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a b s t r a c t
In this work, we have assembled Ag2S carbon quantum dots (CQDs) onto CaTiO3 nanocuboids 
(NCs), aimed at creating Ag2S@CaTiO3 composite photocatalysts with superior photocatalytic per-
formances. Scanning/transmission electron microscopy observation confirms the uniform deco-
ration of Ag2S CQDs (7–17 nm) on the surface of CaTiO3 NCs with size of 0.8‒1.1 μm in length 
and 0.3–0.5 μm in width. Photoluminescence, photocurrent response and electrochemical imped-
ance spectroscopy investigations reveal that the Ag2S@CaTiO3 composites manifest highly effi-
cient separation of photoexcited electron/hole pairs. The photocatalytic degradation activity of the 
Ag2S@CaTiO3 composites was assessed by the removal of rhodamine B from aqueous solution. It is 
demonstrated that the composites exhibit photocatalytic degradation performance much superior 
to that of bare Ag2S CQDs and CaTiO3 NCs under ultraviolet irradiation. This can be explained as 
the result of efficient separation of photoexcited electron/hole pairs induced by the Z-scheme elec-
tron transfer. In addition, the composites also manifest enhanced visible-light photocatalytic perfor-
mance when compared with bare CaTiO3 NCs, implying that they can make the best use of the solar 
energy in the practical photocatalytic applications.
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1. Introduction

Water resources on which living beings, particularly 
human beings, depend are becoming seriously polluted due 
to the discharge of wastewater from chemical industries. 
The industrial wastewater contains large quantities of harm-
ful and carcinogenic substances, such as organic dyes and 
pigments [1]. As most of the organic pollutants are hardly 
self-decomposed, their elimination by artificial management 
has become an imperative necessity. Semiconductor-based 

photocatalysis, as a simple, low-cost and green technology, 
has shown tremendous application potential in the waste-
water treatment [2‒8]. It is particularly interesting that this 
technology is able to harness the power of the sun to degrade 
organic pollutants. The photocatalytic degradation reactions 
are highly correlated with photoexcited electrons (e−) in the 
conduction band (CB) and holes (h+) in the valence band 
(VB) of semiconductor photocatalysts. To make the semicon-
ductor photocatalyst fully harness the solar spectrum and 
achieve an excellent photocatalytic performance, two of the 
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key points have to be considered. One is that the photoex-
cited e−/h+ pairs must be efficiently separated, and thus more 
charge carriers are available for the photocatalytic reactions. 
The other is to enhance the visible-light absorption of pho-
tocatalysts. Nevertheless, most of important photocatalysts, 
particularly titanium-contained oxide semiconductors, can 
only absorb ultraviolet (UV) light to trigger their photocat-
alytic activity owing to their wide bandgap (~3.2 eV) [9‒12]. 
To overcome the issues mentioned above, there have been 
developed various strategies to modify semiconductor pho-
tocatalysts [13‒19].

Zero-/one-/two-dimensional nanostructured materials (e.g. 
metal nanoparticles, carbon quantum dots (CQDs), car-
bon nanotubes, graphene, Ag2S CQDs) generally exhibit 
many interesting physicochemical characteristics, and they 
can be technologically applied in many fields, such as bio-
imaging, energy conversion, optoelectronic devices, wave 
absorption, and sensors, and photocatalysis [20‒31]. In the 
aspect of photocatalytic applications, these nanomaterials 
have been shown to be excellent modifiers or co-catalysts to 
improve the photocatalytic performances of semiconductor 
photo catalysts [32–38]. Among them, Ag2S CQDs are par-
ticularly interesting because they can absorb a wide range of 
solar spectrum, from UV to near-infrared light. Besides their 
promising application as a visible-light-driven photocatalyst 
[39], Ag2S CQDs have been widely integrated, as an ideal 
co-catalyst, with other semiconductors to form excellent 
composite photocatalysts [40–43]. Furthermore, the photo-
corrosion of Ag2S could be reduced by the construction of 
heterostructures.

