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a b s t r a c t
In this study, a novel three-dimensional (3D) reduced graphene oxide-g-C3N4 nanosheets-AgBr 
(RGO-CNN-AgBr) composite aerogel visible light photocatalyst was synthesized by hydrothermal 
method. In this ternary composite system, AgBr anchored onto g-C3N4 nanosheets could improve 
the absorption rate of visible light and promote the separation of photogenerated electron-hole 
pairs simultaneously. The introduction of RGO could not only provide a fast channel for electron 
transfer, but also form a looser 3D porous structure, which could increase the specific surface area 
and cause the multiple reflections of incident light to promote absorption of light and adsorption of 
reactants. Based on these synergistic effects, the ternary composite photocatalyst exhibited excellent 
photodegradation properties. The results showed that under the same conditions, the removal rate 
of methyl orange by RGO-CNN-AgBr was improved to a certain extent relative to g-C3N4 nanosheets 
(CNN), up to 90%. Furthermore, the photocatalytic activity of RGO-CNN-AgBr decreased only 
slightly after four degradations, revealing the excellent stability. The photocatalytic mechanism of 
RGO-CNN-AgBr was explained, which embodied the good prospect of this composite photocatalyst 
in the practical application of pollutant degradation.
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Graphitic carbon nitride

1. Introduction

In order to solve the growing environmental pollution 
problems, the development of a stable and efficient visi-
ble-light responsive photocatalyst has become one of the 
hotspots of photocatalysis research. [1–5]. In recent years, 
various semiconductors have been explored [6–12]. Graphitic 
carbon nitride (g-C3N4) has excellent chemical stability, ther-
mal stability and suitable positions of valence band and con-
duction band [13–17]. However, the photocatalytic activity 

of bulk g-C3N4 was restricted by its low specific surface area, 
low solar absorption efficiency and the rapid recombina-
tion of photo-generated charge carriers. In order to improve 
the photocatalytic activity of g-C3N4, numerous strategies 
have been proposed. Some researches have shown that the 
two-dimensional structure of g-C3N4 nanosheets (CNN) 
prepared from bulk g-C3N4 can improve the photocata-
lytic performance to some extent [18–21]. Nevertheless, the 
photocatalytic activity of pure CNN still cannot satisfy the 
practical application. Coupling CNN with other semicon-
ductor has been proved to be efficient to further improve 
the photocatalysis. It has been reported that AgBr with small 
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bandgap can expand the absorption range of visible light 
and is widely studied in photocatalysis [22–25]. In addi-
tion, three-dimensional (3D) graphene can provide better 
support for semiconductor photocatalysts. Moreover, with 
the capability of strong charge transfer, the graphene sheet 
can effectively separate the photo-generated charges, which 
greatly restrains the recombination of photo-generated pairs, 
thereby improving the photocatalytic efficiency. Based on the 
above advantages, the research on 3D graphene in the field of 
adsorption and photocatalysis has been widely concerned in 
recent years [26–31].

In this work, we constructed a 3D ternary porous reduced 
graphene oxide-g-C3N4 nanosheets-AgBr (RGO-CNN-AgBr) 
aerogel photocatalyst with RGO, CNN and AgBr for the first 
time. Then under visible light irradiation (λ ≥ 420 nm), the 
photocatalytic activity of the prepared photocatalysts were 
evaluated by photocatalytic degradation of methyl orange 
(MO). The results showed that RGO-CNN-AgBr exhibited 
higher photocatalytic activity than pure CNN. Finally, based 
on the experiment, we theoretically explained the possible 
photocatalytic mechanism.

2. Experimental setup

2.1. Preparation of AgBr, CNN-AgBr, RGO-CNN and RGO-
CNN-AgBr

Graphene oxide graphite (GO) was synthesized by an 
improved Hummers method [32]. CNN was prepared by 
thermal polycondensation of dicyandiamide according to 
the previously reported method and then treated by acid 

