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a b s t r a c t
Theanticipationofgroundwaterqualityundertheinfluenceofurbanandagriculturalexpansions
isanessentialissueinenvironmentalproblems.Severaldifferentchemicalandphysicalparameters
affect groundwater quality for drinking purposes. Therefore, the purpose of this study is to
comparatively analyze three different prediction approaches to assess groundwater quality for
drinkingpurposes.Oneof theseapproaches ismultiple linearregression(MLR),while theothers
are fuzzy inference systems (FIS), including clustering (Model I), and artificial neural network
(ANN)modelwithFIS, including clustering (Model II). In the assessment approaches, clustering
analysisisdonewiththeself-organizingmap(SOM)methodology,FISisappliedasMamdanifuzzy
system,andANNsareimplementedasfeed-forwardneuralnetworks.Allresultsoftheprediction
approacheswerecomparedwiththe laboratoryresults.Atotalof fourteendifferentchemicaland
physicalparameterswereusedasinputsforallmethods.Theresultsofthisstudydemonstratedthat
theModelIImethoddevelopedbythecombinationofSOM,FIS,andneuralnetworkscanbeusedas
analternativeapproachforevaluatinggroundwaterqualityfordrinkingpurposesascomparedwith
theMLRmethod,whichisawell-knownapproach.

Keywords:Drinking water; Groundwater; Fuzzy inference system; Artificial neural networks;
Decision-making

1. Introduction

Groundwater is an important natural resource that
is crucial for human life; in fact, groundwater resources
are primarily used for drinking, irrigation, livestock, and 
consumption.Groundwaterresourcesarebeingutilizedfor
drinking and agricultural production inmanyparts of the
world. There has been a gradual increase in the demand
for freshwater resources due to social and economic
development.Asaresultofmeetingthisincreasingdemand,
theuseofgroundwaterresourcesasasourceoffreshwater
has increased over a short time. The total abstractable 
groundwater inTurkeywasapproximately14billionm3 in 
2014. Fresh groundwater abstraction for municipal water
supplynetworkswas2,408,620thousandm3/y in Turkey in 

2014 as compared to 2,133,032 m3/yin1994[1].Thispattern
showsthatgroundwaterusehasbeenincreasingdaybyday,
whichassessesqualitysignificantinTurkey.

Naturalandhuman-inducedchemicalscanbefoundin
groundwater;therefore,itsqualitymaybeaffectedbymany
differentchemicalandphysicalfactors.Thesemaybecaused
bycontaminationsources,suchasagriculturalandindustrial
activities.

Dissolved chemicals and contaminants are transported
to thesubsurfacefromdisposalsitesbygroundwater flow;
therefore,thewaterqualityofwellsisworsenedduetothe
contaminated groundwater [2]. Many studies have been
carriedouttoinvestigateandunderstandthechemicaland
physical properties of groundwater in the Goksu Delta.
Theover-usageofgroundwatermay leadtoacritical issue
which is seawater intrusion problems [2,3]. The levels of
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Cl−, Na+, andelectrical conductivity (EC) aregreater in the
GoksuDelta,whichcanincreasesoilsalinityandlimitwater
use for different purposes [4]. Also, nitrogen compounds, 
phosphate,andorganochlorinepesticideparameters,which
generallyoriginatefromagriculturalactivityandfertilizers,
are found at high levels in the Delta, thereby causing the
deterioration of irrigation water quality [2,5]. However, it 
hasbeenreportedthatdissolvednutrientdistributions(such
as inorganic phosphate (DIP), inorganic nitrogen (DIN),
inorganic carbon (DIC), total dissolved organic carbon
(DOC), and alkalinity), which are used to characterize
groundwater, were low and currently posed no or little risk in 
theDelta[6].Also,sometraceelementcontentsintheGoksu
DeltaarereportedtoshowexcessconcentrationsofFe,Ni,
Mn, Mo, and Cu at some locations, leading to decreased
quality of potential drinking water [7]. However, Seckin et 
al. [8] reported thatusesofgroundwater for irrigationand
humanconsumptionaresuitable in terms of trace elements 
exceptforB,Ba,andFe.Theresultsdemonstratethatseveral
parametersarereportedtoaffectthegroundwaterqualityin
theGoksuDelta.

