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a b s t r a c t
Chlorine is the most common disinfectant used in drinking water treatment. To meet the desired 
disinfection level and restrict the formation of harmful disinfectant by-products, the chlorine dosage 
should be adjusted in real time to cope with the varying influent water quality and to ensure that the 
free chlorine residual (FCR) of the clear-water reservoir outlet is within the prescribed limits. This 
control objective is difficult to achieve by the conventional proportional integral derivative (PID) 
feedback controls or manual control because of the complicated dynamics of the chlorination process. 
This study proposes a model predictive control (MPC) scheme for chlorine dosing, in which FCR can 
be predicted by the support vector machine (SVM) model. Both of the simulation and experimental 
results show that the proposed MPC scheme has better control performance than the conventional PID 
feedback control scheme because of the SVM predictions being accurate and the MPC outperforming 
the PID, and that it can effectively stabilize the quality of treated water.
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1. Introduction

Disinfection is carried out to destroy pathogenic 
organisms and chlorine is the predominantly applied disin-
fectant in drinking water treatment because it is relatively 
inexpensive, effective, widely available, and easy to apply 
[1]. The correct chlorine dosage is crucial for the safety of 
drinking water [2]. Too little chlorine will not sufficiently 
disinfect the water, while an over-dosage is uneconomical 
and results in excessive, harmful disinfection by-products 
(DBPs), such as trichloromethane, tetrachloromethane, etc. 
However, these also require various DBP precursors to form 
[3]. Thus, an ideal chlorine dosage should be a trade-off 
between a sufficient disinfection effect and the minimization 
of the formation of DBPs. In China, drinking water treat-
ment plants are required to comply with the Standards for 

Drinking Water Quality (GB5749-2006) [4], which is based on 
the World Health Organization (WHO) guidelines for water 
quality [5]. The free chlorine residual (FCR) of clear-water 
reservoir outlets is generally controlled to be within the 
regulated limits of 0.2–0.5 mg L–1.

During drinking water treatment, chlorine undergoes 
complex reactions with numerous organic and inorganic 
micro-pollutants in the water. The reactions are not only 
governed by water quality characteristics and the environ-
mental conditions but also affected by chlorine dosage and 
reaction time, amongst other factors [6,7]. A series of chlorine 
decay and consumption models have been developed in the 
literature to describe the chlorination process [8–10]. Most of 
these models are first-order, under the typical assumption 
of a constant influent water quality. However, the influent 
water quality of any clear-water reservoir changes frequently 
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because of the varying raw water quality and the operational 
conditions of each link before the clear-water reservoir. More 
importantly, these models are only used for off-line decision 
support of manual control and cannot be used for real-time 
automatic control. Thus, the research of control-oriented 
modeling of chlorine dosing, which can cope with the varying 
influent water quality, is required.

Support vector machine (SVM) is a powerful machine- 
learning algorithm proposed by Vapnik [11,12]. Compared 
with traditional methods which minimize the empirical 
training error, SVM applies the structural risk minimization 
principle (SRM) [13]. The attractive properties of SVM are 
that it condenses training data information, and provides a 
sparse representation for small sample [14]. SVM has been 
widely used in dealing with the problems of classification, 
prediction, and signal processing [15–17]. However, the gen-
eralization performance of SVM is influenced by parameters 
such as penalty factor and kernel parameter, for example, δ 
in the Gaussian kernel [18]. Thus, it is important to obtain 
the optimal model parameters of SVM through effective 
methods. Traditional methods of SVM parameter selection 
such as grid search, gradient descent, and non-linear pro-
gramming algorithms have the drawbacks of having a large 
computing cost and being easily trapped into local minima 
[19,20]. Particle swarm optimization (PSO) is a swarm intelli-
gence-based global optimization method [21]. It carries on an 
intelligent search for the solution space through a ‘coopera-
tive’ strategy of particles, compared with the ‘competitive’ 
strategy used by genetic algorithms (GAs). Suboptimal 
solutions in the PSO algorithm can, therefore, survive and 
contribute to the search process at later stages of itera-
tion. PSO is applicable to the optimization of SVM model 
parameters and has been proved to have better parameter 
optimization performance than GA [22,23].

