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a b s t r a c t
In membrane desalination processes, such as brackish water and seawater desalination, the 
concentration polarization (CP) and surface fouling are remarkable features affecting the perfor-
mance of these filtration technologies. In this paper, a flux boundary scheme in the lattice Boltzmann 
method is proposed to predict the CP and inorganic fouling growth on the membrane surface. The 
proposed flux boundary scheme can be used to prescribe mass flux directly on the boundary, without 
the normal derivative calculation nor the boundary neighboring nodes interpolation. The flux 
boundary scheme is numerically validated with a number of cases including different flux boundary 
conditions. Successful applications of the proposed flux boundary scheme to large Peclet number 
convection–diffusion desalination processes reveal the CP and fouling phenomena. Results of the 
CP and permeate flux prediction are compared with a finite element method (FEM) benchmark in a 
complete rejection condition. Simulation results show that the CP is reduced with a rejection rate con-
sidered, that is, without the complete rejection assumption. A higher membrane rejection rate results 
in better product water quality, but this is accompanied by a higher CP and lower permeate flux. 
This conclusion indicates a trade-off between membrane selectivity (salt rejection) and membrane 
permeability (permeate flux). When applied to the simulation of inorganic fouling growth in mem-
brane desalination, the present flux boundary scheme provides results that agree well with reported 
results in terms of the crystal size, mass accumulation and concentration distribution. The proposed 
flux boundary scheme has a first-order accuracy for both straight boundaries and curved boundaries.

Keywords: Flux boundary scheme; Mass transport; Membrane filtration; Lattice Boltzmann method; 
Concentration polarization; Inorganic fouling

1. Introduction

Pressure-driven membrane filtration technologies for  
seawater desalination and wastewater treatment consume less 
energy than thermal distillation technologies [1]. However, 
membrane filtration is still limited by several aspects. For 
example, membrane filtration usually is feedwater quality 
sensitive, has relatively low production rate and suffers 
membrane fouling. Also, the inherent concentration polar-
ization (CP) reduces the transmembrane pressure and plays 
a vital role in triggering surface fouling. The CP arises when 
a portion of water solvent passes through the membrane and 

rejected solute ions tend to accumulate in the vicinity of the 
membrane surface. A steady-state concentration gradient 
will be established when the solute convection process is 
balanced by the solute back-diffusion process. Thus, the CP 
leads to an elevated solute concentration near the membrane 
surface. Although a variety of methods have been developed 
to predict the CP phenomenon, such as the classical stagnant 
film model [2], traditional numerical methods (finite differ-
ence method and finite element method) [3] and computa-
tional fluid dynamics methods [4,5], a complete membrane 
salt rejection (a 100% rejection rate) was usually assumed. 
For example, the reverse osmosis (RO) membrane has a 
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rejection rate up to 99.8%, and at least 96.875% is required 
to achieve the drinking standard (1,000 mg/L) for the  
permeate product in seawater desalination (the source water 
concentration assumed to be 32,000 mg/L). The membrane 
rejection rate directly affects the accumulation of salt ions 
near the membrane surface, thus the CP should vary with 
different salt rejection rates. So, it is of significance to incor-
porate the membrane rejection rate into the CP prediction 
model. Without the complete rejection assumption and with 
the membrane rejection rate considered, a portion of salt 
ions can be transported through the membrane to the per-
meate water side, and in this situation, the transport mass 
flux boundary should be adopted to describe the filtration 
process with the rejection rate considered.

Increased concentration near the membrane surface may 
cause over-saturation of sparingly soluble salts including cal-
cium sulfate dihydrate (gypsum), calcium carbonate (calcite) 
and barium sulfate (barite), especially in the desalination 
process of brackish water with higher recovery. When the 
mineral salt concentration exceeds the salts saturation, min-
eral scaling on the membrane surface (due to homogenous 
and heterogeneous mineral salt crystallization) decreases the 
available surface for water permeation, leading to a decline 
in overall flux and shortening of the membrane lifetime [4]. 
The main fouling mechanism is crystallization on the mem-
brane surface [6] by inorganic salts such as the aforemen-
tioned CaSO4, CaCO3 and BaSO4. During the pressure-driven 
membrane filtration process, ions from these most common 
inorganic salts are rejected and a CP layer will be formed, 
which results in an initial flux decline due to the increase 
of the osmotic pressure (or the transmembrane pressure). 
If nucleation of inorganic salts occurs in an over-saturation 
condition, a scaling layer will form on the membrane surface 
and induce a further flux decline. Inorganic fouling growth 
is often a slow kinetic process, and fouling mitigation 
strategies typically rely on thermodynamic solubility calcu-
lations and experimental trial and error. Numerical modeling 
could be an effective and economical method for the direct 
simulation of fouling growth and the characterization of the 
local flow and concentration fields.

The lattice Boltzmann method (LBM) has been developed 
as a viable and effective computational method for fluid 
dynamics simulation and chemical processes modeling. 
Different from conventional numerical methods, which 
are based on the discretization of macroscopic continuum 
equations, LBM stems from the kinetic theory and describes 
a system from the macroscopic scale [7]. Beyond success-
ful applications in complex fluid dynamics [8–10], LBM 
possesses wide applications in energy and environmental 
science (such as the heat and mass transfer in heterogeneous 
media [11]), chemical engineering (such as the chemical 
dissolution in porous media [12]), geology (such as the 
transport in saturated karst [13]) and so on. Recently, LBM 
has been applied to the prediction of microfiltration and 
water treatment processes. Kromkamp et al. [14] developed 
an LBM model to simulate the hydrodynamics of a suspen-
sion flow and the CP in cross-flow microfiltration. Torkkeli 
[15] reported numerical predictions of biofilm growth 
in porous media using LBM, which showed a promising 
applicability of this numerical method in the simulation of 
the coupled fluid dynamics and mass transport processes. 

Although boundary schemes for fluid dynamics have well 
been established, they are still largely based on a non-local 
finite difference treatment for mass transport processes. The 
implementation of the Dirichlet boundary condition in LBM 
is well known, however, the Neumann boundary condition 
is still tricky since the calculation of the normal derivative 
(the gradient normal to the boundary) in LBM cannot be 
directly accessed and implemented. One treatment in LBM 
is to convert the Neumann boundary to the Dirichlet bound-
ary using the finite difference approximation for the normal 
derivative [16].

In this paper, a novel mass flux boundary scheme 
is proposed in LBM without using the finite difference 
approximation or the interpolation treatment shown in 
existing boundary schemes. The proposed boundary scheme 
is tested and compared with benchmark cases. A membrane 
desalination CP prediction model incorporating the salt 
rejection rate using the proposed mass flux boundary scheme 
is developed. Thereafter, the developed boundary scheme is 
applied to study inorganic fouling growth on the membrane 
surface. Standard single-relaxation-time LBM is used in 
benchmark cases and application models.

1.1. Background

The convection–diffusion equation for a physical 
quantity without sources or sinks can be shown in Eq. (1).