Recently, a great deal of work has been concerned with 
the perovskite-type calcium titanate (CaTiO3) due to its 
intriguing physical properties, such as phosphorescence, 
ferroelectricity, piezoelectricity, elasticity, and photocata-
lytic activity [44‒47]. In particular, CaTiO3 has been shown 
to be a promising photocatalyst for the photocatalytic 
decomposition of organic dyes [48‒53]. Nevertheless, the 
practical application of CaTiO3 for photocatalytic purifica-
tion of wastewater is still limited due to its only response to 
UV irradiation and high recombination rate of photoexcited 
e−/h+ pairs. Various methods have been widely adopted to 
modify CaTiO3 with the aim of improving its overall photo-
activities, such as surface disorder engineering, noble metal 
decoration, impurity element doping and heterostructure 
construction [12,54–58]. Our recent work has shown that 
the morphology of CaTiO3 also has an important effect 
on its photocatalytic activity; in particular, (010)/(101) fac-
ets exposed CaTiO3 nanocuboids (NCs) manifest a higher 
photocatalytic activity than CaTiO3 nanospheres [48]. In 
this work, we have developed a new type of Ag2S@CaTiO3 
composite photocatalysts by decorating Ag2S CQDs on the 
surface of CaTiO3 NCs. Due to their staggered band struc-
ture configuration [48,59], Ag2S and CaTiO3 are expected 
to be coupled to form Z-scheme Ag2S/CaTiO3 heterostruc-
tures. The Z-scheme electron transfer process occurring 
in the composites not only promote the photoexcited e−/
h+ pair separation, but also preserve the photoexcited elec-
trons with high reduction capability in the CB of Ag2S and 
holes with high oxidation capability in the VB of CaTiO3. 
It is demonstrated that the as-prepared Ag2S@CaTiO3 
composites exhibit a powerful degradation of rhodamine B  

(RhB), and they could find the practical application for 
wastewater treatment.

2. Experimental

2.1. Preparation of Ag2S@CaTiO3 hybrid composites

Ag2S@CaTiO3 hybrid composites were prepared through a 
two-step method. The first step is to synthesize CaTiO3 NCs 
by a hydrothermal route. Typically, 3.3 mmol (0.0.3663 g) of 
anhydrous calcium chloride (CaCl2) was dissolved in 20 mL 
of deionized water to obtain solution A, 3 mmol (0.2396 g) 
of P25 was uniformly dispersed in 20 mL of deionized water 
to obtain suspension B, and 0.2 mol (8 g) of sodium hydrox-
ide (NaOH) was dissolved in 40 mL of deionized water to 
form solution C. To the solution A was slowly added with 
the suspension B and then the solution C drop by drop. All 
the processes mentioned above were accompanied by a mag-
netic stirring. The obtained precursor mixture was loaded 
in a stainless steel autoclave with a 100 mL Teflon liner. The 
heat-treatment temperature was 200°C and time was 24 h. 
The product was collected and washed with deionized water 
and ethanol to remove the impurity ions. After 12 h of drying 
at 60°C, final CaTiO3 NCs were obtained.

The second step is to assemble Ag2S QDs on the surface 
of CaTiO3 NCs. 0.5 g of the as-synthesized CaTiO3 NCs was 
uniformly dispersed in 30 mL of deionized water with ultra-
sonic treatment for 30 min and magnetic stirring for another 
30 min (designated as suspension D). A certain amount of 
AgNO3 (0.0361, 0.0762, 0.121 and 0.1713 g) was added to the 
suspension D, followed by 1 h of magnetic stirring (desig-
nated as suspension E). A certain volume of 0.05 g mL−1 Na2S 
solution (0.51, 1.08, 1.71 and 2.42 mL) was added in 20 mL of 
deionized water, which was then slowly added to suspen-
sion E drop by drop. The obtained mixture was magnetically 
stirred for 5 h, during which Ag2S QDs were assemble on 
the surfaced of CaTiO3 NCs. To remove the impurity ions, 
the product was washed with deionized water and etha-
nol, following by 12 h of drying at 60°C. The product was 
obtained as Ag2S@CaTiO3 hybrid composite. The compos-
ite samples with different mass fractions of Ag2S (5%, 10%, 
15% and 20%) were obtained by adding different amounts 
of AgNO3 and Na2S, and they were correspondingly des-
ignated as 5%Ag2S@CaTiO3, 10%Ag2S@CaTiO3, 15%Ag2S@
CaTiO3 and 20%Ag2S@CaTiO3.