Generally, the control of chlorine dosing is achieved by 
conventional proportional integral derivative (PID) feedback 
control, or manual control based on operator’s experience 
[24]. These two control methods adjust the chlorine dosage 
according to the deviation between the actual measurement 
value and the set value of FCR. Thus, the chlorine dosage can-
not be adjusted in real time, and the FCR easily exceeds the 
regulatory limits when the influent water quality changes. 
Model predictive control (MPC) is considered an efficient 
method to deal with the control of process with non- linearity 
and large time-delay because of its prediction of future 
dynamic behavior [25–27]. The control action of MPC is based 
on the model-based prediction of the process output over an 
extended prediction horizon, under constraints [28–30]. 

Thus, the future process outputs can be driven ‘closer’ to the 
set value [31,32].

The major contribution of this study is the development 
of a more effective real-time control method for the practical 
chlorine dosing process of drinking water treatment. First, 
a control-oriented model for the chlorine dosing process is 
established based on SVM. In addition to its use as the direct 
real-time control of chlorine dosing process, the novelty of 
the established model lies in the fact that it is based on a 
powerful non-linear modeling approach of SVM, which can 
cope with the very non-linear, and time-varying dynamics 
of the chlorine dosing process under varying influent water 
quality. Then, an MPC scheme, based on predictive model of 
SVM, is proposed to control the FCR of a clear-water reser-
voir outlet. To date, the proposed real-time control method 
for chlorine dosing in this manuscript has been simulated 
and an experiment has been successfully completed in the 
practical process control system of XY Water Works (XYWW) 
in Nanjing, China.

The rest of this paper is organized as follows. The process’ 
features of drinking water treatment and chlorination are 
presented in Section 2. Chlorine dosing process model-
ing, based on SVM, is described in Section 3. After a brief 
description of the MPC scheme of the chlorine dosing 
process, simulations and experiments are conducted in 
Section 4. Finally, conclusions are given in Section 5.

2. Process description

2.1. Drinking water treatment process

The XYWW (capacity of 300,000 m3 d–1) was originally 
put into service in 2001, and the raw water is captured from 
Yangtze River. The statistical analysis of the time series 
of daily values of raw water quality parameters during 
2012–2017 is summarized in Table 1.

The overall drinking water treatment process of XYWW 
comprises pre-chlorination, coagulation, flocculation, sed-
imentation, sand filtration and post-chlorination, as shown 
schematically in Fig. 1.

Pre-chlorination is mainly utilized as a flocculation aid, 
as well being used to remove algae and organic matter. 
Coagulation is used primarily to hasten the agglomeration 
of fine particles. Coagulation, together with flocculation, 
constitutes a solid–liquid separation process for destabi-
lizing dissolved and colloidal impurities, and producing 
large floc aggregates [33]. Sedimentation allows large floc- 
particle masses to settle [34]. Ultimately, physical removal 

Table 1
Raw water quality of XYWW during 2012–2017

Parameter Maximum Minimum Average Standard deviation

pH 8.7 6.8 8.0 0.1
Temperature (°C) 27.6 2.1 13.8 5.1
Turbidity (NTU) 157.8 7.8 27.2 5.5
NH4

+–N (mg L–1) 0.95 0.07 0.11 0.05
CODMn (mg L–1) 3.7 1.1 1.6 0.4
TOC (mg L–1) 3.77 0.82 1.35 0.25
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of turbidity and microorganisms is accomplished by sand 
filtration [35]. Post-chlorination is the main process of disin-
fection, oxidation of organic contamination and removal of 
pathogens, and directly affects the treated water quality [36]. 
Thus, the control of chlorine doses in the post- chlorination 
stage is developed in this work.

