

In the collaborative version described by Eqs. (9) and (10), 
the master swarm commands every swarm, using its knowl-
edge together with the collective knowledge of the slave 
swarms. When variables are discrete, a particle belonging 
to a slave swarm may take the best position. However, even 
if the said particle reaches the best theoretical position, 
its contribution cannot lead other swarms, given that the 
orientation of the speed is determined by four vectors. As a 
countermeasure to this deficiency, a corporative algorithm 
is proposed in the present work, one where a particle from 
a slave swarm has the opportunity of redirecting the groups 
to obtain a better result. The mathematical formulation 
that guides the trajectories of the particles is given by 
Eqs. (11)–(14).

Equations for the speed and for the new position of a 
slave swarm particle:

v t wv t c r p x t c r g x ti j
S

i j
S

i j
S

i j
S

j
S

i j
S

, , , , ,+( ) = ( ) + − ( )( ) + − ( )1 1 1 2 2 (( )
+ − ( )( )c r g x tj

M
i j
S

3 3 ,  (11)

x t x t v ti j
S

i j
S

i j
S

, , ,+( ) = ( ) + +( )1 1  (12)

Equations for the speed and for the new position of a 
master swarm particle:

v t wv t c r p x t c r g x ti j
M

i j
M

i j
M

i j
M

j
M

i j
S

, , , , ,+( ) = ( ) + − ( )( ) + − ( )1 1 1 3 3 (( )  (13)

x t x t v ti j
M

i j
M

i j
M

, , ,+( ) = ( ) + +( )1 1  (14)

where gj
M is component j of particle GbestM.
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According to Eqs. (11)–(14), particles belonging to the 
slave swarms do not move independently, but rather using 
their knowledge of the best position reached by particles 
of their own swarm as well as the position of GbestM by 
instant t.

Furthermore, strategies that improve the distribution of 
particles in the search space can be employed in the initializa-
tion of the particles belonging to the slave swarms, as shown 
in Fig. 1.

The Two polar points strategy distributes the particles of 
a swarm around Point1 and the particles of another swarm 
around Point2, within a radius RS (RS = ψ. MaxDist), where 
ψ is a constant in the interval (0.5,0.6) and MaxDist is the 
Euclidean distance between Point1 and Point2, calculated by 
Eq. (15). The components of Point1 and Point2 are, respec-
tively, the lower and upper limits of the decision variables.

MaxDist = −( )
=
∑ x xj

U
j
L

j

N 2

1
 (15)

The search space of Fig. 1 is two-dimensional and variables 
x1 and x2 are limited (x1 ∈ [x1

L, x1
U] and x2 ∈ [x2

L, x2
U]). Point1 has 

coordinates (x1
L, x2

L). Point2, (x1
U, x2

U).
An initial particle xj belonging to slave swarm 1 must 

obey the distance criterium:

x x Rj
L

j
S

j

N
S−( ) ≤

=
∑ 1

2

1
 (16)

If this inequality is not satisfied, particle xj is discarded 
and another initialization vector is created, according to 
Inequality (16). The same criterium is applied to all the 
initialization particles belonging to slave swarm 2.

5. Optimization of WDN

WDNs are important systems in urban centers and its 
optimal design has been fundamental since the beginning 
of the human society development. In the present paper, the 
WDN problem is studied considering networks with one or 

more reservoirs, demand nodes and the existence of pipes 
and accessories (valves and pumps), in such a way that the 
water must be available for the consumer at adequate pres-
sures. The single pipe approach is used and the optimization 
problem consists in minimizing the WDN piping cost subject 
to the mass balance in the nodes and the energy balance in 
the loops, considering pressure and velocity limits. For the 
WDN optimization, a set of commercial diameters (DSET) 
is made available to be used in the network. The optimiza-
tion of the network comprises the search for the diameters 
(belonging to DSET) of the pipes so the network is designed 
with the lowest possible cost, assuring minimum pressures 
in the consumption nodes and velocities among minimum 
and maximum limits.

