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a b s t r a c t
Social acceptance of water quality in urban areas depends on the perception and awareness of the 
stakeholders and the wider public. Moreover, the significance of social trust in stakeholders appears 
to be an influential factor affecting social support of water quality. However, efforts on understand-
ing, communicating and engaging with the public and the stakeholder community still remain under 
examination. Urban water resources management problems are often associated with ecological, 
political, social and economic development and have caused critical concern to both national and 
local competent authorities in almost every country for many years. When focusing on water quality, 
key indicators are used to measure the performance (KPIs) of water companies in evaluating their 
success to customer satisfaction with zero defects while minimizing the environmental footprint 
caused by the intermediate procedures up to the point of receiving potable tap water. Stakeholder 
interviews reveal that these KPIs can be identified from an economic, social, environmental and 
water company perspective, and they can span from the efficiency of water distribution to opera-
tional water losses minimization procedures and from customer supply coverage to aesthetic test 
compliance. Therefore, future policy for water quality should be designed in a strategic framework, 
taking into consideration key sustainability indicators emanating from the aforementioned perspec-
tives. In the current paper, a complete showcase is illustrated on how to mobilize local stakeholder’s 
knowledge to extract KPIs for supporting effective strategies by local water companies and initiating 
policy making by the competent authorities in the process of keeping high water quality standards in 
a sustainable water resources management environment. Specifically, the application of soft comput-
ing methods enables the conceptualization and categorization of stakeholders’ notion of strategies 
that need to be followed. This conceptualization allowed the involvement of fuzzy inference systems 
to simulate the effects of several policies in a multi-criteria analysis. According to the features, the 
policy maker initiates, the proposed model succeeds to identify the preferred policy options that 
can be used in achieving minimal environmental footprint.
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1. Introduction

Under the Water Framework Directive (WFD), European 
Environment Agency has envisaged new development 

pers pectives in the field of urban water management while 
sustaining natural water resources. Although there is rel-
evant literature [1–4], there is not, however, an established 
methodology for integrated measuring and evaluating the 
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sustainability of urban water services in terms of water 
renewable production, water quality evaluation, sufficient 
volumes safeguarding and the creation of an indicator plan-
ning and evaluation system. Considering the different per-
spectives and the vast variety in stakeholder bodies for the 
establishment of evaluation criteria, it is quite difficult to gain 
solid knowledge in preserving sustainability for urban water 
distribution activities. Additionally, most of the water utilities 
mainly focus on the provision of necessary water supplies for 
their water distribution networks and on a secondary level 
on the adequate collection of wastewater, disregarding the 
impact of their actions on citizens. Furthermore, the infra-
structures built are usually funded externally thus resulting 
in inability of maintenance and operation by local munici-
pal authorities. So local authorities put as a first priority to 
avoid proliferation and propagation of infectious diseases 
and, the improvement of potable water supplies becomes a 
task of lower priority. All the aforementioned activities and 
policy trends result in a gap of policy and decision making 
for the competent authorities and the water utilities. For all 
the above-mentioned reasons, urban water quality sustain-
ability has become a major societal objective for the regional 
stakeholders primarily including the consumers.

Urban water quality sustainability evaluation is consid-
ered to be a rather complex process of analyzing and review-
ing resources, systems and services throughout the water 
supply and management operations [5,6]. The initial attempt 
in achieving a sustainable water cycle belongs to Brown et 
al. [7]. This attempt took into consideration several social, 
environmental and economic dimensions mainly exposed by 
Thornton et al. [8]. The inference stretched in these works was 
that a formation of water sustainability protocol is hindered 
by many uncertainties including social, economic, technolog-
ical, water conservation, health risk and water quality related 
ones. To overcome the shortcoming produced due to lack of 
making decisions at least at the competent authorities’ level, 
Bijlsma et al. [9] suggested a participatory approach in policy 
development as opposed to expert-based policy develop-
ment, applying an uncertainty perspective to reveal differ-
ences between the two approaches.

This transition to water sustainability is a long-termed 
societal process that basically monitors the interactions bet-
ween society, technology, policy making, environment, eco-
nomics and culture [10,11]. However all approaches must 
be governed by the human right to water availability and all 
aspects of water management must give great importance to 
social justice for availability of quality water. A continuous 
supply of clean and safe drinking water must be ensured for 
the public health protection [12]. In sustainability studies, the 
coupling relationship between water environment and social 
economy appears to be a critical issue under investigation 
[13]. Water efficiency is vital to life and socio-economic devel-
opment, especially under predicted climate change situations 
in the future, which may possibly further intensify the diver-
gence between supply and demand of water resources [14]. 
Inability to substitute water scarcity raises consciousness 
towards potential water crises in the future [15]. Thus, com-
petent authorities must develop the policies that will ensure 
proper operation, maintenance, water treatment and distri-
bution network to provide quality water to local residents 
according to essential human needs and at an affordable 

cost. Regardless of the county/region focused, all residents 
insist on the existence of two components: (a) appropriate 
water quality at all times in the water distribution network 
and (b) transparency, information and public reporting of all 
processes of water supply utilities.

For the case of urban water, optimizing the operation 
and management through modelling, data mining, machine 
learning and fuzzy logic methodologies has improved the 
knowledge about the systems. More specifically, sustain-
ability, resilience and transformation of urban systems that 
mainly focus on the quality of the urban water are blended 
with social, environmental and ecological perspectives. Since 
they often present dramatic changes, they must continu-
ously be adapted to new data. Therefore, to come up with the 
most appropriate management options, such systems have 
to be previously tested under conditions that emphasize 
learning, monitoring and continuous knowledge acquisition 
[16,17]. The abovementioned introduction of fuzzy decision 
techniques can be used to find what is the most socially 
just and acceptable scenario for allocating quality water to 
local residents. This methodology takes under consideration 
multi-stakeholder opinions and examines the multi- criteria 
urban water quality problem under the uncertainties inherent 
in a decision making process. Alizadeh et al. [18] effectively 
used this fuzzy multi-objective model in order to simulate 
and make appropriate decisions for regional management 
policies relating to groundwater resources. Moreover, Keshtkar 
et al. [19,20] applied a fuzzy analytic hierarchy pro cess 
approach to multiple-criteria scenario analysis for demon-
strating integrated natural resources and catchment assess-
ment, modelling and management practices.