2.2. Sample characterization methodologies

The phase purity and crystal structure of the samples 
were examined by means of X-ray powder diffraction (XRD) 
on a D8 Advance X-ray diffractometer (λCu-Kα = 0.15406 nm). 
A JSM-6701F field-emission scanning electron microscope 
(SEM) was used to observe the morphology of the samples. 
A JEM-1200EX field-emission transmission electron micro-
scope (TEM) equipped with energy-dispersive X-ray spec-
troscopy (EDS or EDX) was used to investigate the micro-
structure, chemical composition and elemental distribution of 
the samples. The element chemical states of the samples were 
determined by X-ray photoelectron spectroscopy (XPS) on a 
PHI-5702 multi-functional X-ray photoelectron spectrometer. 
To analyze the optical absorption and bandgap energy of the 
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samples, ultraviolet-visible diffuse reflectance spectroscopy 
(UV-vis DRS) measurement was performed on a TU-1901 
double beam UV-vis spectrophotometer. Fourier-transform 
infrared (FTIR) analysis of the samples was performed on a 
spectrum two FTIR spectrophotometer. A RF-6000 fluores-
cence spectrophotometer (λexcitation = 375 nm) was employed to 
measure the photoluminescence (PL) spectra of the samples.

2.3. Photo-electrochemical measurement procedure

A CST 350 electrochemical workstation equipped with 
a three-electrode cell configuration was used to study the 
electrochemical impedance spectroscopy (EIS) and photo-
current response of the samples. In the three-electrode cell 
configuration, a standard calomel electrode (SCE) acted as 
the reference electrode and a platinum foil electrode served 
as the counter electrode. An electrode preparation pro-
cedure reported in the literature [60] used to prepare the 
working electrode. 15 mg of the samples, 0.75 mg of poly-
vinylidene fluoride (PVDF), 0.75 mg of carbon black and 
1 mL of 1-methyl-2-pyrrolidione (NMP) were uniformly 
mixed together. The slurry mixture was dispersed uniformly 
on the surface of fluorine-doped tin oxide (FTO) thin film, 
and subjected to drying 60°C for 5 h. The effective area of 
the FTO thin film was 1 × 1 cm2. The used electrolyte was 
0.1 mol L−1 Na2SO4 aqueous solution. A 30 W low-pressure 
mercury lamp emitting UV light (λ = 254 nm) was served as 
the light source. A 0.2 V bias voltage was used during the 
transient photocurrent measurement. A sinusoidal voltage 
pulse with amplitude of 5 mV was used for the EIS mea-
surement (measured frequency range: 10−2‒105 Hz).

2.4. Photocatalytic test procedure

The photocatalytic performances of the samples were 
assessed by removal of RhB in aqueous solution (5 mg L−1). 
UV light emitted from a 30 W low-pressure mercury lamp 
(λ = 254 nm, 0.09 W cm−1 at a distance of 1 cm) and visi-
ble light generated by a 200 W halogen-tungsten lamp 
(λ > 400 nm, 0.52 W cm−1 at a distance of 1 cm) were sep-
arately used the light source. 100 mL of RhB and 0.1 g of 
the sample were loaded the photoreactor. The adsorption of 
RhB on the photocatalyst surface was examined by magnetic 
stirring the reaction solution in the dark for 30 min. During 
the photocatalytic degradation process, the RhB concen-
tration was monitored by measuring the absorbance of the 
reaction solution at intervals of 30 min. To achieve this aim, 
2.5 mL of the reaction solution was sampled from the pho-
toreactor and the photocatalyst was removed by centrifuga-
tion. The absorbance of the reaction solution was measured 
using a UV-vis spectrophotometer at a given wavelength 
λRhB = 554 nm. The degradation percentage of RhB (D%) was 
determined according to D% = (C0 − Ct)/C0 × 100% (C0 = initial 
RhB concentration; Ct = residual RhB concentration).

3. Results and discussion

Fig. 1. illustrates the XRD patterns of Ag2S, CaTiO3 and 
15%Ag2S@CaTiO3. For bare Ag2S and CaTiO3, their diffrac-
tion peaks including positions and relative intensities can 
be perfectly indexed into the Ag2S monoclinic structure 

(PDF#14-0072, space group P21/n) and CaTiO3 orthorhom-
bic structure (JDF#42-0423, space group Pnma), respectively. 
For the 15%Ag2S@CaTiO3 composite, besides the dominant 
diffraction peaks corresponding to CaTiO3, additional weak 
peaks assignable to Ag2S are also observed on its XRD pat-
tern. This indicates the integration of Ag2S with CaTiO3. 
In addition, no other impurity phases are detected in the 
composite, implying that no chemical reaction between 
Ag2S and CaTiO3 occurs in the composite and their crystal 
structures undergo no change.