In recent decades, the applications of artificial intelli-
gencetechniqueshaverecognizedanoptimaluseofinvesti-
gatingandevaluatingthemultifacetedenvironmentalprob-
lems[9,10]includingthepredictionofdroughtandrainfall
[11], real-timepredictionof floodevents [12],estimationof
the spatialvariabilityofgroundwater level [13] alongwith
wind and wave predictions [14]. Groundwater quality- 
relatedstudiesbasedonartificialintelligencetechniquesare
oneofthesubjectsofthisphenomenonthathasbeenrecently
andfrequentlystudied.Srinivasetal.[15]analyzedtheuseof
groundwater resources in domestic usage and irrigation pur-
poses.Theyusedthefuzzyinferencerulestointerpolatethe
concentrationofhydrochemicalparametersfortheintended
useofwater.Theresultsofwaterqualityforbothdrinking
and irrigation purposes using the artificial neural network
(ANNs) demonstrate that the region’s groundwater wells
areinunfavorableconditions.Waghetal.[16]usedadaptive
ANNsmodelstopredictthenitrateconcentrationinground-
water. Their results showed that adaptive neural networks
demonstrated acceptable performance in the prediction of
watercontaminants.Chanapathietal.[17]implementedthe
conjunctiveuseofgroundwater resources through thecen-
troiddefuzzificationmethod in selectedAsian cities. Their
results showed that theuse of the fuzzy-based system can
replace other conventionalmethods for groundwaterman-
agement. Chaudhary [18] used theMamdani fuzzymodel
for theevaluationandsuitability assessment of groundwa-
terfordrinking.TheoverallwaterqualityfortheHaridwar
city,Indiawasestimatedfourclassesandsuggestconfidence
level.Leeetal.[19]usedthecombinationofaself-organizing
map(SOM)andthefuzzyC-means(FCM)modelstointer-
pret theurbangroundwaterquality inSeoul, SouthKorea.
The cooperative use of SOM and the FCM clustering was
developedtodeterminethehydrochemicalgroupsandiden-
tifytheirdistributions.Azimietal.[20]evaluatedtheannual
qualityofdrinkingwateranditsrelationshipwiththeoccur-
renceofdroughtsinIranplainaquiferbyusingthecombi-
nationoffuzzyANN,radialbasisfunction,andprobabilistic
neuralnetwork(PNN)methods.ANNsindicatethatthereis
adeclineingroundwaterqualityinmostoftheaquifersinthe

country due to unsuitable conditions. However, few studies 
havebeenconductedondecision-makingintheDelta.One
suchstudyhas focusedondetermining thequalityregard-
ingthesimilaritiesofqualityfactorsobtainedfromthefuzzy
clusteringapproachfornumerousgroundwatersources[21].

As stated previously, assessing groundwater quality for 
drinkingpurposesisquiteadifficultprocessbecauseofthe
different numbers of influenced parameters that exist. In
addition,thisprocessshouldbeperformedbyanexpert,and
itbecomesverycomplextodeterminethequalitieswithina
comparativenumberofwells.Thepurposeofthisstudyisto
proposeanewmethodologytohandletheeffectsofdifferent
chemical andphysicalparameters together in thedrinking
quality of groundwater. This study proposes a combined
methodologywith fuzzy logic andANNs. In thismethod,
the influenced parameters are expressed by fuzzy logic
regardingthedegreeofimportance,andtherulesarecreated
by considering thesedegrees. Theproposed approachwas
evaluatedintheGoksuDelta,whichisavaluablewetlandof
MersinCity,Turkey.