∂
∂

+ ∇ ⋅ − ∇( ) =C
t

C D Cu 0  (1)

In Eq. (1) C is the variable of interest (such as the species 
concentration for mass transfer, or temperature for heat 
transfer), D is the diffusivity or diffusion coefficient (such as 
mass diffusivity for particle motion, or thermal diffusivity for 
heat transport), and u is the given velocity that the quantity is 
moving with. A general mathematical definition of total flux 
Jσ due to convection and diffusion can be given by Eq. (2). 
In this paper, flux is by default heat flux in heat transfer or 
mass flux in mass transport, instead of flow mass flux ρu in 
fluid dynamics.

J uσ = − ∇C D C  (2)

Flux normal to the boundary (Jσ · n) is critical in the 
numerical simulation of processes including heat transfer in 
fluid, mass transport in porous media, chemical reactions, 
and the membrane filtration, and so on. To prescribe the heat 
or mass flux on the boundary, traditional finite-difference 
schemes are generally required to compute the tempera-
ture gradient or the concentration gradient. For LBM, the 
unknown post-streaming distribution functions on the 
boundary can also be calculated by the interpolation of 
the post-collision distribution functions on the bound-
ary-neighboring nodes to continue to numerical calculation 
[17]. In finite difference type boundary schemes and nodes 
interpolation type boundary schemes, boundary-neighboring 
nodes besides boundary local nodes will be involved to cal-
culate the unknown post-streaming distribution functions 
on the boundary. However in this study, the proposed flux 
boundary scheme involves the distribution functions at local 
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boundary nodes only without using boundary-neighboring 
nodes, and such local on-site nodes boundary schemes are 
desirable to deal with problems with complex geometries, 
such as mass transport in porous media [17]. As a result, an 
on-site flux boundary scheme in LBM without the finite dif-
ference approximation or the interpolation treatment should 
be useful for the simulation of convection–diffusion pro-
cesses with complex geometries involved.

1.2. Existing flux boundary schemes in LBM

The flux boundary ∂Ω can be described by a Robin 
boundary (or called third type boundary), which is a 
weighted combination of the Neumann boundary and the 
Dirichlet boundary, as seen in Eq. (3).

α α α1 2 3 0∂
∂

+ = < < ∈∂
C C t tsn

x, , Ω  (3)

In Eq. (3), n is the unit normal vector pointing outward of 
the boundary ∂Ω from the solid phase to the fluid phase, coef-
ficients αk (k = 1, 2, 3) should be given functions of space x and 
time t, and ts is a pre-specified simulation time. Specifically, 
if α1 = 0 and α2 ≠ 0, Eq. (3) represents a Dirichlet boundary 
condition; if α1 ≠ 0 and α2 = 0, Eq. (3) represents a Neumann 
boundary condition. 

In LBM, the Neumann boundary can be transformed 
into the Dirichlet boundary by the finite difference method 
to approximate the normal derivative [16,18]. Another treat-
ment in LBM is to calculate the unknown post-streaming 
distribution functions on the boundary by interpolating the 
neighboring boundary nodes [17,19]. Taking the first treat-
ment as an example, the normal derivative of the concen-
tration in a mass transport process can be approximated by 
the unknown wall concentration Cw at the wall node xw and 
the known concentration Cf at the neighboring fluid node xf 
along the normal direction, as shown in Eq. (4).
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Note that in the right-hand side of Eq. (4), the numerator 
of the finite difference approximation should always be 
(Cf – Cw) considering the direction of the unit normal vector 
n. Then the calculated wall concentration Cw will be imposed 
to calculate the unknown post-streaming distribution func-
tions following exactly the Dirichlet boundary treatment by 
an anti-bounce-back scheme, as shown in Eq. (5) [16,18,20].

g x t g x t w C
i fi fi w* , ,+( ) = − ( ) ++δ 2t  (5)

In Eq. (5), gi
+ is known as the post-collision distribution 

function at node xf , gi* is the unknown post-streaming 
distribution function in the opposite direction of gi

+, and wi 
is the weight coefficient for i = 0 ~ 8. For interpolation type 
boundary schemes, unknown post-streaming distribution 
functions can be calculated by interpolating known post- 
collision distribution functions at boundary-neighboring 
nodes with a series of carefully chosen interpolation 
coeffi cients [17–19]. However, interpolation-based schemes 

for treatment of curved boundaries destroy mass conservation 
near the boundary and the interpolation-free approaches in 
LBM for curved boundaries can improve the accuracy of the 
computed results [21].

Yoshino and Inamuro [22] proposed a flux boundary 
scheme in LBM which can be used to impose the flux 
boundary directly without using the finite difference nor 
the interpolation treatment. However, this boundary scheme 
was based on an assumption that mass flux of σ-species 
normal through the boundary is zero, and the unknown wall 
concentration at the boundary Cw is specified by Eq. (6).
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The calculated wall concentration Cw will be used to 
calculate the unknown distribution functions by gi = wiCw 
(ei · n > 0). Since this flux boundary scheme assumes that 
normal flux through the boundary is zero, it could be called a 
zero-flux boundary scheme. This zero-flux boundary scheme 
can be used to predict the membrane CP under a complete 
rejection assumption (a 100% rejection rate).

2. Development of the present flux boundary scheme

2.1. Lattice Boltzmann model

Mass transport of salts ions in feed water during mem-
brane filtration can be described by the convection–diffusion 
process. The feed water is assumed to be incompressible in 
this study due to the low cross-flow velocity (about 0.1 m/s) 
in the feed channel. Two sets of particle distribution func-
tions are employed to simulate the convection–diffusion 
process. One set of distribution function is adopted to solve 
fluid dynamics and another set of distribution function is 
adopted to solve mass transport. The evolution of distribu-
tion functions is governed by the lattice Boltzmann equations 
[16–18] as shown in Eq. (7).

f t t t f t f t f t

g t t

i i i i i
eq

i i

x e x x x

x e

+ +( ) − ( ) = − ( ) − ( ) 

+

δ δ
τ

δ

, , , ,

,

1

++( ) − ( ) = − ( ) − ( ) 










δ
τ

t g t g t g ti
s

i i
eqx x x, , ,1  (7)

In Eq. (7), fi(x,t) and gi(x,t) are the distribution functions 
for the fluid field and the concentration field, respectively, 
at space x and time t, and fi

eq and gi
eq are the equilibrium 

distribution functions for fi and gi, respectively. The subscript 
of the distribution functions i is used to distinguish lattice 
speed directions, ei denotes the lattice velocities, δt is the 
time increment, τ and τs are the non-dimensional relaxation 
times for fi and gi, respectively. The kinematic viscosity ν 
and the diffusivity (diffusion coefficient) D are related to the 
dimensionless relaxation times by Eq. (8).
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The equilibrium distribution functions must be defined 
appropriately so that the mass and momentum are conserved 
[23]. For small fluid velocities and small Mach numbers, the 
equilibrium distribution functions in Eq. (7) can be defined as 
Eq. (9) [22] in order to recover the Navier–Stokes equations 
and the convection–diffusion equation.
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In Eq. (9), u is the fluid velocity, ρ is the fluid density, 
C is the solute mass concentration, and wi is the weight 
coefficient. Also, the lattice sound speed cs = c/√3, and in 
which the lattice speed c = δh/δt = 1 for a standard square 
lattice, and the lattice spacing δh = δx = δy and the lattice time 
step δt = 1. Weight coefficients w0 = 4/9, wi = 1/9 for i = 1~4, 
and wi = 1/36 for i = 5~8 for a D2Q9 lattice model. The discrete 
velocity ei is given by Eq. (10) as follows:
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The macroscopic properties, including the fluid density 
ρ, the fluid velocity u, the fluid pressure P, and the concen-
tration C, are readily available from the distribution functions 
as shown in Eq. (11).
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Both the Navier–Stokes equations and the convection–
diffusion equation can be recovered from the equilibrium 
distribution functions shown in Eq. (9) via the Chapman–
Enskog analysis with a second-order accuracy [24,25]. In 
LBM, the domain and the boundary are discretized and the 
distribution functions are solved locally at each node by 
the collision process and the streaming process, and then the 
macroscopic parameters are determined following Eq. (11).