5.1. Development of the WDN optimization model

If a network has N pipes and K nodes, the model can be 
formulated as:

Min C L DP j j
j

N

= × ( )
=
∑ Cost

1
 (17)

subjected to the following constraints:

q k k K( ) = ∀ =∑ 0 1, ,...,  (18)

h j jf ( ) = ∀ ∈∑ 0, set of pipes in a loop  (19)

pr k pr k( ) ≥ ( )min  (20)

v v vw w wjmin max
≤ ≤  (21)

D D D D Dj ∈ ={ }SET ND1 2, ,...,  (22)

where CP is the objective function for the minimization 
of the total pipe installation cost of the network, Lj is the 
length of pipe j, and Cost(Dj) is the installation cost per 
unit length of the pipe with diameter Dj. Eqs. (18) and (19) 
are constraints corresponding to the laws of conservation of 
mass and energy, which assure the steady state of the net-
work. q(k) is the flow rate entering and leaving node k and 
hf(j) is the pressure drop in pipe j belonging to a certain loop. 
Inequality (20) assures that all pressures are adequate for 
the system and for the consumers. Inequality Eq. (21) keeps 
flow velocity in the pipes within the allowed limits. Eq. (22) 
shows that the selected diameters must belong to the set of 
available diameters, DSET.

In the present work, the pressure drop, hf , is calculated 
in the international system using the Hazen–Williams 
equation:

h j
q L

C Df
j j

j j

( ) =
10 674 1 852

1 852 4 871

. .

. .  (23)

where Cj is the Hazen–Williams roughness coefficient 
(dimensionless), qj is the flow rate (m³/s), Dj is the diameter 
(m), and Lj is the length (m) of pipe j.

 
Fig. 1. Two polar points slave swarm particle initialization 
strategy.
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For the hydraulic simulation in the iterative process, 
an external file is used, named Epanet2.dll. Developed by 
the North-American Environmental Protection Agency 
(US EPA), it is freely distributed as a programmer’s toolkit 
[27]. The file is incorporated in the programming code, in a 
compatible language (Delphi, Pascal, C/C++, among others), 
used for optimization and for simulation.

5.2. Development of the MSC-PSO algorithm

The set of available diameters for the network, DSET, is 
made up of ND diameters. Organizing in crescent order, 
D1 < D2 < … < DND, where D1 is named Dmin and DND is 
named Dmax. Each diameter has a corresponding cost ($/m), 
cost1, cost2, …, costND and a corresponding Hazen–Williams 
roughness coefficient, C1, C2, …, CND, as shown in Table 1.

Particles are initialized randomly according to Eq. (24), 
where r is a uniformly distributed random number in the 
interval (0,1). The result is a diameter with a continuous 
value (DC) that does not belong to DSET. One way of solving 
this problem is to carry out a discretization process on the 
diameters. To that end, a procedure proposed in a study by 
Surco et al. [18] is used, according to Eq. (25) and Fig. 2.

Diameter DC is thus converted into a diameter DU or DL 
belonging to DSET.

x D r D Di j, = + × −( )min max min  (24)

x
D a b

D a b
i j

L

U

, =
≤

>







if

if
 (25)

xi,j is a discrete value, belonging to DSET, that corresponds 
to the diameter of pipe j of particle i.

In Eq. (5), vi,j is limited by Inequality (26) and xi,j(t + 1) is 
limited by Eq. (27):

v vi,j U≤  (26)

x t
D x t D

D x t D
i j

i j

i j

,

,

,

+( ) =
+( ) <
+( ) >






1

1

1

min min

max max

if

if
 (27)

Fig. 3 shows that the particle in iteration t has the 
position xi,j and the velocity vi,j and corresponds to the 
diameter Dn. The velocity vi,j(t + 1) needs to be limited by vU 
in such a way that xi,j(t + 1) can assume other diameter value 
belonging to the set of available diameters. The manner in 
what the parameter vU is determined is better explained 
in Section 5.3.