2. Materials

2.1. Study area

Coastalwetlandsareimportantareasduetothepresence
of fertile farmlands, various irrigation and agricultural activ-
ities,freshwatersources,andtheiruniquefloralandfaunal
characteristics.However,groundwaterfromcoastalaquifers
suffersfromnumerousthreatssuchasunplannedexploita-
tion, excessivegroundwater extraction, saltwater intrusion,
coastalbuilding,anddensepopulatıon.So,thismorevulner-
ablearea isadverselyaffectedbynaturaloranthropogenic
activities thatmay lead to freshwater scarcity.Therefore, it
is important to predict the water quality of groundwater
resources in coastal aquifers and make predictions about 
howthewaterqualityinthisregionwillchangeaccordingto
whichparametersinthefuture.

Aimingtodevelopapredictionmodel,GoksuDeltawas
chosenasthedatacollectionareainthisstudy.GoksuDelta
isanimportantnaturereserveandoneofthemostimportant
naturalcoastalwetlandsintheMediterraneanRegioninterms
ofTurkey’secological,cultural,andsocialvalues.TheGoksu
Deltawasincludedinthe1994statuteoftheConventionon
WetlandsofInternationalImportance(Ramsar),especiallyas
awaterfowlhabitatthataimstoensurethesustainableuseof
theseareas.Consideringthebirdspecies thatarehostedin
thepast,thisareaisclassifiedasaclass“A”wetland(water-
fowlwetlandshostingmorethan25,000speciesaccordingto
theRamsarConvention).

2.2. Climate and agriculture

AMediterranean climate is dominant in the region of
GoksuDelta. Summer is hot and arid, andwinter is rainy
andmild. Themonthly average temperature andmonthly
totalprecipitationdatahavebeencollectedfromtheSilifke
MeteorologyDirectorate TurkishMeteorologicalArchiving
System database via a formal request. The collected data
indicated that Station 17330,which is located at the center
of the city, has the most appropriate data for Silifke. The
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meteorologicaldataofSilifkeindicatedthattheannualaver-
agetemperaturewas20.89°C,thetotalannualprecipitation
was606.8mm,andtheaverageannualrelativehumiditywas
55.5% in 2012.

Agriculture is the most important occupation in the
GoksuDelta. The Silifke Plain is divided into two regions
(east andwest) by theGoksuRiver. Soil structure and cli-
mate,whichhavearoleinthedeterminationofagricultural
potential, cause the diversification of production patterns
andanincreaseintheamountofproduction.Thesefeatures
allow for thegrowthofvariousagriculturalproducts.This
constitutionof theGoksuDelta createsavery richagricul-
tural structure, allowing for the growth of warm climate
crops,suchaswheatandbarleyononehand,andpeanuts,
citrus fruits, and turmeric vegetablesontheother[22].

2.3. Geological and hydrogeological settings

A detailed discussion on the general geology and
hydrogeological description of the Delta plain has been
previouslyreported inastudy [21].TheDelta ischaracter-
izedbyacomplexhydrogeologicalstructurethatisbasedon
alluvial formationswith gravel, sand, silt, clay, and sandy
clay. This situation allows for significant water storage in
anotherwisewater-scarcearea.Theareashowslargediffer-
encesinlithologyandgrainsize,bothverticallyandincross- 

section. Therefore, the hydraulic properties of these sedi-
ments display transitional characteristics horizontally and
vertically at short distances. The region also contains sev-
eralcoastalaquifersthatareincontactwiththesestructures.
Alluvialaquifersof theregionwereunderseveresaltwater
intrusion,whichsignificantlyalteredthefreshwater/seawa-
terinterfaceasaresultofexcessivepumping[3,8].

2.4. Groundwater sampling and analysis

The24wellslocatedovertheGoksuDeltaconstitutethe
samples of this study as depicted in Fig. 1. Samples were 
collectedmonthly betweenMay 2012 andApril 2013. The
parameters measured for evaluating groundwater quality 
areshowninFig. 2.