The microstructural morphologies of Ag2S, CaTiO3 and 
15%Ag2S@CaTiO3 were observed from SEM images. As seen 
from Figs. 2a and b, Ag2S is crystallized into fine spherical 
nanoparticles with size of 7–17 nm (i.e., Ag2S QDs). Due to 
their ultrafine size and high surface energy, these Ag2S QDs 
are agglomerated into large-sized aggregate particles with 
size from several tens to a few hundreds of nanometers. 
The SEM images depicted in Figs. 2c and d demonstrate the 
formation of regular CaTiO3 NCs with size of 0.8‒1.1 μm in 
length and 0.3–0.5 μm in width. The surface of the CaTiO3 
NCs appears to be very clean and smooth. Figs. 2e and f 
display the SEM images of the 15% Ag2S@CaTiO3 compos-
ite, from which one can see that Ag2S QDs are uniformly 
assembled on the surfaced of CaTiO3 NCs. No agglomeration 
behavior is observed for the Ag2S QDs.

The microstructure of the 15%Ag2S@CaTiO3 composite 
was further elucidated by TEM investigation. As displayed 
in Figs. 3a and b, the morphologies and sizes of Ag2S QDs 
and CaTiO3 NCs revealed by the TEM images are in perfect 
accordance with the SEM observation results. More impor-
tantly, the TEM images clearly demonstrate the uniform 
assembly of Ag2S QDs on the surface of CaTiO3 NCs. The 
chemical composition of the composite is determined by the 
EDS spectrum, as shown in Fig. 3c. It is seen that the ele-
ments of Ca, Ti, O, Ag and S are included in the composite. 
The atomic ratio between the heavy elements Ag, Ca and Ti 
suggests that the mass fraction of Ag2S in the composite is 
basically in agreement with the stoichiometric composition 
of the 15%Ag2S@CaTiO3 composite. However, the derived 
O content is lower than that in the CaTiO3 phase, which 

Fig. 1. XRD patterns of Ag2S, CaTiO3 and 15%Ag2S@CaTiO3.
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Fig. 2. SEM images of (a,b) Ag2S QDs, (c,d) CaTiO3 NCs and (e,f) the 15%Ag2S@CaTiO3 composite.

Fig. 3. TEM images (a,b) and EDS spectrum (c) of the 15%Ag2S@CaTiO3 composite.
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could be ascribed to the non-sensitivity of EDS to light ele-
ments [61]. In addition, the observed Cu and C signals on 
the EDS spectrum could come from the TEM microgrid 
holder [62].

The elemental distribution of the 15%Ag2S@CaTiO3 com-
posite was analyzed by EDX elemental mapping technique. 
The dark-field scanning TEM (DF-STEM) image of the 
composite given in Fig. 4a illustrates that CaTiO3 NCs are 
homogeneously decorated with fine Ag2S QDs. The corre-
sponding elemental mapping images, as shown in Fig. 4b, 
demonstrate that the NCs are composed of Ca, Ti and O, 
and moreover, Ag and S elements are also seen to be uni-
formly distributed throughout the NCs. The EDX elemental 
mapping further confirms the decoration of Ag2S QDs on 
the surface of CaTiO3 NCs.

It is noted that the properties of nanomaterials are highly 
dependent on their optical absorption properties [63‒65]. 
UV-vis diffuse reflectance spectroscopy is an useful method 
to measure optical absorption properties of nanomaterials. 
Figs. 5a and b depict the UV-vis DRS spectra and their cor-
responding first derivative curves of the samples, respectively. 
It is observed that Ag2S QDs show a strong light absorp-
tion in the entire wavelength region measured in this work 
(200–850 nm). As a result, when Ag2S QDs are assembled 
onto CaTiO3 NCs, the obtained Ag2S@CaTiO3 composites 
manifest enhanced visible-light absorption compared to 
bare CaTiO3 NCs. With increasing the Ag2S content, the vis-
ible-light absorption of the composites gradually increases, 
which is further confirmed by the gradual deepening of 
their apparent color, from cream white for bare CaTiO3 to 
dark gray for 20%Ag2S@CaTiO3, as illustrated in Fig. 5c. 
Whereas for bare Ag2S QDs, a black color is observed. Due 
to their enhanced visible-light absorption, the Ag2S@CaTiO3 
composite photocatalysts are expected to utilize photons 
from sunlight more effectively. The peak on the first deriv-
ative curves of the UV-vis DRS spectra can be characterized 
as the absorption edge of CaTiO3 [48]. According to the 
relationship Eg = 1,240/λabs (Eg and λabs represent the band-
gap and absorption edge wavelength of the semiconductor, 
respectively), the Eg of CaTiO3 is separately obtained as 3.39 
(CaTiO3), 3.59 (5%Ag2S@CaTiO3), 3.61 (10%Ag2S@CaTiO3), 
3.64 (15%Ag2S@CaTiO3), and 3.66 eV (20%Ag2S@CaTiO3). 
A possible reason for the slight increase in the bandgap 