For most of the European governments and under their 
local bylaws, water distribution networks (WDNs) are usu-
ally non-revenue WDNs [21]. These WDNs suffer from three 
major problems, namely: (a) apparent losses, (b) real losses 
and (c) non-revenue authorized consumption. The cause of 
these losses is the competent authority policies applied for 
the operations and maintenance, which are the main reason 
for the water leakage, as well as the poor quality of under-
ground assets. Such WDNs are exactly the bidirectional 
paradigm where the poor water quality negatively affects 
the WDN operation and, on a second phase, the poor WDN 
maintenance negatively affects the water quality on the con-
sumers’ tap. For such WDNs, there is significant research 
done from the point of dealing the presence of uncertainties 
via probabilistic tools such as Bayesian Networks [22–24] 
and the prediction of contamination of drinking water [25].

It is worth mentioning that complementary socio-tech-
nological perspectives for the issue of urban water quality 
rarely take into account the sustainability criterion and, more 
importantly, the societal change due to policy, social justice, 
economics, health risks and culture. However, when any 
social aspect in a technological procedure is encountered, 
additional uncertainty occurs due to the lack of significant 
amount of data to support or prove any research conjectures. 
For this reason, a fuzzy inference approach is a more suitable 
methodology in similar problems, as it succeeds to represent 
the problem uncertainties using interleaved boundaries of 
fuzzy variables. More specifically, it has been demonstrated 
that there is merit in urban water quality monitoring using 
machine learning methodologies such as artificial neural 
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networks (ANN) and fuzzy systems [26,27]. However, these 
research works only take into consideration the sensing 
of chemical parameters/characteristics (e.g., chlorine, tur-
bidity, nitrates, pH, etc.) and nothing that relates to social 
characteristics and impacts involved.

From the previous discussion, it is clear that any inte-
grated methodology that deals with the urban water qual-
ity must synthesize the traditional scientific techniques 
with a variety of cognitive dimension techniques mediated 
by fuzzy inference systems to define values and cultural 
contexts, analyze drivers of change towards resilience and 
transformation management and produce policy making in 
complex and uncertain social environments [28,29]. In com-
plementing the method of fuzzy inference systems (FISs), 
one similar method in involving stakeholder participation 
is the fuzzy cognitive maps (FCMs) [30–32]. The advan-
tage of this methodology is its applicability in representing 
both individual and group knowledge while at the same 
time it seems the most appropriate in modelling processes 
and decisions in human social systems and in the ecologi-
cal realm to organize and analyze the interactions between 
social systems [33–35]. Apart from the recognized benefits, 
the FCM methodology suffers from general limitations as 
the study by Kok [36] indicates. The most critical issue is 
how the involved stakeholders in the social situation under 
study perceive relationships between various components 
of the study. For our case, these components correspond 
to the social key performance indicators in relation to the 
urban water quality. The produced chains of cause and 
effect in these social issues of anthropogenic characteristics 
make the use of FCM of critical importance, however, due 
to the simplicity in gaining knowledge of the individual 
weights of participation of the participating social indicators 
mentioned.

In the current research, a holistic approach is proposed 
based on stakeholder participation for the creation of a deci-
sion support system for use by the competent authorities in 
relation to the urban water quality. More specifically, our 
proposed system is an amalgamation of a FIS and a fuzzy cog-
nitive map (FCM) to identify the local social group (regional 
stakeholders) expectations and consideration regarding 
the urban water quality of a WDN. Our methodology falls  
into supervised machine learning process, as it uses exam-
ples (via questionnaire data) regarding the importance 
(weight) of the social issues involved. Both methods are 
rather semi-quantitative trying to disclose and visualize any 
collaborative effects deriving from possible types of focus 
groups and their cooperative opinions in relation to the 
aforementioned problem. Since input data are not fully qual-
ified with “crisp values”, the decision of using fuzzy logic 
methodology seems apparent in achieving ‘de-fuzzification’ 
and highlighting the most relevant aspects that play import-
ant role in decision making process of water utilities. On the 
other hand, the quantitative nature of the FCM produces the 
individual importance weights of the social aspects involved. 
This enables the competent authorities with a set policy 
options to stimulate positive reaction from the regional social 
bodies in relation to taking decisions for the urban WDN 
operation and management.

What makes our method innovative is the valorization 
of the fuzzy theory and the membership functions of fuzzy 

variables involved, in the water quality management issue. 
A modified version of the fuzzy-weighted multi-stakeholder 
technique is used to incorporate uncertainties associated 
with the opinions of the public and the competent author-
ities, and therefore fuzzy membership functions and fuzzy 
ranking are introduced in decision making for urban water 
governance. Actually, the novelty introduced in this work 
is trifold, as a set of fuzzy theory methods (FIS and FCM) 
along with social science methodologies are incorporated in 
studying important urban water quality issues. The hybrid 
application of fuzzy logic and FCM is proved to be a useful 
pattern classification tool in order to classify social percep-
tions and behaviours towards policies of water governance. 
This methodology can be fully generalized also in other top-
ics: by transforming any pattern classification problem into 
a problem of discovering the way the sets of patterns inter-
act with each other and with the classes that they belong 
to, the problem to be modelled could easily be transformed 
as a variation of fuzzy set algebra. Actually, the causalities 
of all fuzzy concepts can then be studied using FCMs.