treatment [33,34]. RGO-CNN-AgBr was synthesized by 
a two-step method. As shown in Fig. 1, 0.04 g GO was dis-
solved in 10 mL deionized water, and ultrasonic stirred for 
30 min. The resulting GO solution was added into 10 mL of 
CNN suspension (15 mg mL–1) and stirred for 30 min. Then 
the homogeneous mixture was charged into a Teflon-lined 
autoclave and reacted at 180°C for 4 h to generate 3D aerogel 
RGO-CNN, which was marked as RGO-CNN. Secondly, the 
obtained RGO-CNN was immersed into 10 mL (2 mL ethanol 
and 8 mL deionized water) solution of 0.462 g CTAB at 60°C 
for 6 h. 0.32 g AgNO3 was dissolved in 10 mL deionized water, 
then the CTAB/RGO-CNN was immersed into in AgNO3 solu-
tion for 12 h. The prepared RGO-CNN-AgBr was washed sev-
eral times by deionized water and then freeze-dried. Under 
the same conditions, CNN-AgBr without GO was prepared 
in the same manner and Preparation of pure AgBr by direct 
reaction with AgNO3 and CTAB aqueous solution.

2.2. Characterizations

X-ray diffraction (XRD) patterns were obtained on X-ray 
diffractometer (RiRGOku Smartlab, 3 kW) with Cu-Kα 
(λ = 1.5406 Å) collected from 5° to 80°. A Nicolet 6700 spec-
trometer was used to record the Fourier-transform infrared 
(FTIR) spectra. The X-ray photoelectron spectra (XPS) was 
obtained with an ESCALAB-250 spectrometer. Brunauer–
Emmett–Teller specific surface areas were measured by 
N2 adsorption-desorption on an Autosorb iQ Station. The 
morphologies of samples were observed using field emis-
sion scanning electron microscopy (SEM) (JEOL JEM-7600F, 
Japan). The microstructures of the obtained samples were 

Fig. 1. Schematic diagram for synthesis of RGO-CNN-AgBr.
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recorded using transmission electron microscopy (TEM, 
Philips Tecnai-10, Netherlands) and high-resolution TEM 
(JEOL 2010, Japan). A Hitachi 330 (Japan) UV-Vis spectropho-
tometer was used to perform the UV-Vis diffuse reflectance 
spectra (DRS, Japan). A Hitachi F-4500 (Japan) fluorescence 
spectrophotometer was used to measure the photolumines-
cence spectra (PL, Japan) at room temperature.

2.3. Photocatalytic degradation experiment

The photocatalytic performances of the samples were 
measured toward the degradation of the MO dye induced 
by a 300 W Xe lamp (Beijing, Tianmai Light Source Electrical 
Appliance Co.) with 420 nm cut-off filter. The tempera-
ture of the reaction solution was kept at 25°C. In a typical 
experiment, the RGO-CNN-AgBr was put into MO solution 
(30 mg L–1, 100 mL), then stirred in the dark for 1 h to reach 
the adsorption-desorption equilibrium. A small amount of 
supernatant was taken from each sample at regular intervals 
during the visible light irradiation. The solutions were mea-
sured at 465 nm using a UV-vis spectrophotometer. The C/C0 
was used to describe the change in concentration, the rate of 
photocatalytic reaction could be expressed by Eq. (1):

ln C
C

kt
0









 = −  (1)

where C and C0 were the residual concentration and initial 
concentration of the dye after adsorption equilibrium, respec-
tively; k (min–1) was the apparent reaction rate constant.

The photocatalytic stability was verified by four separate 
cycle runs. After photodegradation every 3 h, the photocat-
alyst was separated and washed with deionized water, lyo-
philized overnight to wait for the next run.

3. Results and discussion

3.1. XRD analysis

Fig. 2 showed the XRD patterns of AgBr, GO, CNN, 
RGO-CNN, CNN-AgBr and RGO-CNN-AgBr, respectively. 
For AgBr, the diffraction peaks appeared at 25.3°, 31.2°, 44.6°, 
55.5°, 64.7° and 73.4° was correspond to the (111), (200), (220), 
(222), (400) and (311) planes of AgBr, respectively [35,36]. 
As for pure GO, a sharp diffraction peak corresponding to 
the (002) reflection was found near 10.13°. For CNN, the 
diffraction peak appeared at 27.4° could correspond to the 
(002) plane of graphite material and this was an obvious 
C–N network structure. Obviously, the main characteristic 
diffraction peaks originated from AgBr and CNN were both 
observed in RGO-CNN-AgBr. However, the (002) peak orig-
ined from CNN in RGO-CNN-AgBr displayed a markedly 
reduced intensity when compared with that in RGO-CNN 
and CNN-AgBr, which suggested that the introduction of 
RGO and AgBr changed the ordered structure of CNN and 
CNN had been successfully exfoliated. In addition, com-
pared with pure AgBr, the (200) peak of AgBr in CNN-AgBr 
and RGO-CNN-AgBr got broadened, indicating that the 
particle size of AgBr decreased. This might be attributed 
to the abundant active sites from CNN and RGO and then 

improved the desperation of AgBr. The above conclusions 
could be confirmed by the results of subsequent SEM and 
TEM. Moreover, no diffraction peaks from GO was found in 
RGO-CNN and RGO-CNN-AgBr. That’s likely because GO 
was partially converted into RGO during the hydrothermal 
process and the diffraction peak of RGO was weak.

