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a b s t r a c t
A Kalman filter (KF) algorithm is a recursive data processing algorithm typically recommended for 
estimating unmeasured state variables in chemical engineering processes. We studied the perfor-
mance of a KF algorithm in a range of noise levels as well as indirectly observed data from the 
process model. For this study, two versions of the KF algorithm widely adopted for a nonlinear sys-
tem, the extended Kalman filter and the unscented Kalman filter, were applied to 1-year time series 
data monitored during the operation of the Fujairah seawater reverse osmosis desalination plant. We 
found that variables indicating the state of fouling, membrane resistance, and solute permeability 
agreed well with those estimated by the two KF algorithms, specifically in terms of noise reduction 
and peak detection. When the two KF algorithms were exposed to various noise levels, they showed 
a corresponding increase in the error rates (for unmeasured state variables) according to the noise 
levels varying from 10% to 50%, regardless of the algorithms used. The two KF algorithms provided 
a good prediction performance only for the permeate flow rate rather than for the permeate concen-
tration, out of the two types of measured data. However, the individual KF algorithms still showed 
different performances in computing estimated and predicted data in the reverse osmosis process. 
This result calls for further research on the determination of the best KF algorithms for either estima-
tion or prediction of directly and indirectly measured state variables in various chemical processes.

Keywords:  Seawater reverse osmosis (SWRO); Extended Kalman filter (EKF); Unscented Kalman filter 
(UKF); Noise reduction; Peak detection

1. Introduction

In response to high energy demands in the coming
decades as well as cost-effective water production, seawater 
reverse osmosis (SWRO) plants must reduce their energy 
consumption [1,2]. Feed water disturbances, actuator and 
sensor failures, and membrane fouling were three major 

factors that affected energy usage in the SWRO process, when 
achieving desirable product water in terms of water quality 
and quantity under such conditions. Feed disturbances indi-
cate short- (day or night) and long-term (seasonal change) 
variations of feed water sources (e.g., water temperature, 
total dissolved solid (TDS) concentration, and pH) [3], which 
has a significant effect on the permeate flow rate and per-
meate concentration. The SWRO process was found to also 
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be vulnerable to actuator and sensor failures (e.g., actuated 
pumps and valves), preventing the process from performing 
the expected operation, which, in turn, was likely to increase 
demand for energy use of the SWRO process. Membrane 
fouling describes the accumulation of particles during 
degraded filtration performance, which amplifies the energy 
consumption of the SWRO process over time, unless appro-
priate membrane cleaning or replacement are applied during 
the operation [4]. Therefore, accurate estimation of the pro-
cess states using measured data plays an important role in 
lowering the energy consumption of the SWRO process.

Timely and accurate diagnosis of engineering process 
can be achieved using an observer, a computational algo-
rithm that estimates the state and parameters of the process. 
In chemical and biochemical engineering systems, research 
on the design and implementation of the observer has been 
conducted in the past few decades. For example, many  
earlier studies have been dedicated to help adapt the observer 
in the chemical process. They mainly contain categoriza-
tions of observers and procedures to develop observers 
[5–7]. A Kalman filter (KF) is one of the most widely adopted 
observers among the previously developed observers. 
Although the KF was originally developed for a linear sys-
tem [8], an extended version could be applied to a nonlin-
ear system, especially chemical and biochemical engineering 
processes. The applied research fields of the KF algorithm 
cover a wide variety of topics, specifically including con-
trol and measurement engineering [7]. A good example of 
the KF in the chemical engineering process was to estimate 
the temperature for a counter-current heat exchanger [9]. 
Another example included control of the fermentation pro-
cess that employed the KF to estimate indirectly measured 
biological variables [10,11]. Several previous studies often 
used the KF as fault detection and isolation method [12,13]. 
In conventional and advanced process control areas, the KF 
was also utilized in a data pre- processing step before the raw 
data were provided to the control module [14–16]. In those 
studies, reduction of noise or disturbance in input variables 
resulted in desirable system performance outcomes. In the 
fields of desalination research, an online estimator of foul-
ing development was proposed using a non-linear recursive 
least-squares method, where the friction coefficient as well as 
membrane resistance were the main variables of interest [17].