The paper is structured as follows: in Section 2, we intro-
duce the reader to the basic definitions and aspects of fuzzy 
logic, which also includes the construction of a Mamdani 
FIS [37] where we illustrate the building of a rule-based 
decision support system to measure the quality of potable 
water in WDNs. Based on extensive research [38,39] and the 
references therein, six water quality indicators are the most 
popular, that is: pH, dissolved oxygen, electrical conductiv-
ity (EC), oxygen reduction potential, nitrates and tempera-
ture. However we do not attempt to testify the plausibility 
of existed water quality distribution networks but rather 
we focus on the evaluation of the level of social acceptance 
for the issue taking in account social KPI’s such as: health 
risk and water quality, assuming that the “Water Quality” 
defines the public perception of the urban water quality 
of the region under study and includes all the above water 
quality indicators. Moreover, we build two fuzzy inference 
system sub-models: (a) the output variable of the first is 
the quality of the urban water management solution (well-
known indicator as quality of service, QoS) and (b) the 
output variable in the second fuzzy inference subsystem is 
defined as the overall social acceptance as this is derived 
by the QoS above and the location of the water-treatment 
facility [40]. The output of the second fuzzy subsystem par-
ticipates as one of the concepts (nodes) in the FCM, which 
is discussed in Section 3. More specifically, in this section 
we first introduce the reader into the basic concepts of an 
FCM, the development of FCMs using experts’ knowledge, 
the development of FCMs using data and various learning 
methodologies as well as how the inference is succeeded. 
Then we construct an FCM where we integrate the stake-
holders’ opinions in an integrated decision making system 
using multi-criteria analysis and the scenario-based analysis 
coming from the FIS constructed above. The FCM construc-
tion represents additional social issues related to the urban 
water quality such as: water monitoring, watershed and 
environmental protection, drought and other emergency 
preparedness, water affordability and social justice. We 
designed the FCM so that a partial outcome emanates from 
the above concepts, and then we feed this sub-FCM to the 
outcome of the above FIS so that a single output referring to 
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the decision making for water utilities is achieved. In both 
Sections 2 and 3, we refer to a case study for the munici-
pal water utility company ‘DEYA’ of Lamia, Greece, and use 
the responses from a rather large stakeholder body for the 
city of Lamia, Greece. An FCM steady-state analysis and a 
dynamic scenario analysis for the social issues are following. 
Conclusions and future challenges close this manuscript.

2. FIS for evaluating the public perception of drinking 
water quality

2.1. Concepts of fuzzy logic

Fuzzy theory handles operations of variables under the 
concept of ‘fuzziness’ that refers to ambiguity, impreciseness 
and vagueness. The classification of the value to a certain 
category or set among a variety of different categories is 
evaluated via a membership function that defines the cer-
tain degree of an entity to be a member of a category. This is 
opposed to the classical binary consideration of crisp inclu-
sion or exclusion of an entity in a set. Actually, the degree 
of membership is somewhat subjective and with imprecise 
boundaries [41,42]. The popularity of fuzzy sets lies on their 
ability to operate on linguistic variables that are evaluated 
using qualitative values (categorical data). In most cases, it is 
also a common practice to include additional terms (mostly 
adjectives or adverbs: very, low, medium, etc.) in order to 
add accuracy to these linguistic values [43]. The use of fuzzy 
variables is shown in creation of an FIS. This is the key unit 
of a fuzzy logic system having decision making as its pri-
mary task (Fig. 1). In an FIS, “IF…THEN” rules are used 
along with connectors “OR” or “AND”, for drawing essen-
tial decision rules.

The main phases in creating an FIS using this approach 
are the following: (a) the definition of the membership 
functions, (b) the fuzzification process, (c) the inference 
mechanism via the design of rules, and (d) the fuzzy out-
come. We briefly comment on these four phases:

•	 A membership function (MF) for a fuzzy set A on the 
universe of discourse X is defined as µA:X → (0,1) and is a 
curve that maps each element of in the input space X into 
a membership value called the degree of membership 
(a value between 0 and 1). The membership functions 

may be chosen from a variety of shapes to fit the needs 
of the problem modelling. Fig. 2 depicts the curves of 
the most popular MFs and it includes their names in 
MATLAB® (simulation and modelling software to design 
and evaluate FIS).

•	 Fuzzification: The conversion of a crisp input value to a 
fuzzy one, using the information in the knowledge base. 
This is performed according to the decided subdivision 
of the parameters. Although various types of curves can 
be seen in literature as explained previously, the most 
popular membership function types used in the fuzzifica-
tion process are the Gaussian, triangular and trapezoidal.

•	 Inference: The application of the synthesized value of two 
or more membership functions in order to deduce a result. 
This process uses fuzzy set theory to map inputs to out-
puts (features to classes, in the case of fuzzy classification). 
The rules of this engine are conditional expressions of lin-
guistic form to support the mathematical formalism using 
the expression ‘‘if…then’’ of the logic itself. However, the 
truthiness or falseness of the consequent is inferred from 
the degree of truthiness or falseness of the antecedent.

•	 De-fuzzification: Consists of all the steps involved in 
producing a quantifiable result and outputting a deter-
ministic value from the fuzzy model used in the inference 
engine of the system. Most popular methodologies for 
defuzzification include the basic defuzzification distri-
butions, the constraint decision defuzzification, the fuzzy 
clustering defuzzification, the centre of gravity and area 
and the generalized level set defuzzification.