At each sampling station, the temperature (T; °C), pH, 
and EC (μS cm−1)ofthewatersamplesweremeasuredinthe
fieldusingtheWTWpH340and2510-AOrioninstruments.
Theamountoftotaldissolvedsolids(TDS)wasdetermined
by filtering the samples throughWhatman (0.45μm) filter
paper,followedbyevaporationfor24hat150°Cinprecondi-
tionedandpreweighedcrucibles.

The change in weight was used to determine the dis-
solved salts. Alkalinity was analyzed by titration (CO3

2–, 
HCO3

–),using thealkalinity (2320)/titrationS.2-35Standard
Methods. For ion analysis, nitric acid was added to each

Fig.1.SamplesitesandthelocationsofsamplesintheGoksuPlains.
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watersample toensureapHofgreater than2.Thebottles
weretightlycappedtopreventtheintrusionofatmospheric
CO2. All samples were transported to the Environmental
ChemistryLaboratoryofCukurovaUniversityandstoredin
the refrigeratorat 4°Cuntil furtheranalysis.Allmajor cat-
ions, that is, Ca2+,Mg2+, Na+, K+, Si, and Bawere analyzed
using a Perkin Elmer highly sensitive inductively coupled
plasmaspectrometer,andanionconcentrations,thatis,SO4

2−, 
NO3

−, and Cl−weremeasuredusingtheprocessofionchro-
matography,followingtheAPHA[23].

The results of the 288 samples taken from24wells are
summarizedinTable 1. According to Table1,alltheparam-
etersexceptfortemperature,pH,NO3

–,Ba,andSilevelshad
shownsignificantvariabilityinthestudyarea.This,inturn,
madethecurrentdrinkingwaterqualitytotheseparameters
difficulttoanalyzeandevaluate.Therefore,theuseofother
methodsisbeneficialtoovercomethisvariability.

3. Basic principles of AI methods used in this study

3.1. Fuzzy inference system

In classicalmathematics,most parameters and struc-
tures on models are implied as certain, which means
it is assumed that the values are known absolutely [24].
Despitethiscertaintyinassumption, infuzzysets,mem-
bership in a set is permitted as partially known [25]. In
otherwords,infuzzysets,crispvaluedvariablesarerep-
resentedbymembershipfunctionsandlinguisticterms.A
typicalmembershiptriangularfunctionisdepictedinFig. 
3a. Crisp variables (denoted as x)havemembershipvalues
regardingmembershipvalues.

A fuzzy inference system (FIS) candealwith linguistic
andnumericalinformation.Thesystemhasfourbasicparts:
rules,fuzzifier,inferenceengine,anddefuzzifierasdepicted
in Fig. 4 [26].

When the input value has entered the system as a
crisp number, the crisp number is fuzzified by using
membership functions. The crisp numbers need to be
fuzzified to be processed with fuzzy algebra. Fig. 3b 
showsthefuzzificationprocessof thecrispnumberX1. 
TheX1 is fuzzifiedasmembershipvaluea.After fuzzi-
fication, the fuzzified inputs are evaluated with the
user-defineddecisionrules for the inferenceoperation.
The fuzzy output regarding these rules and inputs is
acquired, and finally, it is defuzzified to calculate the
crispoutputvalue.Thedefuzzificationprocessconverts
a fuzzifiedoutput toacrispvalue tooutput’smember-
shipfunctions.Differentmethodscanbeappliedtothis
process.Becauseofitswideuse,thecentroidmethodis
appliedfordefuzzificationinthisstudyasshowninEq.
(1) [27].

Z
z zd
z d

c z

c z

* =
( )
( )∫

µ

µ
 (1)

Fig.2.Evaluationparametersofgroundwaterquality.