3.2. FTIR and XPS analysis

The chemical structure in the sample molecules were 
characterized by FTIR. As shown in Fig. 3, the bands of pure 
GO centered at 1,051–1,732 cm–1 was related to the vibrational 
peaks of a large number of oxygen-containing functional 
groups [37]. For CNN, the bands within 1,200–1,600 cm–1 
were related to the stretching modes of CN heterocycles. 
Furthermore, the sharp peak at 809 cm–1 and the broad band 
in the range of 3,000–3,500 cm–1 were indicative of the triazine 

Fig. 2. XRD patterns of AgBr, GO, CNN, RGO-CNN, CNN-AgBr 
and RGO-CNN-AgBr.

Fig. 3. FTIR spectra of AgBr, GO, CNN, RGO-CNN, CNN-AgBr 
and RGO-CNN-AgBr.
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units and N–H stretch vibration modes, respectively [38,39]. 
The FTIR spectra of CNN-AgBr almost coincided with that 
of CNN, which indicated that these samples had the same 
chemical structure as CNN. For RGO-CNN and RGO-CNN-
AgBr, the disappearance of some oxygen-containing func-
tional groups was observed, meaning that they might be 
linked to RGO and CNN by conversion to covalent bonds 
during the reaction. At the same time, the above analysis 
and the characteristic peaks of AgBr and CNN appeared in 
the spectrum of RGO-CNN-AgBr, which comprehensively 
proved the successful synthesis of the ternary complex.

The XPS technique could further determine the chemi-
cal structure and elemental composition of RGO-CNN-AgBr. 

Fig. 4a shows that RGO-CNN-AgBr contained the elements 
of C, O, N, Ag and Br, and their mass ratios were 44.43%, 
12.41%, 20.35%, 17% and 5.8%, respectively. As shown in 
Fig. 4b, the sp2 C–C bond, C–OH and N–C=N bonds appeared 
at 284.8, 286.1 and 288.4 eV, respectively. Furthermore, in the 
C 1s spectrum, the peaks at 284.8 and 288.4 eV were mainly 
derived from g-C3N4, while the peak at 286.1 eV was origi-
nated in the residual C–OH bond from RGO after hydrother-
mal. The presence of C–OH bond was good agreement with 
the peak (531.9 eV) in O 1s spectrum from RGO-CNN-AgBr 
(Fig. 4c). Fig. 4d shows that the N 1s spectrum could be decon-
voluted into three peaks, which demonstrated three types of 
N bonding in RGO-CNN-AgBr. Then the peaks at 398.7 and 

Fig. 4. XPS spectra of RGO-CNN-AgBr: survey, C 1s, O 1s, N 1s, Ag 3d and Br 3d, respectively (a–f).



81Z.R. Luo et al. / Desalination and Water Treatment 173 (2020) 77–85

399.4 eV were attributed to sp2-hybridized in triazine rings 
(C–N=C) and tertiary nitrogen N (C)3 groups, while amino 
groups (C–N–H) appeared at 400.8 eV. As shown in Fig. 4e, 
the Ag 3d5/2 (binding energy 368.4 eV) and Ag 3d3/2 (binding 
energy 374.3 eV) could be attributed to Ag+ of AgBr [40,28]. 
Furthermore, Br 3d5/2 (binding energy 68.2 eV) and Br 3d3/2 
(binding energy 69.1 eV) in the Br 3d spectrum (Fig. 4f) are 
indicating good binding to AgBr [41].