2.2. Fuzzy model for public perception of water quality

The decision for developing a combined (synthesized) 
fuzzy inference model to regulate and undercover the main 
indicators that affect the public perception of the urban 
water quality is because of the embedded uncertainty due 
to vagueness. The nature of uncertainty is the primary fac-
tor to represent with membership functions the sustainable 
indicators in order to derive the level of social acceptance. 
Therefore, the existence of imprecise public opinion of water 
quality can be formulated using a variety of membership 
functions which can affect the decision making process in 
relation to urban water governance. For the above reasons 

 
Fig. 1. Components of a typical FIS.
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and the apparent existence of inaccurate survey data, such 
methodology selection becomes intriguing. As mentioned 
before, in order to create fuzzy logic environment, it is 
necessary to define the input in fuzzy terms, to set up the 
membership functions for each datum and to establish the 
fuzzy rules for obtaining the fuzzy output. For our case, it 
will be a two-step process where first the perception on the 
service quality of the urban water management solution is 
derived by three variables: (a) perception of underground 
and environmental pollution, (b) water safety and (c) per-
ception of the WDN condition. The diagram for this synthe-
sized two sub-model FIS is depicted in Fig. 3.

Note that the entity of the level of social perception in 
relation to urban water quality cannot be mathematically for-
mulated, thus, quantification of social perception can only be 
derived by subjective opinions of people. Also, some people 
(even stakeholders coming from the competent authorities) 
tend to mix their perception of water safety expressing it 
in terms of how the water tastes at the tap. Characteristic 
expressions are related to the level chlorine-type taste. 
For this reason, linguistic values can be assigned to these 
opinions scaling in a Likert scale from 0 to 100 assuming 

values: bad, fair, good, very good and excellent. Assuming 
the previous linguistic values for the quality of service, we 
can keep the same gradation for the water treatment facility 
and WDN condition to keep the two sub-models homoge-
neous. On the other hand, the fuzzy sets defined for the level 
of social perception are [40]: totally unacceptable (TU), unac-
ceptable (U), little acceptable (LA), acceptable (A) and totally 
acceptable (TA).

To apply the information above, we developed three 
Mamdani FIS corresponding to the use of the triangular, trap-
ezoidal and generalized-bell membership functions. In the fol-
lowing Figs. 4a–d, we depict the Mamdani FIS and the three 
different membership functions showing only one for each 
of the fuzzy variables, respectively. After we setup the system 
in MATLAB, we also set the inference rules for both phases as 
shown in Tables 1 and 2, respectively. Finally, the 3D decision 
surfaces produced by the two FIS are shown in Figs. 5a and b, 
respectively. Especially for the 3D viewer of Fig. 5b using 
any value combination of the public perception in relation to 
water quality and any value for the water treatment facility 
and WDN condition, the overall social perception that will 
feed the FCM for the decision support system can be deter-
mined. Note that this value will be set for the correspond-
ing FCM concept in the map, that is, it will not be allowed 
to arbitrary changes when evaluating various scenarios and 
doing steady-state analysis. Since the output of the second 
FIS is defuzzified, it represents a value between 0 and 100 for 
the level of the social perception, which will be the concept 
weight for the FCM. As we show in Section 3, the same scale 
for the other FCM concepts to keep homogeneity with the 
FIS is used.

3. Multicriteria analysis and FCM-based urban water 
governance

3.1. Integration of stakeholders in the urban water governance 
decision making process

From the social perspective, the most critical issues to 
deal with the problem of urban water decision-making and 
water governance are first how to incorporate a holistic 

 

Collection of membership functions in MATLAB 
trapmf Trapezoidal-shaped MF 
gbellmf Generalized bell-shaped MF 
trimf Triangular-shaped MF 
gaussmf Gaussian curve MF 
gauss2mf Gaussian combination MF 
smf S-shaped MF 
zmf S-shaped MF 
psigmf Product of two sigmoidal MF 
dsigmf Difference between two sigmoidal 

MF 
pimf Π-shaped MF 

sigmf Sigmoidal MF 
 

Fig. 2. Graphical illustrations of all the membership functions in the MATLAB® fuzzy toolkit.

 

Fig. 3. Conceptual illustration of the composed two sub-model 
FIS.
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approach for the management and second how to integrate 
this approach with the rest of methodologies (water resources 
sustainability, health risks, social justice, etc.). For this pur-
pose, dynamic environmental and social system feedbacks 

that relate to urban water management systems should be 
included [44].

The primary challenge of holistic management is attacked 
by the incorporation of knowledge of how and why decisions 

  
(a) (b) 

  
(c) (d) 

Fig. 4. Mamdani FIS for evaluating: (a) quality of service, (b) triangular MF, (c) trapezoidal MF and (d) generalized bell-shaped MF, 
for the fuzzy inputs.

Table 1
Fuzzy rules for the quality of service FIS

Perception of underground and environmental pollution →

Water taste ↓ Bad Fair Good Very good Excellent
Bad Bad Bad Fair Fair Good
Fair Bad Bad Fair Fair Good
Good Bad Bad Good Good Very good
Very good Bad Bad Good Good Very good
Excellent Bad Fair Very good Very good Excellent

Table 2
Fuzzy rules for the level of social perception FIS

Water treatment facility and WDN condition→

QoS↓ Bad Fair Good Very good Excellent
Bad TU TU U U LA
Fair TU TU U U LA
Good TU TU LA LA A
Very good TU TU LA LA A
Excellent TU U A A TA
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are made and what is the social impact of these decisions 
[45]. According to Hill [46], the concept of water gover-
nance must first be comprehended as the process insisting 
that all involved competent authorities and organizations 
of common interest should work together with stakehold-
ers to engage shared decision making. This is a shift from 
previous practices, in which the primary concept was the 
rule enforcement. Now, it becomes a more flexible approach 
that integrates public and stakeholder engagement. The 
need for stakeholder participation in decision making for 
urban water policies has already been shown to be import-
ant [47,48]. However, many barriers have been highlighted 
by several researchers, including the following: (a) many 
practices are dependent exclusively on technological meth-
ods leaving out any possibility of community engagement 
inclusion [49], (b) when governance practices engage a large 
stakeholder body, they usually suffer from the hierarchical 
engagement style phenomenon (top-down divide) [48] and 
(c) capacities of communities to participate are not catered 
for or understood [50].