2.2. Chlorination process

Chlorine reacts with both inorganic and organic sub-
stances in water. As they are the most reactive with chlorine, 
inorganic substances in water such as iron, manganese, sul-
fide and ammonia lead to the rapid chlorine consumption, 
while reactions of organic substances with chlorine usually 
proceed relatively slow [37,38]. As a result of these reactions, 
the chlorine decay process is often characterized by a first- 
order model:

C C k tt = − ×( )0 exp cl  (1)

where Ct is the chlorine concentration at time t (mg L–1), C0 
is the chlorine concentration at time 0 (mg L–1), and kcl is the 
chlorine decay coefficient (1/h).

Many studies have illustrated that the kcl is determined 
by water quality, temperature, alkalinity, etc. [39,40]. Since 
the influent water quality changes continuously and is full of 
uncertainty, the practical chlorination process is complicated.

3. Chlorine dosing process modeling

The practical chlorine dosing process exhibits complicated 
non-linear characteristics with a time-delay, which prevents 
an accurate mathematical model. In this paper, an SVM 
model is established to predict the process output (i.e., FCR), 
and a PSO algorithm is adopted to train the parameters of 
SVM model.

3.1. SVM model

SVM is an effective non-linear regression approach, based 
on the statistical learning theory and SRM principle. The 
basic strategy of SVM is to map the input vector into a high 
dimensional linear feature space through a non-linear trans-
formation. Then the optimal decision function is constructed. 
The dot product operation in the higher dimensional feature 
space is replaced by the kernel function in original space, and 
the global optimal solution is obtained by the training of the 
sample.

The regression function for SVM is as follows:

f X W X b( ) = × ( ) +φ  (2)

where W is the weight vector, φ(·) is the non-linear mapping 
from the input space to the output space, and b is bias term.

The estimation function problem is transformed into 
function optimization problem by the SRM principle:

min 1
2

2

1
W C i

i

k

+
=
∑ε  (3)

where C is the penalty factor and εi is the relaxation factors.
The optimization problem is solved using a Lagrangian 

method. Then, the regression function of Eq. (2) can be 
formulated by the following form:

f x a X X bi i
i

k

( ) = ( )× ( ) +
=
∑ φ φ

1
 (4)

where ai is the Lagrangian multiplier.
The kernel function is defined as:

K X X X Xi j i j,( ) = ( )× ( )φ φ  (5)

Familiar kernel function for SVM has three forms that 
include Gaussian kernel, polynomial kernel and sigmoid ker-
nel. Gaussian kernel is the most widely applied among them 
and is adopted in this work.

K X X
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i j
i, exp( ) = − −
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22δ
 (6)

where δ is the Gaussian kernel parameter.
SVM is sensitive to the proper setting of model parameters. 

Within SVM, the penalty factor, C, and Gaussian kernel 
parameter, δ, are required to be specified. PSO is an evolu-
tionary algorithm based on group intelligence, developed 
in recent years. Inspired by the social behavior of a flock of 
birds, it is used for finding the global optimum solution in 
a search space through the interactions of individuals in a 
swarm of particles. Each particle indicates a potential solu-
tion to the problem and it has its own feature of position, 
velocity and fitness. During each iteration, the velocity 
and position of the particle are adjusted dynamically to 
optimize the individual in the search space. The particle 
updates its velocity and position using the following 
equations:

v h v c r p x c r p xi
k k

i
k

i
k

i
k

g
k

i
k+( ) ( ) ( ) ( ) ( ) ( ) ( )= + −( ) + −( )1

1 1 2 2  (7)

x x vi
k

i
k

i
k+( ) ( ) ( )= +1  (8)

where i = 1,2,..., n, n is the number of particle, vi
(k) is the 

present velocity of particle i, xi
(k) is the present position 

of particle i, pi
(k) is the best position of particle i, pg

(k) is the 
best position of the swarm, k and k + 1 are the time index 
of current and next iterations, respectively, c1 and c2 are the 
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Fig. 1. Flow diagram of drinking water treatment process.
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acceleration constants, r1 and r2 are the random numbers 
selected between [0,1], h(k) is the inertia weight, which can be 
described as follows:

h
h h k k

k
hk( ) =

−( ) −( )
+1 2

2
max

max

 (9)

where kmax is the max inertia number, h1 and h2 are the initial 
inertia weight and final inertia weight, respectively.