2.2. Present flux boundary scheme

Flux is an important physical variable in heat transfer 
and mass transport involving both convection and diffusion. 
Chai and Zhao [26] proposed a numerical method to calcu-
late boundary mass flux in the LBM framework, however, 
this method was not extended as a boundary scheme to 
prescribe boundary flux. Physically, heat and mass flux can 
be calculated directly through the flux definition shown in 
Eq. (2), and the gradient of the variable on boundary nodes or 
in interior lattice nodes can be computed by Eq. (12) [17,27].
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In this study, Eq. (12) is slightly different than the form 
in the study proposed by Huang and Yong [17] since the 
lattice speed is included in the discrete velocities ei as shown 
in Eq. (10). After a rearrangement of Eqs. (12) and (13) can 
be obtained.

g C h
t
Ci i

i
e n u n

=
∑






 ⋅ − ∇









 ⋅

0

8 2

3
= τ δ

δ
 (13)

The present flux boundary scheme is based on a finding 
that total flux normal through the boundary equals the 
projection of the first-order moment of distribution func-
tions on the surface normal, and in which, the known 
distribution functions should be in a post-collision form 
while the unknown distribution functions should be in a 
post-streaming form, as shown in Eq. (14).

g g C D Ci i i i
i i
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e n e n
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⋅ >

+

⋅ ≤
∑ ∑

0 0
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)) ⋅ = ⋅n J nσ  (14)

The detailed derivation of Eq. (14) can be seen in 
Appendix A. In the present flux scheme, the unknown 
post-streaming distribution functions can be directly cal-
culated from the post-collision distribution functions and 
the prescribed flux constraint. Thus, the calculation of the 
normal derivative in flux Jσ with the finite difference method 
or boundary-neighboring nodes interpolation treatment can 
be avoided. Although the derivation of Eq. (14) in Appendix 
A utilizes the finite difference method, the implementation of 
this boundary scheme to calculate the unknown post-stream-
ing distribution functions only involves boundary local nodes.

The very important step is to construct approximation 
equations for unknown distribution functions to close the 
system with multiple unknown variables, since Eq. (14) 
only provides one equation. One approximation method 
for unknown distribution functions was proposed by 
Yoshino and Inamuro [22]. In the present study, the same 
approximation method is adopted and test cases demon-
strate that the approximation is still valid although the 
present boundary scheme removes the zero-flux assumption. 
On the boundary nodes, unknown distribution functions are 
approximated by Eq. (15) [22].

g wCi i w i= ⋅ >for e n 0  (15)

The approximation equation shown in Eq. (15) is actually 
the equilibrium distribution function for the concentration 
field shown in Eq. (9) with the fluid velocity term elim-
inated. It can be demonstrated that if the concentration 
field equilibrium distribution functions are used directly as 
approximation equations without eliminating the velocity 
term, the final result is the same as using reduced approxi-
mation equations shown in Eq. (15). Another approximation 
method to close the system was proposed in [28], which 
stated that the non-equilibrium portion of the distribution 
functions on the boundary are equal in magnitude but take 
on opposite signs in reverse directions.
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The proposed flux boundary scheme is explained using 
a straight top boundary illustration in Fig. 1. The projection 
of the first-order moment of the distribution functions on the 
boundary normal n can be calculated following Eq. (14) and 
shown in Eq. (16).

− + +( ) + + +( ) = −+ + +

⋅ ≤ ⋅ >

c g g g c g g g J

i i
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0
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1 2444 3444 1 244 344 yy  (16)

In Eq. (16), the lattice speed c = 1, Jy is the flux magni-
tude through the top boundary. Substitute the approximate 
equations for g4, g7 and g8 following Eq. (15) into Eq. (16), the 
wall concentration Cw can be calculated, as shown in Eq. (17).
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The unknown post-streaming distribution functions g4, g7 
and g8 can be calculated by the approximation equation in 
Eq. (15) and the calculated wall concentration Cw in Eq. (17). 
From Eq. (14) and as discussed in Appendix A, the general-
ized calculation method for the wall concentration Cw can be 
given by Eq. (18).
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The calculation of the wall concentration by Eq. (18), as 
well as the calculation of the unknown distribution functions 
by Eq. (15), shows that the present boundary scheme only 
involves boundary local nodes. Such a local boundary 
scheme is desirable in simulating transport processes in 
complex geometries, such as in porous media.

2.3. Flux scheme incorporating the rejection rate

The membrane mass rejection rate can be defined as 
Rej = (1–Cp/C0) × 100%, and in which Cp is the permeate water 
concentration, and C0 is the feed water concentration. For a 
complete rejection membrane, the rejection rate Rej = 100% 
since the permeate flux salinity Cp = 0. Usually the perme-
ate flux (volumetric flux, with a unit of m s–1) through the 
membrane can be measured, and salt ion mass flux (rate of 
mass flow per unit area, with a unit of kg s–1 m–2) through the 

membrane can be treated as a convection process. Also, assume 
that the mass flux is constant through the membrane, and 
there is no accumulation of salts ions within the membrane. 
This assumption indicates a constant salt concentration and a 
negligible concentration gradient in the membrane. Since the 
concentration gradient is negligible through the membrane, 
the mass diffusion process is ignored and only the mass 
convection process is considered. Thus, based on former 
discussions, the mass flux boundary scheme incorporating 
the rejection rate can be designed and shown in Eq. (19).
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3. Validation of the present flux boundary scheme

Cases with different types of flux boundary conditions 
are investigated to validate the present flux boundary 
scheme. These flux boundary conditions cover the general 
Neumann boundary (or the diffusive flux boundary), the 
zero normal derivative Neumann boundary (or the con-
vective flux boundary), and the total flux boundary (or the 
convective plus diffusive flux boundary).