Particle i (xi) is an N-dimensional vector (N pipes). Each 
vector xi has a corresponding Pbest vector (pi) and velocity 
vector (vi). Vector Gbest is the position with the best perfor-
mance achieved by some particle of the swarm. The vectors 
of the particles belonging to the master swarm are formatted 
as follows:

•	 xi
M = (xM

i,1, xM
i,2,…,xM

i,N), position;
•	 vi

M = (vM
i,1, vM

i,2,…,vM
i,N), velocity;

•	 pi
M = (pM

i,1, pM
i,2,…,pM

i,N), PbestM;
•	 gM = (g1

M, g2
M,…,gN

M), GbestM with respective performance 
CG

M, which is the best solution found by the MSC-PSO 
algorithm so far.

The vectors of particle i belonging to the NS slave swarms 
have analogous formatting:

•	 x x xi
S

i
S

i
SNS1 2, ,..., , position;

•	 v v vi
S

i
S

i
SNS1 2, ,..., , velocity;

•	 p p pi
S

i
S

i
SNS1 2, ,..., , PbestS;

•	 g g gS SNS1 2, ,...,S , GbestS.

For each iteration, the position vectors of each particle 
are updated and evaluated according to Eq. (17). The pres-
sures in each node and the velocities in each pipe are obtained 
using hydraulic simulator Epanet2. If particle i presents NV 
hydraulic violations (nodes with pressures lower than the 
specified minimum or velocities in the pipes outside the 
limits), it is penalized with a stipulated Penalty value for each 
violation. The total is then added to the value of the objective 
function according to Eq. (28):

C L xj i j
j

N

PPi = × ( ) + ×
=
∑ Cost NV Penalty,

1
 (28)

 
Fig. 2. Discretization of a continuous diameter (DC) into an 
available diameter for the WDN.

Table 1
Available diameters (DSET) and their respective properties

Index Diameter Cost Roughness coefficient

1 D1 cost1 C1

2 D2 cost2 C2

ND DND costND CND
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where Lj is the length of pipe j and Cost(xi,j) is the cost of 
pipe j with diameter xi,j.

If particle i achieves a better performance (CPPi), this 
value is stored in column vector f; hence the best perfor-
mances of the particles are stored in this N-dimensional 
column vector.

For the master swarm, f M = (f1
M, f2

M,…,fN
M)T, where f1

M 
represents the best performance of particle x1

M achieved so 
far. fG

M is the performance of the leader of the master swarm.

For the NS slave swarms, S S S
N
S T
f1 1 1 1

1 2= ( ), ,..., ,...,fff  
S S S

N
S T

NS NS NS NS= ( )1 2, ,...,f fff  and for the leaders of each 
slave swarm, f f fG

S
G
S

G
SNS1 1, ,..., , where fG

S1  represents the per-
formance of gS1 so far.

The vectors whose components have indexes Dmax and 
Dmin are, respectively, named gmax = (Dmax ,	Dmax ,…, Dmax) and 
gmin = (Dmin ,	Dmin ,…,	Dmin), where the costs of the WDN are 
CPmax and CPmin,  respectively. If particle gmax is viable, that is, it 
has no hydraulic violations, the WDN can be fed by gravity.

After a given maximum number of iterations (tmax), the 
output consists of the diameters of each pipe, stored in vector 
gM = (g1

M, g2
M,…, gN

M), the optimized cost fG
M, and the results 

of hydraulic variables such as the pressure vector pR and the 
velocity vector vR for vector gM.

Using one master swarm, two slave swarms (NS = 2), 
and NP particles for every swarm, the MSC-PSO algorithm 
applied in WDN optimization is described as follows:

1. Calculate MaxDist (distance between Point1 and Point2) 
using Eq. (15). Calculate cover radius RS using ψ in inter-
val (0.5, 0.6) to position the particles of the slave swarm.

2. Initialize the particles of the master swarm according 
to Eqs. (24) and (25). The particles of the slave swarm 
follow the Two polar points strategy, as shown in Fig. 1. 
Velocity vectors start at rest. The Pbest vectors of all par-
ticles initialize with the same gmax components and the 
Gbest vectors of all swarms initialize with the same gmin 
components. The performance of every Pbest and Gbest 
is set to CPmax.