The fitness function of particle is shown in the following 
equation:

Fitness = −( )
=
∑1 2

1N
y yi t

i

N

 (10)

where N is the number of training samples, yi is the ideal 
output, yt is the actual output.

3.2. Modeling results

The structure of the SVM model as shown in Fig. 2 is 
selected in this study, and d is the time delay.

In this study, a k-fold cross validation (k = 10) is used to 
randomly divide the original sample of 3,000 data set groups 
into 10 sub-samples. Then, a single sub-sample is picked up 
as the validation data for testing the model, and the remain-
ing nine sub-samples are regarded as training data for the 
model. These procedures are repeated 10 times and each of 
the 10 sub-samples is used only once as the validation data. A 
single estimation can then be produced by averaging the 10 
results from the folds.

Besides the PSO algorithm, GA and GD are also adopted 
to train the SVM model for comparison. Fig. 3 shows the 
SVM modeling results of the chlorine dosing process.

The Theil’s inequality coefficient (TIC) is adopted here to 
evaluate the model accuracy:

TIC =
y y

N y y

i m i
i

i
i

m
i

−( )
× +

∑

∑ ∑

,

,i

2

2 2
 (11)

where yi is the actual value, ym,i is the model predictive 
value.

The TICs for modeling results of the SVM are trained by 
PSO, GA, and GD are 0.032, 0.045, and 0.056, respectively; the 
TICs are all lower than 0.3, indicating a good agreement [41]. 
Furthermore, the SVM model trained by the PSO algorithm 
has a better modeling accuracy than that trained by the 

GA and GD algorithms, and, therefore, it is applied to the 
predictive model of MPC for the chlorine dosing process.

4. MPC for the chlorine dosing process

In this section, the MPC scheme, based on the afore-
mentioned SVM model, is proposed for the chlorine dosing 
process. The real-time control objective is to regulate the 
chlorine dosage to maintain the FCR of a clear-water reservoir 
outlet at the desired constant value under varying influent 
water quality. In order to ensure the safety of disinfection, 
chlorine dosage – as the input of chlorine dosing process –- is 
constrained within the range of 0.3–1.2 mg L–1.

4.1. MPC control algorithms

MPC refers to a class of control algorithms that employ 
an explicit model to predict the future behavior of the process 
over an extended prediction horizon [42]. The MPC scheme 
of this work, shown in Fig. 4, uses an SVM model to predict 
the process dynamics.

At every sampling instant, the set of future control moves 
is planned in such a way that the predictive out is as close to 
the reference trajectory as possible. The future control action 
is computed by real-time optimization of a cost function, 
written as follows:

J q y k j y k j u k jm
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Fig. 2. Schematic structure of SVM.
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where Ny is the prediction horizon, Nu is the control horizon, 
q is the output tracking weights, λ is the input weights, Δu(k) 
is the change of manipulated variable, ym(k) is the prediction 
output of SVM model proposed in Fig. 2, y*(k) is the output 
set-point trajectory, written as follows:

y k j y k j y k y kr r
* +( ) = +( ) − ( ) − ( ) α  (16)

where yr(k) is the output set point, α is the softening factor of 
set point, y(k) is the actual output value.

The selection of prediction horizon Ny depends on 
the sampling interval. Longer prediction horizon Ny can 
retrieve more future information and promote the stability 
of control system. However, overlarge prediction horizon 
Ny brings computational burden and is difficult to further 
improve the closed-loop system performance. Control 
horizon Nu is chosen from 1 to 6 generally and overlarge con-
trol horizon Nu is difficult to further promote the dynamic 
performance of closed-loop system. In this application, the 
control horizon Nu is chosen as 1, and the prediction horizon 
Ny is chosen through comparing the control results under 
different prediction horizons with the SVM model. The 
output tracking weights q and input weights λ in (Eq. (12)) 
and softening factor of set point α in (Eq. (13)) has great 
influence on the dynamic properties of system. We chose 
these parameters through trail and error in the simulation 
and experiments.