In this study, we used the membrane resistance and sol-
ute permeability as indicators of the state of fouling, because 

the deterioration of membrane performance in the SWRO 
process could be indirectly described by these two param-
eters. Note that the membrane resistance and solute perme-
ability play a role in predicting the permeate flow rate and 
concentration, although they are not measured directly with 
real-time sensors or laboratory experiments. Therefore, the 
aim of the present study was to determine the best KF algo-
rithm for computing directly and indirectly measured vari-
ables with and without noise in an example time-series data 
set (of the Fujairah SWRO plant). Specifically, we used two 
non-linear KF algorithms, the extended Kalman filter (EKF) 
and the unscented Kalman filter (UKF), in calculating directly 
and indirectly observed variables in the SWRO process. The 
specific objectives of this study were (1) to assess the perfor-
mance of the two KF algorithms in estimating state variables, 
(2) to test the stability of the two KF algorithms according to
different noise levels, and (3) to compare the performance
of the two KF algorithms in predicting measured data. We
hope that the proposed methodology provides valuable
insight into the best membrane cleaning and replacement
schedule in the SWRO process from parameters monitored
in real time.

2. Materials and methods

2.1. Test data sets in the pilot SWRO plant

Table 1 describes the characteristics of the major oper-
ational parameters observed (from real-time sensors) at 
the feed and permeate sides in the Fujairah SWRO plant 
during the 1-year monitoring period. As shown in the 
table, the Fujairah SWRO plant received raw seawater 
with temperatures ranging from 23°C to 37°C, and TDS 
concentrations ranging from 35,691 to 42,596 mg/L. After 
continuous treatment in the RO process, the TDS concen-
tration at the permeate side was reduced significantly, but 
still varied between 362 and 823 mg/L, due to fluctuations 
in the feed water quality. The applied pressure at the feed 
side ranged from 65 to 73 bar depending on the raw water 
quality, which decreased to between 2 and 13 bar at the 
permeate side. Similarly, the flow rate at the feed site was 
maintained from 951 to 1,200 m3/h, whereas the reverse 
osmosis (RO) process produced water with an average 
flow rate of 481 m3/h. The recovery rate in the RO process 
was recorded at about 43% to 50% under the specific oper-
ating conditions of the feed side described above. Note 

Table 1
Summary statistics of major input and output parameters observed during the 1-year monitoring period at the Fujairah SWRO plant

Locations Parameters N Range Mean

Feed side

Temperature (Tf), °C 365 23–37 29
TDS concentration (Cf), mg/L 365 35,691–42,596 38,829
Flow rate (Qf), m3/h 365 951–1,200 1,119
Pressure (Pf), bar 365 65–73 67

Permeate side

TDS concentration (Cp), mg/L 365 362–823 495
Flow rate (Qp), m3/h 365 448–516 481
Recovery, % 365 43–50 45
Pressure (Pp), bar 365 2–13 10

TDS = Total dissolved solids
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that all recorded data contain some noise associated with 
the sensor measurements. Thus, those data are processed 
to reduce the inherent noise in the data set as well as to 
predict important parameters that should be maintained 
either above or below the designated value using two types 
of Kalman filter algorithms, as described in Sections 2.2–2.4.

It is noted that the observed data of Fujairah plant 
described in this section was previously used to con-
duct numerical studies of the reverse osmosis process 
[17–19]. The same data was employed to evaluate the per-
formance of two Kalman filter algorithms for estimating 
fouling in the reverse osmosis process.