of CaTiO3 could be ascribed to the interaction between Ag2S 
and CaTiO3.

XPS analyses were performed on 15%Ag2S@CaTiO3 to 
determine its chemical states and composition. Fig. 6a dis-
plays the survey XPS spectrum, confirming that the com-
posite is composed of the elements of Ca, Ti, O, Ag and 
S. The detected C signal comes from adventitious carbon 
that is used for the calibration of the binding energy scale 
(C 1s binding energy: 284.8 eV). The high-resolution XPS 
spectra of Ca 2p, Ti 2p, O 1s, Ag 3d and S 2p core levels 
are presented in Figs. 6b‒f, respectively. On the Ca 2p XPS 
spectrum (Fig. 6b), the Ca 2p3/2 and Ca 2p1/2 core-electron 
binding energies are observed at 347.2 and 350.7 eV, respec-
tively, implying that Ca species exists in the form of Ca2+ 
[48]. As shown in Fig. 6c, the Ti 2p XPS spectrum presents 
two peaks at 459.2 (Ti 2p3/2) and 464.9 eV (Ti 2p1/2) without 
detection of additional Ti 2p peaks, which implies that the 
Ti species behaves as Ti4+ oxidation state [48,66]. Two peaks 
are observed on the O 1s XPS spectrum (Fig. 6d), where the 
peak at 530.4 eV is assigned to the CaTiO3 crystal lattice oxy-
gen and the peak at 532.3 eV is contributed by chemisorbed 
oxygen species [48,67]. On the Ag 3d XPS spectrum (Fig. 6e), 
the observation of two sharp peaks at 368.3 (Ag 3d5/2) and 
374.3 eV (Ag 3d3/2) is indicative of the presence of Ag+ oxi-
dation state [68]. No additional peaks assignable to the 
metallic state of Ag are detected on the Ag 3d XPS spec-
trum. The S 2p XPS spectrum of (Fig. 6f) can be divided into 
two peaks at 161.2 and 162.4 eV, which correspond to S 2p3/2 
and S 2p1/2, respectively [68].

The possible existence of functional groups in CaTiO3 
and 15%Ag2S@CaTiO3 was examined by FTIR measure-
ment, as shown in Fig. 7. The crystallization of CaTiO3 
perovskite-type structure is confirmed by the Ti–O–Ti 
bridging stretching mode resulting in the absorption 
peak at 560 cm−1 [69]. The observed peaks at 1,403 (O–H 
in-plane deforma tion vibration of alcohols) and 1,105 cm−1 
(C–OH stretching vibration of alcohols) suggest that alcohols 
could be anchored on the samples during the washing 
process [37]. The broad absorption band in the range of 
3,000‒3,600 cm−1 is caused by the N–H stretching vibra-
tion (3,146 cm−1) and H–O stretching vibration (3,430 cm−1). 
The absorption peak at 1,642 cm−1 is induced by the H–O 
bending vibration. This implies water molecules and NH3+ 

Fig. 4. DF-STEM image (a) and EDX elemental mapping images and (b) of the 15%Ag2S@CaTiO3 composite.
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groups are absorbed on the surface of the samples [70,71]. 
In addition, the 15%Ag2S@CaTiO3 composite shows no obvi-
ous chara cteristic peaks of Ag2S QDs, which could be due 
to the low content and/or infrared inactivity of Ag2S QDs.

PL spectroscopy is an useful technique to assess the 
recombination behavior of photogenerated e−/h+ pairs in 
semi conductor photocatalysts [72]. As shown in Fig. 8, an 
obvious PL emission peak at 555.4 nm, which arises due to 
the e−/h+ pair recombination, is observed for both CaTiO3 and 
15%Ag2S@CaTiO3. However, the 15%Ag2S@CaTiO3 compos-
ite manifests a relatively weak PL emission peak, indicating a 
decreased e−/h+ recombination in the composite.