The aforementioned barriers sometimes cannot be over-
come due to the lack of knowledge from the communities 
(e.g., most people think that the smell of water is tightly 
coupled with its clarity and potability, which is not always 
the case). On the other hand, in most public engagements, 
there is a notable willingness of the community to participate 
and learn from the process. This is an important factor to the 
success of the competent authorities’ undertaking in relation 
to urban water decision, both in macro- and microlevel urban 
water management.

For the case of urban water governance, there is a 
need of participatory methodologies to deduce effective 
results for decision making. Such a modelling approach is 
the FCM, as it is able to gain knowledge through training, 
and this knowledge can come from stakeholder participa-
tion [51]. Furthermore, FCMs allow additional interactions 
coming from other technologies such as FIS as well as other 
FCMs [52,53].

3.2. Scenario-based decision-making

In general, the scenario-based methodology enables 
policy makers to plan and select more sustainable portfolios 
for future policies. The exhaustive methodology of testing 
several scenarios is fundamental to mitigating future risks 
in urban water shortage among many others. Critical eval-
uation of each scenario enables the competent authorities to 
advance with decision making while also minimizing the 
interrelated costs [54,55]. Along these lines, urban water 
policy makers try to achieve optimal solutions securing the 
sustainability of regional water resources.

However, at the same time, other stakeholder parties 
may be engaged in decision making that sometimes con-
tradicts the abovementioned optimal practices, uncovering 
environmental vulnerabilities, such as drought, usually sum-
mer heat waves, overwhelming water demand (especially 
during summer months), water contamination due to exter-
nal factors and unfair competition for water resources. For 
this reason, urban water management has to adapt to a set of 
interdisciplinary practices and find tools that have the ability 
in representing structured knowledge and model complex 
systems. Such a decision making model is the FCM that is 
explored in the following subsections.

3.3. FCM methodologies

FCMs [30,31,32,55,56] are signed digraphs of semi -
quantitative nature used to structure experts’ or stakeholders’ 
knowledge and can analyze how these interested parties 
perceive complex policy systems. FCMs are able to compare 
co-existed perceptions of various stakeholders combining 
qualitative and quantitative information. In essence, an FCM 
is a graph consisting of nodes and directed edges that connect 
any two nodes representing causal relationships between 
the nodes. These causal relationships between nodes are 
not necessarily measured by crisp values, as fuzzified 
asso ciations may very well be evaluated in order to express 
the membership function of relation using linguistic terms.

 
(a) (b) 

Fig. 5. (a) 3D surface viewer of the QoS FIS and (b) 3D surface viewer of the level of social perception FIS.
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FCMs can be easily constructed by stakeholders because 
of their graphical nature and their user friendliness. Initially, 
the set of concepts is determined and then any causal rela-
tionship between any two concepts is described “either 
with an if–then rule that infers a fuzzy linguistic variable 
from a determined set T{influence} = {negatively very very 
strong, negatively very strong, negatively strong, nega-
tively medium, negatively weak, negatively very weak, zero, 
positively very weak, positively weak, positively medium, 
positively strong, positively very strong, positively very 
very strong} or with a direct fuzzy linguistic weight from 
set T{influence}” [57]. The selection of the FCM methodology 
to model a decision support system for urban water gover-
nance is due to two reasons: (a) FCMs are able to incorpo-
rate the details and the value uncertainty of various factors 
affecting this decision and (b) FCMs are suitable to illustrate 
the effects of factor changing for the whole systems, even 
though they are not able to make quantitative predictions.

FCMs build on stakeholder understanding and expe-
rience of the system via questionnaires or experts’ knowl-
edge or just from the literature. The variety and volume of 
participants may fluctuate from just few to up to hundreds. 
Initially, all participants give feedback to the experts and 
then the experts undertake the task of knowledge extraction 
and formulation into concepts via a defuzzification process 
of the linguistic variables. The result is a graph G consisting 
of concepts depicted as a set of nodes Ci (i = 1,2,...n) with their 
interrelations denoted as wi (graph directed edges).

For experts to conclude on which concepts to integrate, 
stakeholders give first feedback prior to knowledge extraction. 
Especially for decision policies made, this knowledge extr-
action is succeeded transforming all linguistic variables into 
numeric values via a defuzzification process. This produces 
a set of concepts denoted as Ci (i = 1,2,...,n) (graph nodes) 
with their interrelations denoted as wi (graph directed 
edges). The most important representation for the FCM is the 
adjacency matrix of the weights wij, where a positive value 
denotes that an increase (decrease) of the value of concept 
Ci results to an increment (decrement) of the concept’s value 
Cj, respectively. Similarly, a negative weight wij indicates 
that an increase (decrease) in the value of concept Ci results 
to a decrement (increment) of the concept’s value Cj, while 
a zero weight denotes the absence of relationship between 

concepts Ci and Cj, respectively. Aggregation of selected 
FCMs that correspond to individuals may result in a col-
lective map where many variables can be grouped together 
to formulate a broader concept. In terms of the individual 
adjacency matrices, these can also be aggregated to form a 
group matrix [34]. Every concept Ci in the graph (Fig. 6) has 
a value Ai that denotes the conversion from a fuzzy linguis-
tic value. For the converging of the FCM to a stabilized state, 
a number of iterations recalculate the concepts Ci using the 
weights of the edges and an inference rule. In each itera-
tion, the new value of concept Ci indicates the difference in 
influence of the rest of the concepts. Many inference rules 
have been used for FCMs with the most important ones by: 
(a) Kosko’s inference, (b) modified Kosko’s inference and 
(c) Rescale inference with their formulas depicted below, 
respectively:
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The iterations stop at the step when none of the concepts 
is changed or the change is less than a predefined threshold 
which can be bivalent, trivalent, sigmoid or hyperbolic, as 
shown in the following four equations, respectively:
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 Fig. 6. Typical FCM graph depicting positive and negative causalities between concepts.
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f x x( ) =
+ −

1
1 e λ

 (6)

f x h x( ) = ×( )tan λ  (7)

The following two properties are fundamental when ana-
lyzing linguistic variables, especially the so-called transmitter 
variables (with positive out-degree and zero in-degree). 
These properties are the density and the centrality of the 
FCM. The transmitter variables are also called drivers where 
the receiver variables (zero out-degree and positive in-degree) 
are the dependent. Finally, the ordinary variables (both zero 
out-degree and in-degree) are means. The definition of the 
density and centrality follows:

Density (D) provides information on the connectivity of 
the FCM and relates the number of connections and the max-
imum number of possible connections between the FCM’s 
variables:

D C
N N

=
−( )1

 (8)

where D is the density of the map, C is the total number of 
connections and N is the number of variables.