2.2. Reverse osmosis process model

Typically, water flux and salt flux are used to assess 
the performance of the RO membrane. This is because those 
two types of flux are found to be decreased or increased 
progres-sively according to the accumulation of foulants. 
Among various models available in literature, we 
adopted the solution–diffusion model, a popular model 
in non-porous polymer membranes, to estimate the water 
flux and salt flux in the RO membrane. According to the 
solution–diffusion model, the water flux and salt flux are 
expressed as follows:
J A Pw � � �� �� �� (1)

J B C C B Cs f p� � �� � � � � (2)

where Jw and Js indicate the water flux and salt flux, respec-
tively [20]. In particular, Jw is proportional to the difference 
between transmembrane pressure ΔP and osmotic pressure 
difference Δπ. The equation for the water flux is then devel-
oped by multiplying water permeability A by the difference 
between ΔP and Δπ. In a similar manner, Js is calculated by 
multiplying salt permeability B by the concentration differ-
ence between the feed and permeate water ΔC. Permeate 
flow rate Qp and permeate concentration Cp can be calculated 
by using Eqs. (1) and (2): 
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where W and L are the width and length of the RO membrane, 
respectively. Ele is the number of elements in a pressure 
vessel. PV indicates the number of pressure vessels employed 
in the RO plant.

2.3. System model for Kalman filter algorithms

The dynamics of foulants on the RO membrane can be 
expressed using the theory of transport phenomena. The 
total amount of foulants M accumulated in the membrane 
with respect to time t can be expressed as follows:
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t
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0

0
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where Jf is the rate of deposition of the foulants. Cf0 and v 
are the bulk foulants concentration and permeate velocity, 
respectively. The amount of deposited foulants is assumed 
to increase with the membrane resistance in a linear fashion: 
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where ΔRa indicates the increase in the membrane resistance 
depending on the fouling accumulation [21]. rs is the specific 
resistance of the fouling layer. kfp is the fouling poten-
tial coefficient, indicating the possibility of fouling in the 
feed water. If the state of fouling (SOF) is described by the 
membrane resistance, the total membrane resistance can be 
given by the following equations: 

R R Rt m a� � � (7)
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where Rm is the intrinsic membrane resistance [19]. From 
the principle of membrane transfer, membrane resistance 
Rt is estimated by the reciprocal of water permeability A. 
The permeate velocity can be calculated using Eqs. (1) and 
(7). By differentiating each side of Eq. (6), the first equation 
for the SOF can be derived:
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Rearrangement of Eq. (2) gives the following form of 
the equation to calculate salt permeability B: 
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where (r = 1 – Cp/Cf) is the rejection rate of the RO mem-
brane. If we set r at 0.995 and assume the difference between 
ΔP and Δπ is constant, the differentiation of Eq. (10) gives 
the second form of the equation for the SOF:
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Note that the total membrane resistance and solute per-
meability, which are not measured using real-time sensors, 
are state variables to be estimated using two types of Kalman 
filter algorithms. 

2.4. Kalman filter algorithms for a nonlinear system

In this study, two types of Kalman filter algorithms 
are used to estimate the membrane resistance and solute 



121S.J. Lim et al. / Desalination and Water Treatment 163 (2019) 118–124

permeability in the RO process model, and to predict the 
permeate flow rate and concentration. The KF is a recursive 
data processing algorithm developed for a linear system, 
but the algorithm can also be extended to a nonlinear sys-
tem after linearization of the process. Two popular variants 
developed for a nonlinear system are the EKF and UKF 
algorithms. It is assumed in all KF algorithms that the process 
and measurement noises are characterized by independent, 
zero-mean, and Gaussian noise. 