3. For each particle (i = 1 to NP) of a swarm, for the slave 
swarms and master swarm in parallel:
3.1	Calculate the value of the penalized objective func-

tion, CPPi
S for particles of the slave swarm and CM

PPi for 
particles of the master swarm, according to Eq. (28).

3.2	Update Pbesti: compare performance CS
PPi with perfor-

mance fi
S from vector pi

S. If CS
PPi is better, update the 

performance of vector pi
S as well as its components: 

(fi
S ← CS

PPi) and (pi
S ← xi

S). Likewise, for the master 
swarm, if CM

PPi
 < fi

M, update the performance and the 
components of vector pi

M: (fi
M ← CM

PPi) and (pi
M ← xi

M).

3.3	Update GbestS: if CS
PPi is lower than fG

S, update the new 
components of GbestS (gS ← xi

S) and its performance 
(fG

S ←  CS
PPi). Particle xi

S can become a GbestM. If 
(CS

PPi < fG
M), update the performance (fG

M ← CS
PPi) and the 

components of vector gM(gM ←  xi
S). Store pressures 

and velocities, obtained for particle xi
S through 

Epanet2, in vectors pR and vR, respectively.
3.4	Update GbestM: for each particle in the master 

swarm, compare its performance, CM
PPi, with that of 

the Gbest of the master swarm, fG
M. If the particle 

has a better performance, update the performance 
and the components of vector gM, (fG

M ← CM
PPi) and 

(gM ←  xi
M), and store the pressures and velocities, 

obtained for particle xi
M through Epanet2, in vectors 

pR and vR, respectively.
4. Update the new position of particle xi

S(t + 1) or xi
M(t + 1) 

according to Eqs. (12) and (14), respectively. If the 
number of iterations (t) is less than or equal to tmax, go 
back to step 3.

5. End: Return the results (g, fG
M, pR, vR).

The block diagram of the MSC-PSO algorithm is shown 
in Fig. 4.

5.3. Determining the parameters of the MSC-PSO algorithm

According to Surco et al. [28], in the optimization process 
using the PSO algorithm, there are different sets of PSO 
parameters that lead to the same optimal solution. These 
parameters are w, c1, c2, c3, NP, vU and Penalty.

To obtain parameter w,	Eq.	(29)	is	used,	with	λ	=	0.95,	as	
suggested	by	Shrivatava	et	al.	[29].	Other	values	for	λ	were	
tested	in	the	present	study,	but	λ	=	0.95	was	the	one	which	
presented the best performance for the algorithm.

w w w w t= + −( )× −( )
min max min λ 1  (29)

where w is a dynamic parameter. In iteration t = 1, w = wmax, 
and in the end of the iterations, w = wmin. In the present paper, 
the considered values were wmax = 0.9 and wmin = 0.5. It is 
done in such a way that in the beginning of the iterations 
the particles movement has more intensity, allowing a more 
embracing search for possible solutions. During the itera-
tions, velocities became smaller, inducing a more meticulous 
search. Other values for wmax and wmin were tested but these 
values, 0.9 and 0.5 were the ones that presented the best 
performance in the search of promising solutions.

According to Kennedy and Eberhart [4], the accelera-
tion coefficients can be initialized with a generic value 
equal to 2.

 

Fig. 3. Limits of vi,j and xi,j.
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The estimated number of possible solutions (search 
space) of a WDN with N pipes and ND available commer-
cial diameters is given by (ND)N. The number of particles, NP, 
depends on the number of variables to be optimized and is 
predetermined, in the present work, by Inequality (30):

N
N

P ≤
×( )ND
3  (30)

Parameter vU determines the maximum velocity of the 
particle. For small values, the search is not very fast and can 
present nonviable solutions because of its discrete nature. 
For larger values, the search space is fully spanned in a 
few interactions. A good strategy is to limit the maximum 
velocity, vU, as in Inequality (31):

∆
≤ ≤ ∆

D
v DU

max
max2

 (31)

∆Dmax is the maximum difference between two consecutive 
commercial diameters available for the WDN, given by:

∆ = ∆{ }D Dnmax max  (32)

where	∆Dn = Dn – Dn–1 is the difference between two consecutive 
diameters in mm.