The degree centrality is a local centrality measure, 
because it is determined by only its directed connections. The 
degree centrality of a node is the summation of its absolute 
incoming (in-degree) and outgoing (out-degree) connection 
weights:

C v v vD ( ) = ( ) + ( )( )∑ id od  (9)

where the in-degree id(v) is the summation of connection 
weights entering node v, and the out-degree od(v) is the sum-
mation of connection weights exiting node v.

The formation of the FCM is done with the help of 
experts and/or stakeholders whose opinion is noted via ques-
tionnaires, surveys, focus-groups or other methods of setting 
up the weights of the edges between any two concepts. In 
the case scenario that there are no experts or FCMs are very 
complex to draw, there are many learning (training) mecha-
nisms that substitute the experts such as: (a) Hebbian-based, 
(b) population-based and (c) hybrid learning. Hebbian-based 
methods use available data and a learning formula that is 
based on several modifications of Hebbian law, to iteratively 
adjust FCM weights. Typical Hebbian-based methods have 
been reported in the literature [58–61]. Most of the popula-
tion-based algorithms include techniques such as simulated 
annealing, evolution-based and particle swarm optimization 
[62–67]. At the end, the hybrid method is an amalgamation 
of the other two, synthesizing the differential evolution algo-
rithm and nonlinear Hebbian learning algorithm, by using 
both the global search capabilities of evolutionary strategies 
and the effectiveness of the non-Hebbian learning rule [68].

We consider a new extension of multi-criteria decision 
analysis (MCDA) using a similar hybrid model that interre-
lates FIS and FCMs in decision and policy making regard-
ing water governance. More specifically, this approach is 
preferable to MCDA due to the fact that it represents relative 

importance among concerning criteria which allow the use 
of fuzzy linguistic values. The proposed model provides 
considerable flexibility to decision makers when solving real-
world MCDA problems. It should be noticed that the con-
struction of the inner influences among criteria in analytical 
criteria processing represents a hard task for decision mak-
ers. For that reason, the adaptation of FIS and FCM provides 
a simplification of this process resulting in a simple way 
the final preferential matrix of criteria with inner influences. 
The ease of the process comes from the fact that FCMs allow 
the handling of uncertainties in the form of linguistic values.

4. Application of FCMs in analyzing water governance – 
steady and dynamic state analysis

4.1. Description of the case study

The effect of the FCM and the FIS discussed in Sections 
2 and 3 was tested for the case study of the city of Lamia, 
Greece. Lamia is located in central Greece, (Fig. 7) with a 
municipality area of 947 km2 and of ~75,000 population. Up 
until 1929, the city of Lamia used to get potable water from 
sinks, wells and cisterns. The area around the Galaneika 
district used to be called “wells” indicating the city’s water 
source. From 1929 and after, Lamia’s water comes from 
Gorgopotamos river and several physical reservoirs made 
around the city capturing the water from the surrounding 
mountain springs. Occasionally, there are few ructions about 
the quality of potable water but just recently the Lamia’s 
municipal water utility company (‘DEYAL’) has really been 
upgraded and improved its services to residents.

A part of the latest dissemination attempts of DEYAL 
is the anchoring of the levels (values) of a variety of KPI’s 
related to the chemical characteristics for the water qual-
ity. Data similar to these provided in Table 3 shown below 
are issued every week for the information of local residents 
(or other stakeholders).

The main goal of this paper is to provide a decision 
support system for the water utility in order to apply water 
governance but also to do an investigated assessment of the 
community attitudes towards the quality of urban water 
measuring the degree of this acceptance. These issues are 
coming from a thorough survey polling the local residents, 
university students and water utility employees. More spe-
cifically, the questionnaires were distributed in two locations. 
First, 35 questionnaires were answered by university stu-
dents. An appropriate call was sent via email to the students 
of the two departments of University of Thessaly located in 
Lamia. The rest of the questionnaires was answered by local 
residents at the DEYAL premises where residents go to pay 
their bimonthly water bill. There was not any predetermi-
nation on the number of questionnaires so all answers were 
included in the survey.

As we discussed in Section 2, apart from the social per-
ception and the water quality of service factor, which are 
the outcomes from the two FIS subsystems, several other 
factors have been indicated by the survey, namely: (a) water 
monitoring, (b) watershed and environmental protection, 
(c) drought and other emergency preparedness, (d) water 
affordability, (e) health risk and (f) social justice. Around 120 
questionnaires were distributed and after that, unification of 
similar concepts/issues was performed. Three experts were 
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also interviewed, one from the University of Thessaly with 
expertise in social issues, a chemist and the chief operations 
manager from the DEYAL water utility. The above unifica-
tion resulted in an FCM of totally eight concepts including 
the water quality and the social perception along with the 
six factors above. Relatively to the interviewing process, at 

first, we described to the participants the most relevant con-
cepts to water quality and its social implications and also the 
causal relationships between concepts using mostly natural 
language, so they could apprehend, understand and share 
among themselves the new information. It was then easy for 
the participants to assign negative or positive causality to the 

 
Fig. 7. Satellite view of the city of Lamia, Greece.