3.1. Neumann boundary

The Neumann boundary is used to prescribe the normal 
derivative of a variable on the boundary. A pure mass dif-
fusion problem is invested with top and bottom boundary 
conditions shown in Eq. (20). The rectangular simulation 
domain L × H is prescribed with a Dirichlet boundary at 
the bottom boundary (y = 0) and a Neumann boundary at 
the top boundary (y = H). Both the left boundary (x = 0) and 
the right boundary (x = L) are periodic boundaries. Since it 
is a pure diffusion problem, there is no fluid flow through 
the simulation domain, that is, u = 0 in Eq. (14). Also, from 
Eq. (20), the concentration derivative normal to the top 
boundary (y = H) varies sinusoidally along the horizontal 
boundary in x direction. 
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In Eq. (20), the wave number β = π/24. The system is 
analytically solvable and the exact solution of this problem is 
shown in Eq. (21) [18].
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The height of the simulation domain H = 20, and the length 
of the simulation domain L = 48. The Dirichlet boundary 
condition is applied on the bottom boundary according to 
Eq. (5) with concentrations C0 = 1 and Cs = 0.01 following 
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the study by Chen et al. [18]. All simulation parameters 
are in lattice units (dimensionless), and the conversion 
procedures between physical units and LBM units are 
shown in Appendix B. When the developed flux bound-
ary scheme in Eq. (18) is applied on the top wall for the 
Neumann boundary, the calculated wall concentration can 
be shown in Eq. (22).
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The simulation result can be expressed by the concen-
tration distribution at five different horizontal positions 
(x = 1/4L, 3/8L, 1/2L, 5/8L, 3/4L) from the bottom wall to 
the top wall. Fig. 2 shows simulation results using differ-
ent boundary schemes and indicates that the predicted 
concentration distribution using the present flux boundary 
scheme is identical to the result using the finite difference 
scheme, and both results match well with the analytical 
solution.

Besides the above pure diffusion case, a convection–
diffusion process is tested for further validation. The fluid 
flow is added for the convection–diffusion transport with a 
Reynolds number Re = 10 and a Peclet number Pe = 10. For 
the flow field, a pressure-driven Poiseuille flow is assumed 
for the x direction (horizontal direction) velocity with a 
maximum value of umax = 0.0833 with a lattice unit. The 
bottom boundary (y = 0) is a no-slip boundary and the top 
boundary is a velocity boundary with ux = 0 and uy = 0.001 
with a lattice unit. The adoption of the velocity boundary uy 
on the top boundary is intended for mass convection through 
the boundary. For the concentration field, all parameters and 
boundary conditions stay the same as in the pure diffusion 
case following Eq. (20). Thus, the top boundary (y = H) of 
the concentration field is a mass flux boundary involving 
both convection and diffusion. The left boundary (x = 0) and 
the right boundary (x = L) are periodic boundaries for both 
flow field and concentration field.

Concentration distributions at five different horizontal 
positions (x = 1/4L, 3/8L, 1/2L, 5/8L, 3/4L) from the bottom 
wall to the top wall with the finite difference scheme and 
the present flux scheme can be seen in Fig. 3. Results in the 
figure show that the present boundary scheme matches 
with the finite different scheme, and the total concentration 
in the simulation domain is reduced due to mass convection 
through the top boundary. However, at the top boundary, 
the concentration gradients at different horizontal positions 
are the same as the pure diffusion case because of the same 
constraint of Neumann boundary shown in Eq. (20).

3.2. Robin boundary

The Robin boundary is a weighted combination of the 
Dirichlet boundary and the Neumann boundary, which 
can be used to prescribe the total flux boundary composed 
of convection flux and diffusion flux. This validation case 
focuses on a time-dependent convection–diffusion problem 
in a two-dimensional domain L × H with constant mass flux 
as the input from the inlet (x = 0). For the concentration field, 
the detailed initial and boundary conditions can be described 
by Eq. (23). For the flow field, the inlet (x = 0) is a velocity 
boundary. The bottom boundary (y = 0) and the top boundary 
(y = H) of the simulation domain are symmetric boundaries 
for both the flow field and the concentration field.
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In Eq. (23), D = 0.01 m2/s, Cf = 50 mol/m3, and L = 1 m. 
The non-dimensional Peclet number Pe = uxL/D = 1 for this 
case. The constant value ux at the velocity inlet boundary 
can be calculated using the Peclet number. The Neumann 
boundary defined in Eq. (23) at the outlet (x = L) indicates 
that there is no diffusion flux through this boundary. When 
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t is sufficiently small, the above problem has an asymptotic 
solution shown in Eq. (24) [17].
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In Eq. (24), exp is the exponential function and erfc is the 
complementary error function. The present flux boundary 
scheme Eq. (14) is used to prescribe the Robin boundary at 
the inlet (x = 0) and the Neumann boundary at the outlet 
(x = L). The simulation results of concentration distribution 
with the present flux boundary scheme matches well with 
the analytical asymptotic solution at different time spots, 
as seen in Fig. 4. These results show that the concentra-
tion on the left inlet boundary increases with time, and it is 
foreseeable that the concentration in the whole domain will 
finally reach Cf if the simulation time is long enough.

The accuracy of the boundary scheme is examined by 
the relative l2-error norm vs. the mesh size. The relative 
error norm in the whole computational domain is defined 
with Eq. (25).
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 (25)

The summation in Eq. (25) covers all nodes in the sim-
ulation domain. Concentrations Cnum and Cana denote the 
numerical value and the analytical solution, respectively. 
The simulation time t = 5 s, and four different concentration 
relaxation times τs = 0.05, 0.8, 1.0, 2.0 are selected for a better 
evaluation. For each relaxation time, eight different meshes 
with the x direction node number NX = 10, 20, 30, …, 80 are 
adopted. The relative error calculation results are shown in 
Fig. 5, which indicates that the new numerical scheme has 
a convergence order of 1. The convergence order evaluation 

is within expectations since the approximation equations 
for the unknown distribution functions in Eq. (15) are first 
order. A higher convergence order, if desirable, may be 
achieved with a higher order algorithm as a replacement of 
Eq. (15), but it is beyond the scope of the current paper as a 
pioneer of this type of flux boundary scheme.

3.3. Reaction boundary

To further validate the proposed flux boundary scheme, 
a reaction boundary in a rectangular domain is selected and 
for which there exists an analytic solution. The simulation 
domain is rectangular with the length and the height as 
L × H. Refer to Fig. 6 and Eq. (26), the reaction takes place 
at the top boundary (y = H) with first-order linear kinetics, 
which is actually a Neumann boundary. At the bottom 
boundary (y = 0) and the right boundary (x = L), zero concen-
tration gradient normal to the boundary is specified. Solute 
is allowed to diffuse into the domain from the left boundary 
(x = 0), thus there should be a Dirichlet boundary condition 
(C = C0) specified there.
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In Eq. (26), the reaction rate kr = 0.1, the diffusion 
coefficient D = 1/6, the equilibrium concentration Ceq = 1, 
the inlet concentration C0 = 10, the length of the simulation 
domain L = 100, and the height of the simulation domain 
H = 80 (all parameters are dimensionless). The analytical 
solution for C(x,y) can be obtained by separation of variables, 
as shown in Eq. (27) [29].
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In Eq. (27),
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Fig. 4. Transient concentration in different simulation durations. Fig. 5. Relative error vs. mesh size in the Robin boundary case.
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The variable βn in Eqs. (27) and (28) can be determined 
from the transcendental equation by Eq. (29).