The main purpose of this strategy is to ensure that the 
component xi,j (t + 1) can assume other diameter value near 

to the achieved in iteration t, in order that the optimization 
process allow the evaluation of all available diameters.
Parameter Penalty can be limited by Inequality (33):

Penalty C
K

P≤ max

.1 5
 (33)

Parameters vU and Penalty are the most sensitive in the 
WDN optimization problem.

6. Case studies

In order to verify the performance of the MSC-PSO 
algorithm in solving the WDN optimization problem, two 
case studies were carried out. The first one is a benchmark 
problem known as two-source network. The second one is a 
real network in the town of Esperança Nova, located in the 
state of Paraná, Brazil.

6.1. Two-source network

The two-source network was previously studied by 
Kadu et al. [30]. Authors developed a modified genetic 
algorithm and the software GA-NET, using the hydraulic 
simulator GRA_NET. Suribabu [31] used a heuristic 
approach based on the information of the flow velocities 
in the pipes and Epanet was used as hydraulic simulator. 
Ezzeldin et al. [17] used a modified PSO algorithm, named 
IDPSO (integer discrete particle swarm optimization) to 
obtain the solution to the problem. The method of Newton–
Raphson was used to solve the hydraulic problem. The 
two-source network comprises 26 nodes, 34 pipes, 9 loops, 
and 2 reservoirs.

There is a set of 14 commercially available diameters for 
the optimization of this network, all of them with a Hazen–
Williams roughness coefficient of 130. Their costs per unit 
length are presented in Table 2.

 
Fig. 4. Block diagram of the MSC-PSO algorithm.

Table 2
Set of available diameters with corresponding roughness 
coefficients and costs for the two-source network

D (mm) C (H-W) Cost ($/m)
150 130 1,115
200 130 1,600
250 130 2,154
300 130 2,780
350 130 3,475
400 130 4,255
450 130 5,172
500 130 6,092
600 130 8,189
700 130 10,670
750 130 11,874
800 130 13,261
900 130 16,151
1000 130 19,395

Source: Kadu et al. [30].
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The layout of the two-source network is presented in 
Fig. 5.

The lengths of the pipes, as well as the minimum values 
of the hydraulic gradient level and the demands of each 
node, are shown in Table 3.

For the optimization of the two-source network problem, 
a master swarm and two slave swarms were used. Point1, 
named gmin = (150, 150, ..., 150) with dimension 34, has an 
Euclidean distance of 4,956.31 mm from Point2, named 
gmax = (1,000, 1,000, ..., 1,000). The particles from slave swarm 
1 (S1) were initialized within a radius of 2,973.79 mm from 
Point1 (0.6 MaxDist). The particles from slave swarm 2 (S2) 
were initialized within a radius similar to that of S1 from 
Point2.

The maximum cost of the network is $651,575,025.00, 
corresponding to vector gmax. The minimum cost is 
$37,458,425.00, corresponding to vector gmin.

The PSO parameters were set at the same values for every 
swarm as follows: inertia weights wmax = 0.9 and wmin = 0.5, 
acceleration coefficients c1 = c2 = c3 = 2, maximum particle 
velocity vU = 75 mm, Penalty = $15,000,000, population of 
each swarm NP = 150, and maximum iteration number = 250.

The total installation cost for the network, using the MSC-
PSO algorithm to optimize the diameters, is $125,019,790.00, 
with 50 s computation time in a computer using a 1.6 GHz 
Intel Core I5 CPU. This minimum value is found in Table 4 
together with those from other algorithms.

The solution found using the MSC-PSO algorithm 
with an initialization strategy for the slave swarms saves 
$1,349,075.00 (1.08% drop) relative to Kadu et al. [30] and 
$824,205.00 (0.66% drop) relative to Ezzeldin et al. [17].