At time step k, the non-linear optimizer computes both 
the present- and future-manipulated variable moves, such 
that the predictive output follows the output reference 
trajectory through minimizing the cost function. The range 
of optimal value of manipulated variable is known. And 
the optimization problem is solved using the golden section 
search method. The sampling time of solving the non-convex 
MPC problem is smaller than the sampling time of system. 
Only the first move of manipulated variable is applied to the 
process, and this step is repeated for next time step.

4.2. Simulation results

The simulation of the proposed MPC scheme based on 
the SVM model is performed on MATLAB 2017 with Intel 
Core i5 CPU 2.3 GHz and the time range is 0–500 min. As 
in the above analysis, the chlorine dosing process exhibits a 
first-order and time-delay characteristic, in which parameters 
change with the varying water quality. Thus, two first-order 
plus time-delay (FOPTD) model (Eqs. (17) and (18)) under 
certain different conditions of water quality are considered 

here as the chlorine dosing process for simulation, within the 
time range of 0–250 min and 251–500 min, respectively.

G S
s

ep
s( ) =

+
−0 18

32 1
18.  (17)

G S
s

ep
s( ) =

+
−0 2

36 1
22.  (18)

The simulation of the MPC scheme based on the SVM 
model is conducted to maintain FCR a set-point trajectory 
that smoothly varies to the required set-point. The MPC 
scheme based on FOPTD model and PID scheme are also 
conducted for comparison purposes. The control effect, 
under varying water quality, is studied in the nominal case, 
as well as the model mismatch case. To further verify the 
disturbance rejection performance of the proposed MPC 
scheme, an external disturbance of 0.1 mg L–1, which is 
shown in Fig. 4 d, is applied at the 400th min of the simula-
tion. Through the comparison results with different horizons 
as shown in Fig. 5, we select the prediction horizon Ny = 6, the 
control horizon Nu = 1.

The tracking weights q = 1, the input weights λ = 0.02, 
the input constraints Δumax = 0.5 mg L–1, umin = 0 mg L–1, 
umax = 2.5 mg L–1. The computational time of each step is 
0.05735 s (Ny = 6, Nu = 1). The overshoot, settling time and 
integral of absolute error (IAE) – as shown in Eq. (19) 
– are chosen as the quantitative indices to evaluate the 
performance of the control system.

IAE t
N

y t y t
t

N

( ) = ( ) − ( )
=
∑1

1

*  (19)

where y*(t) is the reference signal and y(t) is the actual 
process output.

4.2.1. Nominal case

When the established SVM model is matched with the 
actual chlorine dosing process, namely Gm(s) = Gp(s), the 
simulation results are shown in Fig. 6, and performance 
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Fig. 4. MPC scheme based on SVM model.
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indices are shown in Table 2. It shows that the proposed 
MPC scheme based on SVM model and MPC scheme based 
on FOPTD model produce the same control performance 
because the SVM model is matched with the FOPTD mode. 
Compared with the PID scheme, both of them provide faster 
convergence speed and smaller amplitudes of fluctuations.

4.2.2. Model mismatch case

During drinking water treatment, the influent water 
quality of chlorine dosing process is time varying. This 
sometimes results in a mismatch between the established 
model and the actual process. To verify the robustness of the 
proposed MPC scheme, a 20% decrease of the parameters 
in Eqs. (17) and (18) is simulated for the model mismatch 
case. The corresponding simulation results are shown in 
Fig. 7 and the performance indices are shown in Table 3. It 
can be observed that the proposed MPC scheme based on 
SVM model also provides a faster convergence speed and 
smaller amplitudes of fluctuations than the MPC scheme 
based on FOPTD model and PID scheme. This means that 
the underlying model accuracy of SVM and the excellent 
control of MPC scheme make the proposed control scheme 
achieve a better control performance, even in the case of 
severe model mismatches.