β βn n
rH H
k H
D

( ) ( ) =tan  (29)

The left Dirichlet boundary is prescribed using Eq. (5), 
the right and the bottom zero normal gradient boundar-
ies are prescribed using the present boundary scheme in 
Eq. (14). Two boundary schemes are used on the top reac-
tion boundary for comparison purpose, Kang et al.’s [28] 
(improved) reaction boundary scheme and the present flux 
boundary scheme Eq. (14). The analytical result as well as the 
simulation results for the solute concentration at steady state 
is shown in Fig. 7. From the figure, we can see that near the 
top reaction boundary, simulation result by the present flux 
boundary scheme matches better with analytical result.

The accuracy of the boundary scheme is examined by the 
relative l2-error norm vs. the mesh size following Eq. (25). 
Two reaction rates are selected as kr = 0.1 and 0.01. For each 

reaction rate, seven different mesh plans with y direction 
node number NY = 40, 60, 80, 100, 120, 140, 160 are adopted. 
The relative error calculation results are shown in Fig. 8, 
which indicates that although both Kang et al.’s [28] reaction 
boundary scheme and the present flux boundary scheme 
have an accuracy order of 1, the present flux boundary 
scheme has lower relative error for both of the reaction rates.

4. Application of the present flux boundary scheme

4.1. Treatment of the large Peclet number problem

In many mass transport cases, small particles such as 
ions in dilute solution have a very small diffusion coefficient. 
For example, the self-diffusion coefficients of the five major 
ions in seawater at 25°C are all in the order of 1 × 10–9 m2/s [30]. 
Following the conversion procedures shown in Appendix B 
between lattice units and physical units, the solute relaxation 
time can be calculated by using Eq. (30).
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The diffusion coefficient DLBM with a lattice unit in 
Eq. (30) can be calculated from the diffusion coefficient 
DPHY = 1.5 × 10–9 m2/s with a physical unit. Then the calcu-
lated relaxation time τs = 0.5008, which is actually near the 
instability value of 0.5 in LBM [16]. Sometimes, in a coupled 
simulation of the Navier–Stokes equations and the convec-
tion–diffusion equation, the correlation between the fluid 
field relaxation time τ and the concentration field relaxation 
time τs should be strictly controlled to accurately repre-
sent the ratio of convective mass transfer to diffusive mass 
transport. The Peclet number is defined to be the ratio of 
advection by the flow for a physical quantity to the rate of 
diffusion by an appropriate gradient, as shown in Eq. (31).
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L u
D

L u
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In Eq. (31), L is the characteristic length, u is the local flow 
velocity, D is the mass diffusion coefficient, ν is the kinematic 
viscosity, and Sc is the Schmidt number. Take seawater for 
example, the kinematic viscosity is ν = 1 × 10–6 m2/s, and the 
calculated Schmidt number is Sc ≈ 667. From Eq. (31), for a 
channel flow with Re = 100, the calculated Peclet number 
Pe ≈ 66700. In a mass transport process with such a large 
Peclet number, the mass diffusion can actually be ignored in 
the fluid flow direction in the membrane filtration channel 
since mass convection is dominant. However, in other cases, 
such as mass transport in membrane filtration, although bulk 
flow mass transport is convection dominant, boundary layer 
mass transport is not necessarily convection dominant. Mass 
diffusion would play an important role near the boundary 
layer since permeate flow induced convection through the 
membrane is comparable with the concentration gradient 
induced back diffusion. Thus, the coupled simulation of such 
a complex convection–diffusion process is challenging with 
a regular LBM routine.
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Perko and Patel [31] developed an effective lattice 
Boltzmann scheme to deal with the instability problem 
featuring large diffusion-coefficient heterogeneities and 
high-advection in convection diffusion processes. The basic 
idea is to divide the physical diffusion coefficient into a 
reference value Dref, which is constant over the entire domain, 
and a fluctuating or residue value D̂, which represents a 
deviation from the reference (D = Dref + D̂). Then, the fluctu-
ating diffusion part is transferred to the advection term by 
introducing a diffusion velocity ud, as shown in Eq. (32).

J uC D D C D C u u Cd= − +( )∇ = − ∇ + +( )ref ref�  (32)

In Eq. (32), the diffusion velocity can be calculated 
by Eq. (33).

u D C
Cd = −
∇�

 (33)

For a transport process with a very small diffusion 
coefficient and a very large Peclet number, such as in the 
seawater desalination, the reference diffusion coefficient can 
be selected to be a large value for a better numerical stabil-
ity, and then the calculated residue fluctuating diffusion part 
should be negative. A validation case is adopted to investi-
gate the feasibility of the present boundary scheme in the 
application of the Peclet number transport process.

This validation case focuses on a pure mass diffusion 
process in a simulation domain comprised of three regions, 
as seen in Fig. 9. The first and last 2 cm regions have a very 
small diffusion coefficient Dlow = 1 × 10–11 m2/s, while the 
middle 0.06 m region has a much larger diffusion coeffi-
cient Dhigh = 2,000Dlow. The reference diffusion coefficient 
is selected to be Dlow for the whole domain. The initial 
concentration C(x,t0) = 0.1 mol/m3. The left boundary of the 
simulation domain is prescribed with a constant concentra-
tion as a Dirichlet boundary, and the right boundary is a zero 
diffusive flux Neumann boundary (zero gradient normal to 
the boundary). Symmetric boundaries are assumed to the top 
and the bottom boundaries. Simulation time is selected to be 

500 d. The reference solution was obtained in reference [31] 
using the commercial FEM-based COMSOL Multiphysics 
software.

Simulation results of the present flux boundary scheme, 
as well as the finite difference boundary scheme are 
compared with the reference solution as shown in Fig. 10. 
Well match of results from a variety of numerical methods 
and boundary schemes demonstrates the feasibility of the 
present flux boundary scheme in the simulation of large 
Peclet number process, which lays a foundation for the 
applications of the present flux boundary scheme in the CP 
prediction and the inorganic fouling growth simulation.

4.2. CP predictions in the seawater desalination

Pressure-driven RO seawater desalination is a convection 
dominant large Peclet number process since the diffusion 
coefficient of salt ions in the feed flow is extremely small 
(in an order of 10–9 m2/s). First, the zero-flux boundary is 
prescribed on membrane boundaries located at the top and 
the bottom of the desalination channel, which means there 
is no mass flux through the membrane and all salt ions are 
rejected by the membrane. The desalination channel height 
H = 1 mm (in y direction) and the channel length L = 1 cm 
(in x direction). The width of the channel is assumed to 
be sufficiently large in spanwise direction (in z direction), 
and thus a 2D simulation domain is targeted to represent 
the desalination channel. The transmembrane permeate 
flux vw = Per (ΔP–Δπ) as given by Li et al. [32], in which 
Per = 7.3 × 10–12 m/(s × Pa) is a permeability constant of the RO 
membrane, ΔP = 5.5 × 106 Pa is the transmembrane pressure, 
and Δπ is the osmotic pressure between the feed side and 
the permeate side of the RO membrane. The concentration 
for the feed seawater C0 = 32,000 mg/L, the diffusion coef-
ficient for salt ions in the feed seawater D = 1.5 × 10–9 m2/s. 
The pressure gradient for the feed flow in the desalination 
channel dP/dx = –800 Pa/m.