3.3. Microtopography analysis

The observations of SEM and TEM could reveal the micro-
structures of the obtained samples. Fig. 5a shows that CNN 

was composed of curved nanosheets. After the introduction 
of RGO, RGO-CNN exhibited an interconnected 3D network, 
which was looser than pure CNN (Fig. 5b). As shown in 
Figs. 5c and d, the RGO-CNN-AgBr had a fluffy and uniform 
porous microstructure and it had a black columnar macro-
structure, which could support the weight of about 700 times 
its weight as depicted in the inset of Fig. 5c. Obviously, a 
large number of AgBr nanoparticles were uniformly distrib-
uted in the pores of the gel. The size of AgBr nanoparticles 
was uniform in the range of 100–150 nm. Fig. 5e shows the 
TEM images of RGO-CNN-AgBr, the AgBr nanoparticles 
were uniformly distributed on RGO-CNN, which was con-
sistent with the SEM images. The spacing of the lattice fringes 

Fig. 5. SEM images of CNN, RGO-CNN and RGO-CNN-AgBr (a–d), TEM image (e) and HRTEM image (f) of RGO-CNN-AgBr.
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(Fig. 5f) was about 0.143 nm, corresponding to the (200) plane 
of AgBr [42]. All the above results indicated that AgBr was 
successfully loaded into RGO-CNN gel.

The pore structure and specific surface area of RGO-
CNN-AgBr were further analyzed by N2 adsorption-desorp-
tion isotherm experiments. As shown in Fig. 6, the isotherms 
of RGO-CNN-AgBr were type IV according to the Brunauer-
Deming-Deming-Teller (BDDT) classification, indicating 
RGO-CNN-AgBr possessed the porous property. Obviously, 
RGO-CNN-AgBr showed a high adsorption capacity in high 
relative pressure region, because of a slit formed by the stack-
ing and winding of sheet CNN and RGO, which reflected 
the porous structure of aerogel. The inset in Fig. 6 shows 
that RGO-CNN-AgBr exhibited mesopores at about 4 nm 
thanked to the defect in CNN during acid treatment. RGO-
CNN-AgBr had a large specific surface area (126.58 m2 g–1) 
because of its abundant pore structure. The large specific sur-
face area resulted in more reactive sites, which was beneficial 

to improve the photocatalytic activity and the absorption of 
pollutants.

3.4. Optical properties

UV-Vis absorption spectrum could test the optical 
properties of composites. As shown in Fig. 7a, CNN had a 
strong visible light absorption below 420 nm. Furthermore, 
the visible light absorption of CNN-AgBr and RGO-CNN 
increased when the AgBr and RGO were introduced sepa-
rately. As shown in the inset of Fig. 7a, the band RGOp of 
AgBr, CNN, CNN-AgBr, RGO-CNN and RGO-CNN-AgBr 
were determined to be 2.53, 3.00, 2.95, 2.98 and 2.52 eV, 
respectively. Obviously, RGO-CNN-AgBr showed a red-shift 
of the absorption edge with respect to CNN, CNN-AgBr and 
RGO-CNN. And the introduction of RGO and AgBr led to 
an increase in the visible absorption. In addition, the inter-
connected pore structure in porous aerogel could reflect the 
incident light several times, which could further improve the 
visible light utilization.

The separation efficiency of photo-electrons and holes in 
the samples were studied by PL. Fig. 7b shows that a wide 
and strong peak of CNN appeared at 437 nm. Compared 
with CNN, the PL emission intensity of CNN-AgBr and 
RGO-CNN became much weaker, which indicated that 
 introduction of AgBr or RGO could inhibit the photogene-
rated electron-hole recombination. The PL emission peak of 
RGO-CNN exhibited slightly blue shifted which might be the 
well-known quantum confinement effect. This indicated that 
in this ternary system, AgBr acted as an electron trapping 
trap, and RGO acted as a “highway” for generating electrons 
from CNN-AgBr, and the synergy between them greatly 
improved electron transport efficiency.

3.5. Photocatalytic activity and stability analysis

The photocatalytic activity of the synthesized photocat-
alysts was evaluated by the degradation of MO (30 mg L–1, 
100 mL) under visible light. Fig. 8a shows that before the 
illumination, the dark adsorption was first performed for 

Fig. 6. N2 adsorption-desorption isotherm and BJH pore size dis-
tributions of RGO-CNN-AgBr.