The EKF algorithm searches the best weights for model 
prediction and measurement. Estimations of the state 
variables and statistical weights are computed using the 
following equations [5,8]: 
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where x is a matrix of the state variables. The calculated val-
ues of the membrane resistance and salt permeability using 
plant operational data are assigned as elements of matrix 
z. The membrane resistance and salt permeability can be
calculated by using Eqs. (9) and (11), respectively:
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f is the discrete form of the system model in Eqs. (6) and 
(7). Pt is the error covariance. A is a Jacobian of the system 
model: 
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Q and R are the error covariance matrix of the noise for 
the system model and measurements, respectively:
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Kt is the Kalman gain. H is a matrix describing the 
relation between the measurements and state variables: 
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Eqs. (13)–(17) require two-phase computation, the predic-
tion and correction steps. In the prediction step, Eqs. (13) and 
(14) are used to predict the system variables. In the correc-
tion step, Eqs. (15) and (16) calculate the statistical weights,
including an estimation of the system variables. Eq. (17) is
employed to update the error covariance in the next time
step.

The UKF algorithm adopts more enhanced statistical 
analysis than the EKF algorithm. The EKF algorithm esti-
mates the Jacobian A of the system model during the pro-
cess of updating the covariance, whereas the UKF algorithm 
does not require it. Instead, the UKF algorithm conducts 
sampling of the sigma point and performs the unscented 
transformation. The detailed algorithms embedded in the 
UKF algorithm are as follows:
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where χ is the sigma point, and W is the weight required 
to compute the covariance and the average. UT is an 
abbreviation for unscented transformation. Note that the 
computation process of the UKF algorithm is identical to 
that of the EKF algorithm, except for the adopted equa-
tions in individual algorithms. Eqs. (24)–(27) are used for 
the prediction process, whereas Eqs. (28)–(30) are adopted 
in the calibration process. More detailed information 
about the EKF and UKF algorithms are also available in 
literature [8,20].

3. Results and discussion

The numerical simulations were conducted (1) to
evaluate the performance of the two KF algorithms in esti-
mating state variables, (2) to test the stability of the two 
KF algorithms according to different noise levels, and 
(3) to compare the prediction performance of the two
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KF algorithms in predicting the permeate flow rate and 
permeate concentration. The second scenario was designed 
to simulate sensor failure during the operation of a real 
plant. Sensor failure can increase the noise in the measured 
data, affecting the estimation of indirectly monitored vari-
ables. Noise was generated by using a random number 
generator. Simulation data with different noise levels were 
generated by adding noise to the membrane resistance and 
salt permeability data calculated from Eqs. (9) and (11), 
respectively. The estimated state variables using the two 
KF algorithms were applied to Eqs. (3) and (4), to calcu-
late the permeate flow rate and permeate concentration. 
The permeate flow rate and permeate concentration were 
measured by the sensor, and compared with the calcu-
lated values. The simulation conditions used in the system 
model of the KF algorithms were determined based on the 
initial design of the Fujairah plant provided in the studies 
by Lee et al. [18] and Sanza et al. [23]. Those parameter 
values are presented in Table 2.

3.1. Estimation of indirectly observed data using two types 
of KF algorithms

Figs. 1a and b illustrate the membrane resistance 
and solute permeability estimated by two types of KF 
algorithms, respectively. Note that the membrane resis-
tance and solute permeability are indirectly computed 
from the principle of membrane transfer and Eq. (11), 
using operating data from the pilot plant. In Fig. 1a, 
the membrane resistance exhibits two distinct patterns 
during the 1-year monitoring period. In other words, the 

membrane resistance fluctuated slightly between 3.5 and 
4.1 × 1011 Pa∙s/m for 160 d. However, a sudden increase 
in the membrane resistance reaching as high as around 
4.9 × 1011 Pa∙s/m, was observed during the remaining 
monitoring period. This indicated that membrane fouling 
occurred progressively during the operation of the RO  
process. The EKF and UKF algorithms did not always 
under- and over-estimate the membrane resistance, and 
showed excellent agreement with the observed data, 
excluding one case that displayed a sharp increase in 
the membrane resistance at around 340 d. In contrast, 
the solute permeability fluctuated considerably, between 
6.0 × 10–8

 and 12.0 × 10–8 m/s, without an obvious trend until 
160 d, and then decreased constantly after that, as opposed 
to that of the membrane resistance. Both algorithms suc-
cessfully estimated the solute permeability, but seemed to 
show large deviations from the indirectly estimated data, 
compared with that of the membrane resistance. Of the two 
algorithms, the UKF algorithm had superior performance 
compared with the EKF algorithm in terms of noise 
reduction, although both successfully detected the peaks 
of the membrane resistance and solute permeability.