A bounce-back scheme in LBM is used to prescribe the 
zero-flux boundary for a comparison purpose. The bounce-
back scheme is usually used to prescribe the zero-flux 
boundary when solving the convection–diffusion equation 
to mimic the non-slip boundary condition in solving the 
NS equations [33]. All simulation parameters have same 
values with those in the published FEM benchmark case 
[34]. Simulation results of the CP and permeate flux, as well 
as published benchmark results [34], are shown in Fig. 11.

Fig. 8. Relative error vs. mesh size in the reaction boundary case.
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Fig. 11 shows that results from the present flux boundary 
scheme match better than the bounce-back scheme with the 
published FEM results especially at the vicinity of the inlet. 
For the bounce-back scheme, the post-streaming distribution 
functions are calculated using the post-collision distribution 
functions in the collinear opposite directions only (along the 
link direction). This means all mass particles are bounced 
back without any slip at the membrane boundary. However, 
the no-slip constraint is released in the present flux 
boundary scheme, in which the post-collision distribution 
functions in multiple non-collinear directions are accounted 
to calculate the post-streaming distribution functions. Since 
the no-slip constraint of the bounce-back boundary scheme 
delays the moving of the near boundary particles toward the 
downstream, the predicted CP near the inlet is higher than 
that using the present flux boundary scheme. While far from 
the inlet and near the steady state CP region, the difference 
vanishes for the two schemes. This can explain the better 
match of present flux boundary scheme near the inlet region 
shown in Fig. 11.

The concentration distribution on the cross section at the 
middle position of the channel length is plotted in Fig. 12. 
From Fig. 12, the CP boundary layer thicknesses are almost 
same for both of the LBM zero-flux boundary schemes, which 
are about 0.07 mm.

The CP prediction with the membrane salt rejection rate 
varying from 50% to 100% can be performed by applying 
the mass flux boundary scheme coupled with the rejection 
rate as shown in Eq. (19). Prediction results shown in Fig. 13 

indicate that the CP is lower with a lower membrane rejec-
tion rate, since more salt ions will be transported through 
the membrane in a lower rejection rate situation and thus 
less amount of salt ions can be accumulated near the mem-
brane. Also, permeate flux prediction results in Fig. 13 show 
that the membrane designed for higher salt rejection has 
lower permeate flux. This conclusion means that a trade-off 
exists between the membrane selectivity (salt rejection) and 
the membrane permeability (permeate flux), as reported by 
Park et al. [35] that highly permeable membranes lack the 
selectivity and vice versa. Detailed review and discussion 
about the permeability–selectivity trade-off for synthetic 
membranes can be seen in the study by Park et al. [35].

The CP boundary layer thickness is almost invariant with 
different salt rejection rates, as can be seen in Fig. 14.

4.3. Fouling growth in the seawater desalination

The present boundary scheme is also easily applicable 
for curved boundaries with staircase approximations. In 
this section, the developed boundary scheme is applied to 
study inorganic fouling growth on the membrane surface in 
seawater desalination.

Inorganic fouling growth is often a slow kinetic pro-
cess, and the development of fouling mitigation strategies 
typically relies on thermodynamic solubility calculations 
and experimental trial and error. In this study, the growth 
simulation of a gypsum crystal as representative inorganic 
fouling is targeted. The fouling growing model on the mem-
brane surface as well as gypsum growth kinetics in the LBM 
framework was discussed by the researchers of the present 
study in a former publication [36]. Gypsum growth kinetics 
depends highly on the solute concentration around growing 
fouling. Thus, the curved boundary condition at the fluid–
solid interface is critical in simulating the fouling size and 
fouling morphology. In this fouling growth simulation, the 
first-order kinetic-reaction model [37] shown in Eq. (34) is 
used at the fluid-fouling interface.

D C
n

k C Cr s
∂
∂

= −( )  (34)

In Eq. (34), the diffusivity D = 1.5 × 10–9 m2/s, which is the 
same as the diffusivity used in the CP model, C is the sol-
ute concentration at the interface, Cs is the solute saturation 

Fig. 10. Concentration in the diffusion-coefficient heterogeneity 
case.

Fig. 11. CP and permeate flux in a plain channel.

Fig. 12. Concentration at the channel middle cross-section in 
different boundary schemes.
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concentration, kr is the local reaction-rate constant, and n is 
the direction normal of staircase boundary pointing toward 
the fluid phase. From gypsum growth kinetics [36], the 
local reaction-rate constant kr is equal to the mass transfer 
coefficient (km = 2.949 × 10–5 m/s) for a diffusion-controlled 
crystallization process. The saturation concentration Cs of 
calcium sulfate is calculated to be 2.071 kg/m3 at a given tem-
perature 25°C [36]. The concentration of CaSO4 in seawater 
near the membrane surface Cw = SI × Cs, in which SI is the 
supersaturation ratio. The gypsum crystal growth simulation 
is performed with a supersaturation ratio of 2.

From Eq. (14) and discussions in Appendix A, the term 
(–D∂C/∂n) is diffusion flux flowing out of the solid phase 
toward the fluid phase, thus the term (D∂C/∂n) on the left-
hand side of Eq. (34) represents reaction flux of the gypsum 

ions from the fluid phase to the solid phase to provide ions 
for continuous nucleation and crystallization. In a previous 
publication [36], the curved reaction boundary was pre-
scribed using Kang et al.’s [37] reactive transport method. 
In this paper, the proposed mass flux boundary scheme is 
used to prescribe the reaction boundary.

The implementation of the present boundary scheme 
is illustrated in Fig. 15. In the figure, the rosette structure 
of the surface gypsum crystal is illustrated by a circular 
structure, which is then numerically approximated by zig-
zag staircases. Indicators will be defined to find and mark 
different types of cells in the simulation domain. 

All staircase edges at the interface between the solid 
boundary cell and the fluid boundary cell are reaction edges 
and applied with the reaction boundary shown in Eq. (34). 
Substitution of the reaction boundary Eq. (34) into the 
present boundary scheme Eq. (14) yields Eq. (35).
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Eq. (35) indicates that there is always a negative sign 
on the term kr(C – Cs) at reaction edges with different unit 
normal vectors n. This means that reaction mass flux is 
always in the opposite direction of the unit normal vector n, 
and flows from the fluid phase toward the solid phase.

Simulation results of crystal size and mass accumulation 
using the present boundary scheme and Kang et al.’s [37] 
reaction boundary are shown in Fig. 16. The dashed cross-
lines in Fig. 16 show the initial nucleation positions, which 
clearly indicate that the crystals are more prone to grow in 
the opposite direction of the feed flow (flow direction is from 
left to right). This conforms to experimental observations [38] 
and the previous numerical study [36], in which growth of 
gypsum crystals is more prone in the direction opposite to 
that of the feed flow.