Based on the photocurrent response and EIS analyses, 
We also compared the separation/transfer behavior of pho-
toexcited carriers between CaTiO3 and 15%Ag2S@CaTiO3. 
Fig. 9a shows the transient photocurrent-time curves of 
CaTiO3 and 15%Ag2S@CaTiO3 under intermittent UV irra-
diation. An obvious photocurrent response behavior is 
observed for both the samples, and more importantly, the 
15%Ag2S@CaTiO3 composite exhibits a higher photocur-
rent density than bare CaTiO3 on the irradiation. As seen 
from Fig. 9b, the EIS spectra (Nyquist plots) of CaTiO3 
and 15%Ag2S@CaTiO3 display a typical semicircle shape. 
The observed smaller semicircle diameter for the compos-
ite implies that it has a relatively smaller charge-transfer 
resistance [73,74]. Based on the photocurrent response and 
EIS analyses, it is confirmed that the 15%Ag2S@CaTiO3 com-
posite manifests a higher e−/h+ separation and faster inter-
face charge transfer than bare CaTiO3.

Separately under UV (λ = 254 nm) and visible light 
(λ > 400 nm) irradiation, the photocatalytic degradation per-
formances of CaTiO3 NCs, Ag2S QDs and Ag2S@CaTiO3 com-
posites were assessed by the elimination of RhB in aqueous 
solution. Before photocatalysis, the adsorption of RhB onto 
the samples was examined in the dark, and is obtained to 
be 3.5%‒11.6%. The samples exhibit an increasing adsorption 
toward RhB with increasing the Ag2S content. Generally, an 
appropriate dye adsorption is beneficial for its photocatalytic 
degradation. Fig. 10a illustrates the UV photocatalytic degra-
dation of RhB over the samples, from which one can see that 
the Ag2S@CaTiO3 composites show a photocatalytic activity 
obviously higher than that of bare CaTiO3 and Ag2S. Among 
the composites, 15%Ag2S@CaTiO3 with a Ag2S mass fraction 
of 15% manifests the highest photocatalytic activity. However, 
the decoration of excessive Ag2S QDs on the surface of 
CaTiO3 NCs is detrimental to the photocatalytic activity of 
resultant composites (e.g. 20%Ag2S@CaTiO3), which is due to 
the fact that excessive Ag2S QDs could shield CaTiO3 from 
light absorption. After photoreaction for 120 min, the degra-
dation percentage of RhB is 79.2% for bare CaTiO3 NCs and 
65.4% for bare Ag2S QDs, whereas the optimal composite 
sample 15%Ag2S@CaTiO3 photocatalyzes 99.6% removal of 
RhB. The photocatalytic activities between the samples are 
further compared by the kinetic analysis, as illustrated in 
Fig. 10b. The good linear relationship between ln(Ct/C0) and 
irradiation time t implies that the dye degradation conforms 
to the pseudo-first- order kinetics described by ln(Ct/C0) =  
−kappt [75]. The apparent first-order reaction rate constant kapp is 

Fig. 5. UV-vis DRS spectra (a), first derivative curves of the UV-vis DRS spectra (b) and digital images (c) of CaTiO3, Ag2S and the 
15%Ag2S@CaTiO3 composites.
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obtained according to the linear-regression fitting, as inserted 
in Fig. 10b. From the reaction rate constants, it is confirmed 
that the photo catalytic activity of 15%Ag2S@CaTiO3 is about 
3.6 and 5.6 times larger than that of bare CaTiO3 NCs and 
Ag2S QDs, respectively. The time-dependent UV-vis spectra 
of the RhB solution photocatalyzed by 15%Ag2S@CaTiO3 
(Fig. S1) further confirms the photodegradation of RhB under 
UV irradiation. Fig. 10c shows the visible-light photocatalytic 
degradation of RhB over the samples. It is seen that CaTiO3 is 

nearly inactive under visible light irradiation, whereas Ag2S 
shows an obvious visible light degradation activity. When 
Ag2S QDs are assembled on the surface of CaTiO3 NCs, the 
resultant Ag2S@CaTiO3 composites display an enhanced vis-
ible-light photocatalytic degradation of RhB compared to 
bare CaTiO3 NCs, and their activity increases monotonically 
with increasing the Ag2S content. The kinetic plots further 
confirm the visible-light photocatalytic performances of the 
samples, as shown in Fig. 10d.