4.3. Experimental results

To test the practical application effects of the proposed 
MPC scheme based on SVM model, experiments of the 
proposed MPC scheme based on FOPTD model, together 
with the PID scheme, are also conducted with similar water 
quality conditions. The control algorithms are coded on the 
commercial SCADA software of XYWW. All the online sig-
nals from, or to the chlorine dosing process control system 
are interconnected through the distributed control system as 
shown in Fig. 8. Process data are saved in a database on a 
PC server, and the control schemes are programmed on a PC 
and executed through a programmable logic controller.

During the practical chlorine dosing process, the chlorine 
dosing point locates the inlet pipeline of clear- water reservoir. 
The contact time of chlorine and water is an important factor 
to ensure the disinfection effect. The chlorine and water 
should be fully mixed in the clear-water reservoir, and the 
contact time should be longer than 30 min. After chlorine 
dosing, chlorine and impurities in the filtered water fully 
react in the clear-water reservoir, then through the second 
pumping room into the water supply system. The control 
block diagram of chlorine dosing system is shown in Fig. 9.

Influenced by the varying raw water quality and the 
processes before chlorination, the cases of model mis-
match and external disturbance are common in the actual 
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Table 2
Performance indices of output response of FCR for the simulation results in the nominal case

Method 0–250 min 251–500 min

Overshoot 
 (%)

Settling time 
(min)

IAE  
(mg L–1)

Overshoot  
(%)

Settling time 
(min)

IAE 
(mg L–1)

MPC based on SVM 4.6 152 0.009 3.7 119 0.005
MPC based on FOPTD 4.6 152 0.009 3.7 119 0.005
PID 6.5 156 0.012 5.1 127 0.007



139D. Wang et al. / Desalination and Water Treatment 173 (2020) 133–141

chlorination. It can be seen from the experimental results 
in Fig. 10 and Table 4 that the proposed MPC scheme based 
on SVM model behaves more robustly against the variation 
of water quality than the MPC scheme based on FOPTD 
model and PID scheme. This is basically consistent with 
the previous analysis of the simulation results in the model 
mismatch case. In addition, the overshoot and settling 
time of the experimental results are smaller than those of 

Table 3
Performance indices of output response of FCR for the simulation results in the model mismatch case

Method 0–250 min 251–500 min

Overshoot  
(%)

Settling time 
(min)

IAE  
(mg L–1)

Overshoot  
(%)

Settling time 
(min)

IAE 
(mg L–1)

MPC based on SVM 11.6 156 0.013 7.1 107 0.006
MPC based on FOPTD 12.5 160 0.017 8.7 117 0.007
PID 13.8 166 0.020 9.2 126 0.009
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Fig. 8. Distributed control system for the chlorine dosing process.
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Table 4
Performance indices of output response of FCR for the 
experimental results

Method Overshoot 
(%)

Settling time 
(min)

IAE 
(mg L–1)

MPC based on SVM 0.8 116 0.030
MPC based on FOPTD 1.0 125 0.032
PID 1.3 137 0.038
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the simulation results. This is because the actual variation 
amplitude of the influent water quality is smaller during the 
experimental periods. Thus, the degree of model mismatch 
is smaller. On the other hand, the IAE of the experimental 
results is larger than that of the simulation results. This is 
because the actual influent water quality is time-varying 
and, therefore, the actual FCR is changing continuously.

Through analysis of open-loop step response experi-
ments, the practical chlorine dosing process is open-loop sta-
ble. The variation of water quality is slow and not frequent. 
Thus the stability of the closed-loop can be guaranteed 
within a finite region. The detailed discussion can be found 
in the studies by Quevedo et al. [43] and Aguilera and 
Quevedo [44].

5. Conclusions

MPC has been employed to handle the complicated, 
non-linear control of the chlorine dosing process of drink-
ing water treatment. An accurate predictive model of the 
chlorine dosing process has been developed based on SVM. 
Compared with MPC scheme based on FOPTD model and 
PID scheme, the simulation and experimental results of the 
proposed MPC scheme based on SVM model have demon-
strated significant performance improvements because of the 
SVM predictions being accurate and the MPC outperform-
ing the PID. For realizing more reliable real-time automatic 
control of the chlorine dosing process, the proposed control 
scheme should be investigated in a longer experiment, and 
further stability evaluations should be conducted.
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