3.2. Tolerance of two types of KF algorithms against noise 
levels in the data set

Fig. 2 presents the performance of the EKF algorithm 
and UKF algorithm in terms of error rates, according to 
increased noise levels of the membrane resistance and solute 
permeability from 10% to 50%. It was determined from 
Figs. 2a and b that the error rates of the membrane resis-
tance computed from the two algorithms increased steadily 
with increasing noise levels. However, the EKF algorithm 
displayed a larger increase in error rates than the UKF algo-
rithm, reaching as high as around 30% (except for outliers) 
when the noise levels in the membrane resistance increased 
up to 50%. Interestingly, the interquartile range box con-
taining the middle 50% of the data was quite small for the 
UKF algorithm, compared with that of the EKF algorithm. 
However, the UKF algorithm still produced numerous out-
liers exceeding a few standard deviations, regardless of 
the noise levels added intentionally (see the red plus sym-
bol). The error rates of the solute permeability estimated 
from both algorithms showed almost identical patterns 
as for those of the membrane resistance, but with slightly 
increased error rates in response to the noise levels (compare 

(a)

(b)

Fig. 1. An estimation of (a) the membrane resistance and (b) solute 
permeability during the 1-year monitoring period using two 
types of Kalman filter algorithms, the EKF (see the solid blue 
line) and UKF algorithms (see the solid red line). 

Table 2
Parameter values used in the system model assessment

Parameters Values

Length of RO membrane, L (m) 1
Width of RO membrane, W (m) 37
Number of elements in a pressure vessel, Ele (ea) 7
Number of pressure vessels, PV 136
Solute rejection rate, r (-) 0.995
Membrane intrinsic resistance, Rm (Pa s/m) 3.5 × 1011

Fouling potential coefficient (Pa s/m2) 3.5 × 109

Total number of days 365
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the lengths of the box spanning the interquartile range in 
the error rates for both parameters). The error rates of the 
solute permeability rose by 40% for the EKF algorithm and 
20% for the UKF algorithm (except for outliers) at the 50% 
noise level. In addition, many outliers exceeding a few stan-
dard deviations were not observed when estimating the 
solute permeability from the UKF algorithm under various 
noise levels, unlike the membrane resistance. These results 
implied that the UKF algorithm was less sensitive to the 
noise levels in the data set than the EKF algorithm, but had 
the potential to produce many outliers, even at low noise 
levels, depending on the magnitude of parameter of interest. 
Of course, the error rates computed from the two algorithms 
increased with increasing noise levels.

3.3. Prediction of directly measured data using 
two types of KF algorithms

We also evaluated the performance of the two algorithms 
in predicting directly observed data, the permeate flow rate 
and concentration (Figs. 3a and b). Note that the perme-
ate flow rate and concentration were measured directly by 
sensors in the permeate side at discrete time intervals (see 
the back open circle), whereas the corresponding parame-
ters were also predicted by applying both algorithms (see 
the solid blue and red lines) to Eq. (3) (for the permeate 
flow rate) and Eq. (4) (for the permeate concentration). 
Fig. 3a shows that there is a significant difference in the 
predicted permeate flow rate between the two algorithms. 
The performance of the EKF algorithm was superior to that 
of the UKF algorithm in terms of Nash–Sutcliffe efficiency 
(NSE) and R2. However, the EKF algorithm often slightly 
overestimated the permeate flow rate of the RO process 
in different periods of (operation) time. The EKF and UKF 