Fig. 6. Survey XPS spectrum (a) and high-resolution XPS spectra of (b) Ca 2p, (c) Ti 2p, (d) O 1s, (e) Ag 3d and (f) S 2p of the 15%Ag2S@
CaTiO3 composite.

Fig. 7. FTIR spectra of CaTiO3 and the 15%Ag2S@CaTiO3 
composite. Fig. 8. PL spectra of CaTiO3 and the 15%Ag2S@CaTiO3 com posite.
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To elucidate the photocatalytic mechanism of the Ag2S@
CaTiO3 composites, the CB and VB potentials of CaTiO3 
NCs were determined by the Mott–Schottky measurement 
according to the method described in the literature [76,77]. 
Fig. 11a shows the Mott–Schottky plots measured at 3,000 
and 5,000 Hz, both of which yield a similar flat band poten-
tial (VFB) of –1.08 V vs. SCE by extrapolating their linear 
portion to the x-axis. The SCE potential can be converted to 
the normal hydrogen electrode (NHE) potential according to 

the relationship: V(NHE) = V(SCE) + 0.059pH + 0.242 (here 
pH = 7) [77]. CaTiO3 behaves as an n-type semiconductivity 
due to the positive slope of the Mott–Schottky plots. For an 
n-type semiconductor, the CB edge potential is assumed to 
be approximately equal to the flat band potential. Thus, the 
CB and VB potentials of CaTiO3 NCs are estimated as −0.43 
and +2.96 V vs NHE (Eg = 3.39 eV).

Fig. 11b schematically shows the Ag2S@CaTiO3 het-
erostructures with Ag2S QDs assembled on the surface of 

   

Fig. 9. Transient photocurrent response curves (a) and EIS spectra (b) of CaTiO3 and the 15%Ag2S@CaTiO3 composite.

Fig. 10. (a) UV photocatalytic degradation of RhB over CaTiO3, Ag2S and the 15%Ag2S@CaTiO3 composites. (b) Kinetic plots of the dye 
degradation over the samples under UV irradiation. (c) Visible-light photocatalytic degradation of RhB over the samples. (d) Kinetic 
plots of the dye degradation over the samples under visible light irradiation.
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CaTiO3 NCs, and Fig. 11c schematically depicts the energy 
band diagrams of CaTiO3 and Ag2S. According to the liter-
ature, Ag2S has a bandgap Eg = 1.0 eV and its CB and VB 
potentials are located at −0.30 and +0.70 V vs. NHE, respec-
tively [61]. However, for tiny Ag2S QDs, the quantum effect 
could induce a negative shift of their CB potential and 
increase of their bandgap [78]. As a result, CaTiO3 and Ag2S 
are expected to be coupled together to form Z-schemeAg2S@
CaTiO heterostructures due to their staggered band struc-
ture configuration, as shown in Fig. 11c. Under UV irradia-
tion, both CaTiO3 and Ag2S are excited to generate electron/
hole pairs. The CB electrons of CaTiO3 will transfer to Ag2S 
and recombine with its VB holes. This Z-scheme electron 
transfer and recombination process prolongs the lifetime 
of the VB holes in CaTiO3 and CB electrons in Ag2S, thus 
making them increasingly available for the photocatalytic 
reactions. This is the dominant reason for the enhanced 
photocatalytic performances of the Ag2S@CaTiO com-
posites. Moreover, the coupling of Ag2S QDs with CaTiO3 
NCs obviously enhances the visible light absorption and 
thus can make the best use of the solar energy to trigger the 
photocatalytic reactions.

To unveil the role of the reactive species—photoexcited 
h+, hydroxyl (•OH) and superoxide (•O2

−) on the photodeg-
radation of the dye, reactive species trapping experiments 
were carried out (Fig. S2). It is demonstrated that all these 
reactive species play an important role in the degradation of 
RhB. The role of the photoexcited h+ is to react with OH− or 
H2O to produce the strong oxidant •OH, instead of directly 
oxidizing the dye. This reaction process is ready to be pro-
ceeded since CaTiO3 has a sufficiently positive VB potential 
of +2.96 V vs. NHE (E0(H2O/•OH) = +2.38 vs. NHE, E0(OH–/ 
•OH) = +1.99 vs. NHE) [79]. •O2

− can be easily produced 
through the reaction between the CB electron of Ag2S with 
adsorbed O2 owing to the sufficiently negative CB potential 
of Ag2S (more negative than −0.3 V vs. NHE) compared to 
the redox potential of O2/•O2

− (−0.13 V vs. NHE) [79]. In addi-
tion, recycling photocatalytic experiment (Fig. S3) indicates 
that the Ag2S@CaTiO composite photocatalysts exhibit a 
good reusability for the photodegradation of the dye.