This axially asymmetric growth of the gypsum crystal 
could be explained by concentration simulation results as 
shown in Fig. 17. The salt concentration decreases from the 
crystal frontal flow-stagnation edge to the rear of the crys-
tal, and a higher concentration induces faster growth of the 
crystal toward the direction opposite to the feed flow. The 
reduced calcium sulfate concentration downstream of the 

Fig. 13. CP prediction with different rejection rates.

Fig. 14. Concentration at the channel middle cross-section in 
different rejection rates.
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Fig. 15. Illustration of the crystal structure and its staircase 
approximation.
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crystal results from mixing eddies caused by the abrupt 
obstacle of the growing non-permeation crystal. Gypsum 
crystallization gradually consumes salt ions around the 
crystal, thus the salt concentration layer around the crystal is 
lower than the concentration in the bulk flow.

Using both of the present boundary scheme and Kang 
et al.’s [37] reaction scheme, the equivalent radii of fouling 
crystals are 0.190, 0.286, 0.381 and 0.475 mm, for the growing 
time of 2, 3, 4 and 5 h, respectively. Inorganic fouling growth 
simulation results in Figs. 16 and 17 show that when used 
to prescribe the reaction boundary condition in Eq. (34), the 
present boundary scheme agrees well with Kang et al.’s [37] 
reaction scheme in terms of the crystal size, mass accumu-
lation and concentration distribution around the fouling 
crystal. Implementation procedures of the present bound-
ary scheme in staircase approximated curve boundaries 
are actually identical with those in straight boundaries. 
Thus, the present boundary scheme has a first-order accuracy 
for curved boundaries.

5. Conclusions

Pressure-driven membrane filtration is the most common 
method for saltwater desalination and wastewater treat-
ment. The inherent CP phenomenon in membrane desali-
nation plays a vital role in triggering surface fouling, as it 
leads to elevated solute concentration near the membrane 
surface. A simple and effective flux boundary scheme is 
proposed and validated in this study, which only involves 
the boundary local nodes without utilizing the finite 
difference approximation or the boundary-neighboring 
nodes interpolation.

The proposed flux boundary scheme is applied to pre-
dict the CP and to simulate fouling growth in seawater 
desalination. The CP and permeate flux prediction result 
from LBM agrees well with the FEM benchmark case in 
a complete rejection condition. With the removal of the 
complete rejection assumption and with the rejection rate 
considered, the CP is reduced with a lower rejection rate, 

0.5 mm 0.5 mm

0.5 mm 0.5 mm

0.5 mm 0.5 mm

0.5 mm 0.5 mm

Fig. 16. Crystal size and mass accumulation: present scheme (left) and Kang et al.’s [37] scheme (right).

 
Fig. 17. Field concentration: present scheme (left) and Kang et al.’s [37] scheme (right).
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since more salt ions would be transported through the 
membrane and accumulated salt ions would be reduced. A 
higher CP and lower permeate flux in a larger rejection rate 
condition indicate a trade-off between membrane selectivity 
(salt rejection) and membrane permeability (permeate flux). 
Also, prediction results show that the CP boundary layer 
thickness is almost invariant with different salts rejection 
rates. Results of the inorganic fouling growth simulation 
agree well with reported results in terms of the crystal 
size, mass accumulation and concentration distribution. 
The fouling growth simulation case shows that the present 
boundary scheme is valid for curved boundaries with 
staircase approximations. 

Validation and application cases demonstrate the fea-
sibility of the proposed flux boundary scheme in a variety 
of boundary conditions. The present flux boundary scheme 
accounts for the post-collision distribution functions in 
multiple non-collinear directions. This differs from existing 
boundary schemes using post-collision distribution functions 
only in collinear directions (same or opposite directions), 
such as the bounce-back scheme [34], Kang et al.’s [37] reac-
tion scheme and interpolation schemes [17]. This may explain 
the better match of the present boundary scheme with the 
reference data than adopted popular boundary schemes in 
some cases, such as the validation case in section 3.3 and the 
application case in section 4.2. The proposed flux boundary 
scheme has a first-order accuracy for both straight bound-
aries and curved boundaries, and future work may include 
developing a second-order accuracy flux boundary scheme.

Symbols

J — Heat flux or mass flux, W/m2 or kg/(m2 s)
fi — Particle distribution functions for the fluid field
gi — Particle distribution functions for the thermal/

concentration field
ei — Discrete velocities for the particle distribution 

functions
wi — Weight coefficients for the particle distribution 

functions
n — Unit normal vector on the boundary, pointing 

toward the interior of the domain
cs — Lattice sound speed, dimensionless
τ — Relaxation time for the fluid flow lattice Boltzmann 

equations 
τs — Relaxation time for the mass transport lattice 

Boltzmann equations
u — Fluid velocity vector, m/s
C — Species concentration, kg/m3 or g/L
ν — Kinematic viscosity (ν = μ/ρ), m2/s
μ — Absolute or dynamic viscosity, (N s/m2) or kg/(m s)
ρ — Fluid or solution density, kg/m3

D — Mass transport diffusion coefficient (mass 
diffusivity), m2/s

Re — Reynolds number, Re = uL/ν
Pe — Peclet number, Pe = uL/D
Sc — Schmidt number, Sc = ν/D
ud — Diffusion velocity, m/s
Per — Water permeability constant, m/(s×Pa)
vw — Transmembrane permeate flux normal to the mem-

brane boundary, m/s
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Appendix A. Derivation of the flux boundary scheme

Since curved boundaries can be approximated by zig-
zag staircases, a straight boundary will be used for the 
illustrating the derivation process. Substituting concen-
tration distribution functions (in post-streaming form) 
on the top boundary illustrated in Fig. A1 into Eq. (13) 
yields Eq. (A1).
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In Eq. (A1), c = δy/δt is the lattice speed contained in 
the discrete velocity ei. There are no available distribution 
functions streaming from wall nodes (y = NY + 1) to the 
boundary nodes (y = NY), thus g4, g7, g8 are unknown 
distribution functions after the streaming operation. These 
unknown distribution functions should be prescribed and 
constrained by certain boundary conditions. For all interior 
nodes in the simulation domain, post-streaming distri-
bution functions will be calculated based on neighboring 
post-collision distribution functions. Similarly, unknown 
post-streaming distribution functions of g4, g7 and g8 on 
boundary nodes can also be calculated by post-collision 
distribution functions g2

+, g5
+, and g6

+. Referring to Fig. A1, 
calculated post-streaming distribution functions g2, g5 and 
g6 at boundary wall nodes (y = NY + 1) equal post-collision 
distributions g2