algorithms did not correctly compute the permeate con-
centration (see NSE and R2). The pattern of the permeate 
concentration predicted by the EKF algorithm was almost 
identical to that of the UKF algorithm, including a case that 
showed an abrupt increase in the permeate concentration at 
around 340 d. These results revealed that the performance 
of both algorithms was quite comparable, although the 
EKF algorithm showed a slightly improved performance 
in predicting a particular operating parameter during the 
operating period of the pilot RO plant. However, we cannot 
provide a clear explanation for the difference in the perfor-
mance of the two algorithms in computing indirectly and 
directly measured data at this moment.

4. Conclusions

This study was designed to assess the performance of KF
algorithms in computing directly and indirectly observed 
data in the absence and presence of noise in the data set. The 
operating data in an SWRO desalination process over a 1-year 
monitoring period was used as the test data set to which two 
types of KF algorithms, the EKF and the UKF, were applied. 
From this study, we obtained the following conclusions.

• The EKF and UKF algorithms successfully estimated
indirectly observed state variables, the membrane resis-
tance and solute permeability, with respect to noise
reduction and peak detection. Although the two versions
of KF algorithms showed similar performances, the UKF
algorithm seemed better able to reduce noise in the data,
specifically for parameters varying over larger orders of
magnitude.

(a) (b)

(c) (d)

Fig. 2. Estimated error rates of the membrane resistance and 
solute permeability in the EKF and UKF algorithms in response 
to an increase in the data noise from 10% to 50%.

(a)

(b)

Fig. 3. Prediction results of (a) the permeate flow rate and 
(b) permeate concentration implemented in the RO process
model using the EKF (see the solid blue line) and UKF algorithms 
(see the solid red line) during the 1-year monitoring period.
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• The EKF and UKF algorithms did not resist well noise
imposed at different levels. The error rates of the
membrane resistance and solute permeability increased
progressively in response to increase in the noise levels
from 10% to 50%. The EKF algorithm appeared to yield
larger error rates than the UKF algorithm, but produced
fewer outliers that were far beyond a few standard
deviations than the UKF algorithm.

• The prediction performance of directly measured data using 
the two KF algorithms was slightly different from that of
indirectly observed data. Although the algorithms showed
a similar performance in predicting directly measured data, 
the permeate flow rate and concentration, the EKF algo-
rithm recorded a slightly higher prediction accuracy for
the permeate flow rate than the UKF algorithm. Further
research is still warranted to clearly address the inconsistent 
performance of two versions of KF algorithms for directly
and indirectly observed variables in the RO process.
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Symbols

Reverse osmosis model

A — Water transport coefficient, m/(s Pa)
B — Salt transport coefficient, m/s
Jw — Water flux, m/s
Js — Solute flux, kg/m2 s
Q — Flow rate, m3/h
P — Pressure, Pa
p — Osmotic pressure, Pa
C — TDS concentration, mg/L
V — Permeate velocity
T — Time, d
M —  Total amount of foulants deposited on the mem-

brane, mg/m2

Jf — Rate of foulants deposition, mg/m2 s
Cf0 — Bulk foulants concentration, mg/L
rs — Specific resistance of the fouling layer, Pa m s/g
Rm — Intrinsic membrane resistance, Pa s/m
Ra —  Membrane resistance due to accumulation of 

foulants, Pa s/m
Rt — Total membrane resistance, Pa s/m
kfp — Fouling potential coefficient, Pa s/m2

Kalman filter

x — Matrix of the state variable
z — Matrix for observed data
f — Discrete form of the system model
P — Error covariance
A — Jacobian of the system model
Q —  Error covariance matrix of noise for the system model
R — Error covariance matrix of noise for measurement

K — Kalman gain
H —  Matrix for the relation between the measurements 

and the state variables
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