4. Conclusions

Ag2S@CaTiO3 hybrid composite photocatalysts were 
prepared by assembling Ag2S CQDs on the surface of CaTiO3 
NCs. Due to the Z-scheme electron transfer from the CB 
of CaTiO3 to the VB of Ag2S, the Ag2S@CaTiO3 composites 
exhibit highly efficient separation of photoexcited electron/
hole pairs. As a result, more photoexcited holes in the VB of 
CaTiO3 and electrons in the CB of Ag2S are able to take part 
in the photodegradation reactions. Photocatalytic experi-
ments confirm that the Ag2S@CaTiO3 composites manifest 
enhanced photocatalytic removal of RhB from aqueous 
solution under UV irradiation. In particular, the optimal 
composite sample 15%Ag2S@CaTiO3 can photocatalyze 
99.6% removal of the dye after 120 min of UV irradiation, 
and it has a photocatalytic activity 3.6 and 5.6 times larger 
than that of bare CaTiO3 NCs and Ag2S QDs, respectively. 
Moreover, the decoration of Ag2S QDs onto CaTiO3 NCs 
can also enhances the visible-light photocatalytic degrada-
tion of the dye, implying that the Ag2S@CaTiO3 composites 
can efficiently use solar energy to drive the photocatalytic 
reactions.
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Supplementary information

UV-vis spectra of the RhB solution photocatalyzed by 
15%Ag2S@CaTiO3 at different times under UV irradiation 
were measured using U-2001 UV-vis spectrophotometer, as 
shown in Fig. S1. It is seen that the intensity of the charac-
teristic absorption peaks of RhB decreases with increasing 
the reaction time, confirming the degradation of RhB during 
the photocatalytic process.

Hydroxyl (•OH), superoxide (•O2
−) and photoexcited h+ 

are generally considered to be the main active species in 
most of photocatalytic systems. To elucidate their role in 
the RhB degradation over 15%Ag2S@CaTiO3, reactive spe-
cies trapping experiments were carried out by using eth-
anol as the scavenger of •OH, benzoquinone (BQ) as the 
scavenger of •O2

− and ammonium oxalate (AO) as the scav-
enger of photoexcited h+. An amount of ethanol (5 mL), BQ 
(0.1 mmol) and AO (0.1 mmol) were separately added in the 
reaction solution (100 mL of 5 mg L−1 RhB solution +0.1 g of 
15%Ag2S@CaTiO3). The adsorption and photocatalytic deg-
radation experiments were performed under the procedure 
same to that without adding scavengers. UV light was used 
the light source. As illustrated in Fig. S2, all the scavengers 
have an inportant suppression on the photodegradation 
of RhB, implying that •OH, •O2

− and h+ plays an important 
role in the photodegradation reactions.

Recycling photocatalytic experiment was carried out 
to assess the reusability of the 15%Ag2S@CaTiO3 compos-
ite photocatalyst toward the degradation of RhB under UV 
irradiation. After the completion of each photodegradation 

cycle, the sample was collected and recovered by washing 
with deionized water and drying at 60°C for 5 h. The recov-
ered sample was added in 100 mL of fresh RhB solution and 
then irradiated for the next photocatalytic cycle. As seen 
from Fig. S3, the 15%Ag2S@CaTiO3 composite still shows a 
high photocatalytic removal of RhB at the 4th photocatalytic 
cycle, indicative of a good recycling stability of the composite 
photocatalyst.

Fig. S1. UV-vis absorption spectra of RhB solution photo-
catalyzed by 15%Ag2S@CaTiO3.

Fig. S2. Effect of ethanol, BQ and AO on the degradation of 
RhB over 15%Ag2S@CaTiO3 under UV irradiation.

Fig. S3. Reusability of 15%Ag2S@CaTiO3 for the photodegrada-
tion of RhB under UV irradiation.
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