+, g5
+ and g6

+ at boundary mass nodes (y = NY), 
respectively, as expressed in Eq. (A2).
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From the approximation equation shown in Eq. (15), 
concentration gradients can be estimated by distribution 
functions at boundary wall nodes and boundary mass nodes, 
as shown in Eq. (A3).
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 Fig. A1. Illustration of a top boundary.
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Note that in Eq. (A3), the variation of the wall concentra-
tion at a given node along the x direction is linearized using 
the first order Taylor expansion around the given node. 
Combining Eqs. (A2) and (A3) yields the relation between 
unknown post-streaming distribution functions and known 
post-collision distribution functions at boundary mass 
nodes, as shown in Eq. (A4).
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In Eq. (A4), weight coefficients in the lattice Boltzmann 
model are substituted, as w2 = 1/9, w5 = 1/36, w6 = 1/36, and 
w2 + w5 + w6 = 1/6. Also, the first-order normal derivative 
∂C/∂n on the right-hand side of Eq. (A4) is the replacement of 
the finite difference scheme approximation (Cw – Cf)/δy on the 
right-hand side of Eq. (A3). Finally, Eq. (A5) can be derived 
when substitute (g2 + g5 + g6) from Eq. (A4) into Eq. (A1).
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The right-hand side of Eq. (A5) is actually total mass 
flux flowing from the top wall to the fluid phase (the sur-
face normal n direction), and the coefficient term of the 
concentration gradient is the diffusion coefficient, that is, 
D = (τs – 1/2)(δh)2/(3δt) from Eq. (8). Eq. (A5) is the general 
implementation form appearing in the mass flux boundary 
scheme for a top straight boundary. During the implemen-
tation process, unknown post-streaming distribution 
functions g4, g7 and g8 can be calculated by the post-colli-
sion form of known distribution functions g2

+, g5
+ and g6

+. 
The implementation form of Eq. (A5) can be expressed in a 
general form shown in Eq. (A6) or Eq. (14).
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Although Eq. (A6) is the general form of Eq. (A5) which 
is valid for top boundaries, as will be discussed, Eq. (A6) is 
also correct for the bottom boundary. The top and the bot-
tom boundaries are also representatives to the right and left 
boundaries due to the similarity of surface normal directions. 
Consequently, Eq. (A6) is valid for curved boundaries with 
staircase approximations comprising all straight boundaries. 
For the bottom boundary illustrated in Fig. A2, substituting 
concentration distribution functions (in post-streaming form) 
on the bottom boundary illustrated in Fig. A2 into Eq. (13) 
yields Eq. (A7).
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Similar to Eq. (A2) and referring Fig. A2, calculated 
post-streaming distribution functions g4, g7 and g8 at bound-
ary wall nodes (y = 0) equal post-collision distributions g4

+, 
g7

+ and g8
+ at boundary mass nodes (y = 1), respectively, as 

expressed in Eq. (A8).
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From the approximation equations in Eq. (15), concen-
tration gradients can be estimated by distribution func-
tions at boundary wall nodes and boundary mass nodes, as 
shown in Eq. (A9).
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Combining of Eqs. (A8) and (A9) yields the relation 
between unknown post-streaming distribution functions 
and known post-collision distribution functions at boundary 
mass nodes, as shown in Eq. (A10).
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Fig. A2. Illustration of a bottom boundary.
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Finally, Eq. (A11) can be derived when substitute 
(g4 + g7 + g8) from Eq. (A10) into Eq. (A7).
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So, it is demonstrated that Eq. (A11) can also described 
by the general form of Eq. (A6). For a standard square lat-
tice, the non-dimensional lattice spacing δh = δx = δy = 1. The 
lattice time step δt is set to 1 so that the particles travel one 
lattice spacing during one time-step. So, in Eq. (A6), both ei 
and n are unit vectors. The mass flux vector Jσ in Eq. (A6) 
is defined in the Cartesian coordinate system. The surface 
normal vector n pointing outward to the fluid phase works 
to redirect total mass flux to the normal vector direction 
(mass flux flows out of the solid phase toward the fluid 
phase, normal to the boundary). Also, the unit normal vector 
n should be in one of the three Cartesian coordinate direc-
tions. Thus, the present boundary scheme works for curved 
boundaries in staircase form. Finally, the relation between 
the first-order moment of distribution functions and heat/
mass flux shown in Eq. (A6) is valid for both interior nodes 
and boundary nodes of the simulation domain.

Appendix B. Units conversion procedures

This appendix covers the conversion procedures between 
physical SI units and dimensionless LBM units. In the lat-
tice Boltzmann method, units of physical quantities are 
usually dimensionless. Also, lattice spacing and time step 
are usually selected to be unity (δx = δy = δt = 1), thus the 
lattice speed c = 1. Furthermore, some special dimension-
less numbers are frequently used to characterize the target 
system. For example, flows with same Reynolds numbers 
(Re = uL/ν) are equivalent for hydrodynamics, and solutions 
with same Schmidt numbers (Sc = ν/D) are equivalent for 
mass transport. A physical quantity Q can be written with a 
number and a unit, as shown in Eq. (A12).

Q Q CQ= ×  (A12)

in which Q is a physical quantity with a physical unit 
[Q]; Q̄ is a dimensionless quantity with a dimensionless unit 
[Q̄] = 1; CQ is the conversion factor from Q̄ to Q with a unit 
[CQ] = [Q].

Dimensionless numbers such as the Reynolds number 
and the Schmidt number should be invariant whether in 
a physical unit or in a dimensionless LBM unit. Assuming 
that flows with the same Re and Sc are equivalent, thus the 
conversion factors should be 1, as shown in Eq. (A13).

Re Re Re= ⇔ =C  1  (A13)

There are a variety of conversion methods between 
physical SI units and dimensionless LBM units. The follow-
ing procedures are followed in this paper. Note that a symbol 
with an overhead bar denotes a dimensionless quantity.

(1) General input parameters
Channel height: H = 1 × 10–3 m;
Kinematic viscosity of water: ν = 1.00 × 10–6 m2/s;
Density of water: ρ = 1 × 103 kg/m3;
 Diffusion coefficient of ions in seawater: D = 1.5 × 10–9 
m2/s;

(2)  Mesh resolution or node number of the channel 
height HLBM = 100;
Conversion factor of length: CH = H/HLBM (m);

(3) LBM density is generally selected to be 1: ρLBM = 1;
Conversion factor of density: Cρ = ρ/ρLBM, (kg/m3);

(4)  Set the relaxation time for concentration field: 
τs = 0.51;

(5)  Set a reference diffusion coefficient Dref = kD (k > 0, 
the coefficient k is case dependent);

For convenience, choose a unit lattice spacing and 
a unit time step: ∆ = ∆ = ⇒ = ∆ ∆ =x t c x t1 1 1; .

(6) Schmidt number: Sc = ν/Dref;
(7) Conversion factor of time:
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(8) Conversion factor of velocity: CU = CH/CT;

(9) Conversion factor of force per volume: CF = CρCH/CT
2;

(10) Diffusion coefficient in dimensionless unit:

D
D C
C

T

H

= ref
2  (A15)

(11) Kinematic viscosity in dimensionless unit:

ν = ×D Sc  (A16)

(12) Relaxation time for fluid:

τ ν= +3 1
2

 (A17)

Usually, the calculated Mach number in the LBM unit 
system is larger than calculated in the physical unit sys-
tem due to the smaller sound speed in LBM, otherwise 
the simulations would be too expensive. LBM simulates 
incompressible flow under a low Mach number condition 
(Ma = u/cs < 0.3, where u is the macroscopic flow velocity and 
cs is the speed of sound) with a weak variation in density.
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