Fig. 7. UV-vis absorption spectrums (a) and PL emission spectrums (b) of CNN, CNN-AgBr, RGO-CNN and RGO-CNN-AgBr.
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60 min to eliminate the interference of the adsorption on the 
photodegradation process, and the adsorption performance 
of the photocatalysts was observed. The adsorption equilib-
rium had been achieved in all photocatalysts within 60 min. 
As shown in Fig. 8a, RGO-CNN and RGO-CNN-AgBr dis-
played excellent absorptivity towards MO, which might be 
due to the introduction of RGO increased their specific sur-
face area. After 3 h of illumination, the highest activity was 
obtained over RGO-CNN-AgBr, resulting 90% degradation 
for MO. Fig. 8b shows the photocatalytic reaction rate could 
be described by the pseudo-first-order kinetic equation. The 
reaction rate constant (k) of RGO-CNN-AgBr was 0.5938 h–1, 
which was about 8.4, 1.9 and 1.7 times higher than that of 
CNN, CNN-AgBr and RGO-CNN, respectively. In addition, 
the following experiments were carried out by running four 
different cycle experiments to test the photocatalyst stabil-
ity, because of its importance in practical application. Fig. 8c 
shows that the photocatalytic activity of RGO-CNN-AgBr 
only exhibited a slight decrease after four cycles, indicating 
that the ternary composite photocatalyst had excellent appli-
cation stability. In addition, the samples after four cycles were 
characterized by XRD analysis (Fig. 8d). As shown, there 

was no significant difference in crystal structure and macro- 
structure of the samples after recycling (the inset of Fig. 8d).

3.6. Photocatalytic mechanism

In order to understand the active species produced 
during the degradation of RGO-CNN-AgBr, hydroxyl 
 radicals (•OH), holes (h+) and superoxide radicals (•O2

–) 
were captured with tert-butanol (t-BuOH), triethanolamine 
(TEA) and 1,4-benzoquinones (BQ), respectively. The 
effects of different capture scavengers on the degradation 
of MO were shown in Fig. 9. After the addition of t-BuOH, 
the degradation rate of MO decreased slightly, indicating 
that there was almost no •OH in the photocatalytic system. 
However, after the addition of TEA and BQ, the degradation 
rate decreased obviously, which indicated that •O2

– were the 
main active substances in the system, and together with h+ 
played an important role in the process of photodegradation.

AgBr and CNN are excited by visible light to generate 
photogenerated electrons e– and holes h+, respectively. As 
shown in Fig. 10, on the matching band structure, the pho-
togenerated electrons origined from CNN were transferred 

Fig. 8. Photocatalytic degradation of MO aqueous under visible light (λ ≥ 420 nm) over CNN, CNN-AgBr, RGO-CNN and RGO-CNN-
AgBr (a), corresponding dynamics simulation curves (b) and cycles of the removal of MO by RGO-CNN-AgBr (c) The XRD pattern 
of the RGO-CNN-AgBr sample after 4th run cycle photocatalytic experiments (d), the digital image of the sample after 4th run cycle 
(the inset of d).
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to the conduction band of AgBr, and the •O2
– are produced. 

At the same time, the photogenerated holes origined from 
AgBr were transferred to the valence band of CNN. Finally, 
pollutants were oxided by •O2

– and h+. AgBr acted as an elec-
tron trapping promoted the separation of photogenerated 
electron-hole pairs. As for RGO, it provided a fast channel for 
electron transfer and further reduced the recombination rate 
of electron-hole pairs. Moreover, the combination of RGO 
resulted in a more loose and porous structure, increasing 
the specific surface area and causing multiple reflection of 
incident light. Based on these synergistic effects, the ternary 
composite photocatalyst exhibited excellent photodegrada-
tion properties for MO under visible light irradiation.

4. Conclusion

A new 3D porous RGO-CNN-AgBr composite photocata-
lyst was prepared by hydrothermal method. The introduction 

of RGO could not only rapidly transfer the photo-generated 
electrons, but also form a 3D porous structure, which could 
provide larger specific surface area and enhance the visible 
light absorption and the adsorption of reactant. Moreover, 
AgBr particles acted as electrons trap could promote the sep-
aration of photogenerated electron-hole pairs and enhance 
the absorption of visible light to some extent. The results of 
degradation of MO under visible light indicated that the deg-
radation rate of MO by RGO-CNN-AgBr was about 9 times 
higher than CNN. More importantly, RGO-CNN-AgBr had a 
macroscopic block morphology, and the photocatalytic activ-
ity remained 90% after four cycles. It is believed that such a 
well-designed 3D porous RGO-CNN-AgBr composite pho-
tocatalyst has a good prospect in the practical application of 
pollutant degradation.
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