For comparison effects, two other multi-swarm algo-
rithms were developed in the present paper. The first one is 
named MS-COM and uses the algorithm COM-MCPSO and 
the second one is named MS-COL and uses the algorithm 
COL-MCPSO. For the three cases, Epanet 2.0 is the hydraulic 

simulator used to calculate the nodes pressure and the 
pipes velocities in the WDN.

Table 5 presents the optimized results achieved by the 
models COM-MCPSO, COL-MCPSO, and MSC-PSO. As 
it can be noted, the MSC-PSO, proposed in the present 
work has the best result. In the COL-MCPSO model, the 
performances of the slave swarms are better than that of the 
master swarm.

Fig. 6 shows the progress of the optimization using 
COM-MCPSO, where the master swarm reached a value 
of $126,275,495 at iteration 148, slave swarm 2 reached the 
same value at iteration 152, and slave swarm 1 reached a 
value of $127,113,005 at iteration 248. Each slave swarm 
evolves independently at each iteration.

 
Fig. 5. Layout of the two-source network (adapted from 
Kadu et al. [30]).

Table 3
Pipe length, node demand, and minimum node HGL

Pipe Length  
(m)

Node Demand 
(m3/min)

Minimum 
HGL (m)

1 300 1 – 100
2 820 2 – 95
3 940 3 18.4 85
4 730 4 4.5 85
5 1,620 5 6.5 85
6 600 6 4.2 85
7 800 7 3.1 82
8 1,400 8 6.2 82
9 1,175 9 8.5 85
10 750 10 11.5 85
11 210 11 8.2 85
12 700 12 13.6 85
13 310 13 14.8 82
14 500 14 10.6 82
15 1,960 15 10.5 85
16 900 16 9.0 82
17 850 17 6.8 82
18 650 18 3.4 85
19 760 19 4.6 82
20 1,100 20 10.6 82
21 660 21 12.6 82
22 1,170 22 5.4 80
23 980 23 2.0 82
24 670 24 4.5 80
25 1,080 25 3.5 80
26 750 26 2.2 80
27 900 – – –
28 650 – – –
29 1,540 – – –
30 730 – – –
31 1,170 – – –
32 1,650 – – –
33 1,320 – – –
34 3,250 – – –

Source: Kadu et al. [30].
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Table 4
Optimized diameters and costs for the two-source network

Pipe Kadu et al. [30] Suribabu [31] Ezzeldin et al [17] Present study

D (mm) D (mm) D (mm) D (mm)

1 1,000 1,000 900 900
2 900 1,000 900 900
3 350 400 400 350
4 250 200 250 300
5 150 150 150 150
6 250 250 200 250
7 800 1,000 800 800
8 150 150 150 150
9 600 450 400 450
10 700 600 500 500
11 900 1,000 900 750
12 700 800 700 700
13 500 500 600 500
14 450 350 450 500
15 150 150 150 150
16 450 500 500 500
17 350 300 350 350
18 400 450 350 400
19 450 150 200 150
20 150 150 150 150
21 600 900 700 700
22 150 150 150 150
23 150 450 500 450
24 400 300 350 350
25 500 750 700 700
26 200 150 250 250
27 350 300 300 250
28 250 250 300 300
29 150 150 200 200
30 300 300 250 300
31 150 150 150 150
32 150 150 150 150
33 150 150 150 150
34 200 150 150 150
Cost($) 126,368,865.00 140,177,210.00 125,843,995.00 125,019,790.00

Source: Adapted from Ezzeldin et al. [17].

Table 5
Optimized model costs

Model Master swarm Slave swarm 1 Slave swarm 2

COM-MCPSO 126,275,495 127,113,005 126,275,495
COL-MCPSO 130,479,465 127,113,005 129,052,290
MSC-PSO 125,019,790 125,019,790 127,473,335
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Fig. 7 shows the progress using the COL-MCPSO model, 
where the slave swarms had a better performance than the 
master swarm. Comparing COM-MCPSO and COL-MCPSO, 
the former presents better results and faster progress.

Fig. 8 shows the progress of cost optimization for the 
proposed model, MSC-PSO, which obtained the best value 
for pipe installation costs among compared models. In this 
model, the master swarm uses all information from the 
slave swarms.