Table 3
Urban water quality KPIs for the city of Lamia, Greece

KPI EC limits Gorgopotamos WDN Taratsa WDN Mixed WDN

Colour 20 3 3 3
Turbidity 10 1 1 0
Free chlorine Above 0.00 0.14 0.09 0.12
PACK – 2 1 4
pH 6.50–9.00 7.92 7.63 7.95
Conductivity 2,500 310 492 365
Alkalinity – 150 235 –
Hardness 60 min 173 265 –
Calcium Ca – 57.1 86.8 –
Magnesium Mg 50.0 7.2 11.6 –
Iron Fe 0.20 0.02 0.03 0.03
HCO3 bicarbonates – 183 287 –
Cl 200 8 15 –
Sulphur SO4 250 1 10 1
Phosphates PO4 6.70 0.07 0.09 0.08
NO3 nitrates 50.00 4.11 11.22 6.20
Nitrite NO2 0.100 0.000 0.001 0.000
Ammonium NH4 0.50 0.00 0.00 0.00
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map. The values assigned to causality (weights) were of the 
fuzzy range T{influence} = {negatively very very strong, neg-
atively very strong, negatively strong, negatively medium, 
negatively weak, negatively very weak, zero, positively very 
weak, positively weak, positively medium, positively strong, 
positively very strong, positively very very strong}. Finally, 
the results were defuzzified and entered in the online soft-
ware “Mental Modeler” [69] to draw the FCM, which is 
depicted in Fig. 8, and to calculate the following:

•	 Total number of components
•	 Total number of connections
•	 In-degree and out-degree of each component
•	 Connections per component
•	 Type of component (driver, ordinary, receiver)
•	 Centrality: Absolute value of either (a) overall influence 

in the model (all + and – relationships indicated, for 
entire model) or (b) influence of individual concepts as 
indicated by positive (+) or negative (–) values placed 
on connections between components; indicates (a) the 
total influence (positive and negative) to be in the sys-
tem or (b) the conceptual weight/importance of individ-
ual concepts [31,70]. The higher the value, the greater is 
the importance of all concepts or the individual weight 
of a concept in the overall model (Mental Modeler 
Manual [69])

•	 C/N: Number of connections divided by number of vari-
ables (concepts)

•	 Complexity: Ratio of receiver variables to transmitter 
variables

•	 Density: Connections number compared with all possible 
connections number.

4.2. FCM steady-state analysis

Table 4 shows the values for the aforementioned prop-
erties of the FCM. Individual concept characteristics (in- and 

out-degree, centrality, etc.) are depicted in Table 5. The resulted 
FCM is of manageable complexity thus no sub-divisioning is 
needed. The correlation of environmental, health and societal 
concepts is obvious in the map as these issues prioritize the 
way citizens think about what affects urban water quality.

Experts and stakeholders from DEYAL water utility and 
the regional community have categorized the social percep-
tion and the social justice as the fundamental factors influenc-
ing the operation of such utilities. The reason is that the water 
pricing models used in Greece are affected by the relevant 
constitutional laws that specify upper thresholds prices per 
m3, delay payment policies and fines. Furthermore, experts’ 
and stakeholders’ opinions are weighted more than regular 
resident opinions due to their expertise on the topic. Note 
that the average was 1.89 ranging from 1 to 4 according to 
different participants. For the merged FCM shown in Fig. 8, 
a density of 0.18181 is deduced, with average connections 
per component raised up to 1.81818.

The hierarchy index of the FCM was calculated to be 
0.149, making it very close to 0, which is denoted by Özesmi 
and Özesmi [34] as highly democratic. From the receiver 
concepts, the ones with higher centrality were the health 

 
Fig. 8. FCM resulting from the experts and stakeholder analysis.

Table 4
General FCM statistics

FCM properties Value

Total components 11
Total connections 20
Density 0.18181
Connections per component 1.81818
Number of driver components 3
Number of receiver components 4
Number of ordinary components 4
Complexity score 1.33333
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risk as well as the water quality of service as expected. 
Also, the most central concepts directly affecting the Water 
Quality concept were the following, in descending order 
of their complexity: (a) Water Quality of Service 3.58, 
(b) Water Monitoring 2.76, (c) Health Risk 2.369, (d) Water 
Affordability 2.31 and (e) Watershed and Environmental 
Protection 2.23. This depicts the direct association of the 
quality of service of the water utilities (primarily) and the 
environmental issues (second) to affect the public decision 
for the water quality.

We consider the steady state of the FCM model as the 
initial scenario to start our analysis, that is, all results from 
Tables 4 and 5. To evaluate the effectiveness of the model, 
we compare the worst case and the best case scenario with 
the steady state. The worst case scenario is set up with all 
driver concepts to have the value of 0.1. On the opposite 
side, the best case scenario is set up with all driver concepts 
to have the value of 1. Fig. 9 shows a decrease of about 6% 

in the “WATER QUALITY” receiver concept when it is com-
pared with the original steady-state scenario. In the same 
scenario, the biggest decrease is observed for the “Health 
Risk” concept with an overall value of 14%. On the opposite 
side, a slight increase of only 1% in the Water affordability 
is noted. This indicates that the social perception of water 
quality is driven mainly by the health risk and the environ-
mental issues and it is inverse to the water affordability. 
Analyzing the best case scenario (Fig. 10), the focus is on 
the difference of the ordinary and receiver concepts giving 
special priority on the final receiver concept of the “Water 
Quality”. More specifically, a 6% increase is observed on the 
“Water Quality” receiver when it is compared with the orig-
inal steady-state scenario which was set as the base for the 
analysis.