The models were also tested without the initialization 
strategy for slave-swarm particle initialization, as show 
in Table 6, where the MSC-PSO model also stands out, 
although the optimized cost is still greater than when using 
the initialization strategy.

6.2. Esperança Nova network

Esperança Nova is a Brazilian town, located in the state 
of Paraná, with an estimated population of 1,875 people and 
an area of 138.56 km² (in 2016). The existing network has been 
in service for over 20 years, with some extensions in the last 
few years [28].

The network, shown in Fig. 9, is fed by a tank with an 
elevation of 14.0 m. It comprises 131 nodes and 166 pipes. 
The available diameters for the network are presented, with 
their respective costs and roughness coefficients, in Table 7.

Assuming a diameter of 100 mm for every pipe in the 
network, its maximum cost is found to be US $292,395.13. 
This value corresponds to vector gmax. The minimum cost, 
corresponding to vector gmin, is US $174,932.58. One of the 
constraints to be considered is the maximum flow velocity 
(vwmax( )), which is 3 m/s for every pipe.

The maximum distance (MaxDist) between vectors 
Point1 = (32, 32, …, 32) and Point2 = (100, 100, …, 100) is 
876.12 mm. The particles from slave swarm S1 were randomly 
distributed around Point1 within a radius of 525.67 mm (60% 
of MaxDist), while those from slave swarm S2 were randomly 
distributed around Point2 within a radius similar to that 
from S1.

Table 6
Results without the Two polar points strategy

Model Master swarm Slave swarm 1 Slave swarm 2

COM-MCPSO 127,351,100 127,351,100 135,654,620
COL-MCPSO 130,479,465 127,113,005 129,052,290
MSC-PSO 126,676,235 126,676,235 129,221,480

 
Fig. 6. Progress of cost optimization for the COM-MCPSO model.

 
Fig. 7. Progress of cost optimization for the COL-MCPSO model.

 
Fig. 8. Progress of cost optimization for the MSC-PSO model.
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The PSO parameters were, for all swarms, inertia 
weights wmax = 0.9 and wmin = 0.5, acceleration coefficients 
c1 = c2 = c3 = 2, maximum particle velocity (vU) = 25 mm, 
Penalty = US $1,000, population of each swarm (NP) = 200, 
and maximum number of iterations = 170.

Considering the prices from Table 7, the cost of the 
existing WDN is US $183,780.79, while the total cost using 
MSC-PSO optimization is US $175,921.10, with 69 s compu-
tation time in a computer using a 1.6 GHz Intel Core I5 CPU, 
presenting a cost reduction of 4.28%.

Table 8 shows a comparison between the results of 
optimizations carried out using the models studied in the 
present work, with a particle initialization strategy. The 
proposed improved model, MSC-PSO, presented the best 
result.

The MSC-PSO algorithm presents a result of US 
$176,001.66 when no strategy is used for the initial distribution 
of particles from the slave swarms.

As previously commented, there are seven parameters 
(w, c1, c2, c3, NP, vU, and Penalty) to be adjusted to achieve the 
optimal solution. Initially the parameters (w, c1, c2, c3) must 
be defined. Next, parameters NP, vU, and Penalty are found 

 
Fig. 9. WDN currently installed in Esperança Nova.

Table 7
Available diameters for the Esperança Nova network

Diameter  
(mm)

Cost  
(US $/m)

Roughness  
coefficient C (H-W)

32 13.31 130
50 14.30 130
75 17.82 130

100 22.24 130
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considering NP limited by Inequality (30), vU limited by 
Inequality (31) and Penalty limited by Inequality (33).

A value of 2 is attributed for parameters c1, c2 and c3. 
The dynamic parameter, w, starts at 0.9 and ends at 0.5. 
Table 9 presents the parameters used in the optimization 
process and a comparison with maximum values defined by 
Inequalities (30), (31), and (33) and Eq. (32).

7. Conclusions

In the present work, an optimization model for WDN 
was presented, with multiple swarms classified as master 
or slave, with a new algorithm, MSC-PSO, formulated as an 
MDNLP problem based on the PSO algorithm. Initialization 
strategies were employed for the particles, assuring a bet-
ter random distribution throughout the search space. The 
behavior of the swarms was analyzed during the optimiza-
tion process, with the proposed model, MSC-PSO, using the 
experience from the swarms to redirect particles in search of 
better results. The Free software Epanet 2.0 was used, mainly 
for calculations of nodal pressures and water velocities in 
the pipes. The model was applied in two WDN case studies, 
the two-source network, with better results than those found 
in other studies, and the Esperança Nova network, with a 
reduction of 4.28% in the cost of the network relative to what 
is currently installed. In both studied cases, the initialization 
strategy for slave swarm particles was proven efficient in 
the search for better results.

Considering the results achieved in each one of the cases 
studied, one can conclude that the proposed methodology, 
using multi-swarm optimization is very effective in solving 
this type of WDN optimization problem. Besides solving 
literature problems, it is also able to solve real problems, as 
the presented in the city of Esperança Nova. It seems to be 
very promising in solving large-scale problems.
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Symbols

AttMax — Maximum number of attempts
c1, c2, c3 — Cognitive and social acceleration coefficients
Cj — Hazen–Williams roughness coefficient for 

pipe j
cMOPSO — Cluster multi-objective particle swarm 

optimization
CP — Objective function of pipe installation costs
CPPi — Value of the penalized objective function for 

particle i
fG

M — Value of the objective function for particle 
Gbest

CPmax — Maximum total cost of the WDN
CPmin — Minimum total cost of the WDN
Dj — Diameter of pipe j
Dmax — Maximum available diameter for the pipes
Dmin — Minimum available diameter for the pipes
DSET — Set of available diameters for the network
fi — Best value of the penalized objective function 

for vector xi
g — Global best solution vector
gmax — Vector where all the pipes have diameter 

Dmax
hf — Head loss
i — Particle i
j — Pipe j
k — Node k
K — Number of demand nodes
Lj — Length of pipe j
MOEA/D — Multi-objective evolutionary algorithm based 

on decomposition
MOPSO — Multi-objective particle swarm optimization
n — Index of the diameter
N — Total number of pipes
ND — Total number of available diameters
NV — Number of hydraulic violations
NP — Total number of particles in the swarm
NSGA-II — Non-dominated Sorting Genetic Algorithm II

Table 8
Comparison of results optimized by each model

Model Master swarm Slave swarm 1 Slave swarm 2

COM-MCPSO 176,001.66 177,176.65 176,001.66
COL-MCPSO 176,139.86 177,176.65 176,140.00
MSC-PSO 175,921.11 175,921.10 175,921.00

Table 9
Definition of the parameters

Maximum values Used values 

Network CPmax $ N K ∆Dmax mm NP Penalty $ vU mm NP Penalty $

Two-source 651,575,025.00 34 26 100 159 16,707,051.92 75 150 15,000,000.00
Esperança Nova 292,395.13 166 131 25 221 1,488.02 25 200 1,000.00
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SPEA2 — Strength Pareto-Evolutionary Algorithm
pi — Vector of best position of particle i
pi,j — Component j of vector pi
pR — Vector of nodal pressures for solution g
pr(k) — Pressure head on node k
prmin(k) — Minimum pressure head on node k
q — Flow rate
r, r1, r2, r3 — Uniformly distributed random numbers in 

(0,1)
sMOPSO — Sigma-method multi-objective particle swarm 

optimization
t — Iteration number t
tmax — Maximum number of iterations
vi — Velocity vector of particle i
vi,j — Velocity component j of particle i
vw(j) — Flow velocity in pipe j
vU — Maximum velocity of the particle
vR — Solution vector for water velocities in 

solution G
WDN — Water distribution network
Penalty — Penalty value
w — Inertia weight
wmax — Maximum inertia weight
wmin — Minimum inertia weight
xi — Current position vector of particle i
xi,j — Diameter of pipe j belonging to particle i
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