Furthermore, the vast majority of ordinary concepts 
behave similarly with the “Health Risk”, “Water Pricing 
Model” and “Water Monitoring” to show increase of 16%, 

Table 5
In-degree, out-degree, centrality and type of concepts in the FCM

C# Concept name In Out Centrality Type

C1 Social perception 0.51 0.27 0.78 Ordinary
C2 Drought and other emergency preparedness 0 1.579 1.579 Driver
C3 Health risk 2.369 0 2.369 Receiver
C4 Watershed and environmental protection 1.79 0.44 2.23 Ordinary
C5 Water affordability 1.27 1.04 2.31 Ordinary
C6 Water monitoring 0.47 2.29 2.76 Ordinary
C7 Economics 0 1.65 1.65 Driver
C8 Water pricing model 1.31 0 1.31 Receiver
C9 Water quality of service 0 3.58 3.58 Driver
C10 Social justice 0.8 0 0.8 Receiver
C11 Water quality 2.33 0 2.33 Receiver

 
Fig. 9. Effect of the driver concepts for the worst case scenario compared with the steady state.
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11% and 6%, respectively, and relatively to the steady-
state analysis. Similar results have been reached for both 
the worst and best case scenario analysis, when hyperbolic 
tangent, bivalent and trivalent inference thresholds are 
used instead of the sigmoid. Note that the outcome of best 
case scenario analysis basically demonstrates the effect of 
the driver concepts in the best case scenario to the other 
concepts included in the FCM. For our case the driver con-
cepts are 3: (a) Drought and other emergency prepared-
ness, (b) Economics and (c) Water quality of service. The 
figure shows that the maximization of the above 3 concepts 
affects negatively the affordability of water. This affect is 
small (1%) but significantly enough to tell us that there is 
not direct (analogous) effect of water affordability related to 
the worst case values of the driver concepts.

4.3. Clamping and fixed driver scenario

The above two scenarios (worst and best case) are not 
sufficient in determining the final set of edge weights that 
can be used for the DSS. For this reason, various simulations 

have been performed focusing on the FCM convergence 
and the concept defuzzification process afterwards. For the 
convergence of the FCM, the ‘clamping’ technique was used 
[70]. With clamping we can study a specific subset of the 
concepts and analyze how the weight change on these con-
cepts affects the FCM convergence. Even though the method 
is not-deterministic (for large FCMs, the concept selection 
combinatorics are exponential), for small FCMs as in Fig. 8, 
it works effectively. Leaving out the receiver concepts of 
this selection, the most intuitive is the selection of the driver 
concepts resulting into the converged FCM concept values 
shown in Fig. 11. Finally, Fig. 12 depicts all the concept acti-
vation curves per each iteration. As shown in Fig. 12, the con-
vergence is rather fast due to the low causality density edges 
in the FCM. Simulations are run for all cases of four activa-
tion functions (sigmoid, bivalent, trivalent and hyperbolic 
tangent) as shown in Section 3.3. Any other combination and 
mixture of driver and ordinary concepts with fixed values 
can differentiate the resulted values of the receiver concepts. 
The most affected are the “Health Risk” and the “Water 
Quality” as discussed in the steady-state analysis.

 
Fig. 10. Effect of the driver concepts for the best case scenario compared with the steady state.

 
Fig. 11. Indicative dynamic simulation of the FCM and converged values of the “WATER QUALITY” and “Health Risk” concepts.
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5. Concluding remarks

The concept of “participation” in urban water qual-
ity assessment, planning and decision-making involves all 
stakeholders and public, which are affected by, are knowl-
edgeable of, or have relevant expertise in or experience of 
the issue at stake. Several prior studies (focused to urban 
water governance or even interdisciplinary) have shown 
that public participatory methods and techniques are use-
ful in supporting sustainable urban development. However, 
the promotion of new policy formation in relation to water 
management has to face several kinds of uncertainties 
(health risk, social justice, technology risk, market dynamics 
and economic constraints).

In this paper, we stressed the relevance of knowledge 
gained from local stakeholders’ perceptions to reduce the 
uncertainty related to drinking water quality. We considered 
multiple sustainability scenarios and KPIs, and we finally 
used an innovative approach combining FIS and FCMs to 
show treads and general directions in identifying the most 
determinant factors they affect the public opinion. Our study 
included (a) a steady-state analysis, where the FCM resulted 
as an amalgamation of stakeholder and expert knowledge 
and (b) a scenario analysis based on clamping and fixed 
driver concept values. The steady-state analysis defuzzified 
the increase/decrease of water quality in relation to quality 
of service given by the water authorities and the social per-
ceptions. In this analysis, we see the close relation between 
“Water Quality” and “Health Risk”. On the other hand, the 
clamping method set the driver concepts with fixed values 
and highlighted how the weight change on the driver con-
cepts affected the FCM convergence.

Even though the methodologies depicted were applied 
on a single case, only the outcome of the model will be 
affected when the same model is applied on a different 
use case. In fact, the discovery of the interrelation between 
the concepts in the FCM does not change. However, the 

causality weights between the concepts are related by the 
human perception statistics of the use case under concern. 
For this reason, FCMs tend to be use case dependent. But this 
dependency is focused only on how local residents see the 
effect of the key performance indicators and the concepts of 
the FCM. Training of the FCM using different experts results 
in different causalities. For the vast majority of use cases, 
this does not affect the FCM convergence, which makes the 
FCM a very good tool showing trends in decision making. 
In any case, when clear and crisp value data are available, 
well- defined statistical approaches are preferred. But, for 
modelling use cases that model data of fuzzy and unclear 
nature, fuzzy inference and FCMs are proved to be easy to 
use and effective decision support tools.

The analysis revealed that concepts such as “Water Quality 
of Service”, “Watershed and Environmental Protection” 
and “Social Perception” are the most influential factors to 
“Urban Water Quality”. This was what both the steady state 
and the clamping analysis have verified for the FCM. Conse-
quently, building the social cognitive map with a participa-
tory approach and simulating different policy scenarios by 
means of fuzzy inference is a supportive method to over-
come uncertainties and establish rigid regional urban water 
governance.
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