Table 1
Descriptiveforchemical,physicalparameters,anddrinkingwaterqualityvalues

Minimum Maximum Mean Standard deviation

Temperature 14.80 37.50 21.45 2.5852
EC 143.10 51,400.00 2,621.28 6,102.96
pH 6.64 9.05 7.83 0.3574
NO3

– 9.87 19.93 12.55 1.1577
Na+ 10.41 6,205.50 341.48 831.339
Cl– 41.55 11,964.50 578.54 1,584.534
K+ 0.99 415.45 18.89 50.2585
TDS 109.50 38,801.30 1,556.66 4,383.261
Mg2+ 2.64 1,110.90 66.82 139.939
Ca2+ 10.85 496.30 72.03 63.228
SO4

2– 79.75 1,210.82 227.80 189.02
Alkalinity 68.05 5,415.90 456.87 699.61
Ba 0.01 6.36 0.38 0.6506
Si 0.00 6.17 2.44 1.059
Drinking water quality 10 96 52.41 24.17



147E.D. Güner, Y. Kuvvetli / Desalination and Water Treatment 174 (2020) 143–151

3.2. Self-organizing maps

The SOM is a technique that represents the input val-
ueswith various features. Thismeans that thismethod is
novelforobservingthesemanticrelationswithaself-orga-
nizationprocess [28]. In theSOMclusteringapproach, the
relationsoffeaturesaremappedwithcompetitivelearning.
ThismakesSOMdifferent fromotherANNtechniques. In
otherwords,trainingoftheSOMoccursthroughunsuper-
vised learning and the clusters are formed by similarities
regarding features.

3.3. Neural networks

Theneuralnetworks(NNs)areinspiredbythebiological
neuralsystemsandtrytosimulatethesystemsofahuman
brain. In theNNsapproach, inputsaremappedtooutputs
byusingdifferent layers.MultilayerNNs are formedwith
additional hidden layers that separate inputs and output
layers.Thefeed-forwardneuralnetworksareaspecialtype
ofmultilayerNNswhicharedirectedfrominputtooutput
byconnectingthesuccessivelayers[29].Atypicalmultilayer
feed-forwardNNarchitectureisdepictedinFig. 5.

EachconnectiondepictedinFig.5hastobeweighedby
differentvalues.Toachievethebest-fittedmodelregarding
thedataset,theNNmodelhastobetrained.Therearemany
differenttrainingalgorithmsarepresentedintheliterature.
ThisstudyappliestheLevenberg–Marquardtlearningalgo-
rithm[30]totheNN.

4. Structure and parameters of developed AI models and 
multiple linear regression

Inthisstudy,thegroundwaterqualityfordrinkingpur-
poseswasassessedbythecombinationoftheFIS,SOMs,and

NNssystems.IntheFISmodel,afterdeterminingthedetails
ofmembershipfunctions,fuzzydecisionruleswereformed
usingtheexperimentalresultsandexperimentalexperiences
oftheauthors.Oneoftheauthorshadconductedsomedoc-
toral studies onwater quality analysis.During her studies
spanning for eightyears, includingdoctoral studies in this
field, she conducted various physical and chemical water
qualityanalysesonapproximately1,250samplestakenfrom
55 different wells in various regions. Two different models 
namedasModelIandModelII,respectively,wereproposed
asacombinationofFIS,SOMs,andNNs.

4.1. Model I (SOMs + FIS)

In Model I, SOMs and FIS was used as an integrated
approach.Inthisapproach,first,themethodologyofSOMs
was applied to the inputparameters to cluster the relative
parametersthatsimilarlyaffectthewaterquality.Theresults
takenfromtheGoksuDeltagroundwaterwereused in the

 
(a) 

 
(b) 

Fig.3.Anexampletriangularmembershipfunctions.
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Fig.5.Multilayerfeed-forwardNNsmodel.
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clusteringapplication.According to the resultsof the clus-
teringapplication,theinputparameterswereclusteredasn 
differentclusters,withndenotingthenumberofclusters.

After the clustering stage, the second stage consisted
ofcreatingFISmodels foreachcluster. Inotherwords, the
drinkingwater qualitywas estimated regarding each clus-
ter’sowninputs’attributes.ThegeneralstructureofModelI
isshowninFig. 6.

4.2. Model II (SOM + FL + ANN)

Model IIworks parallel toModel I during the cluster-
ing stage and FIS stage. The difference between Model II
andModel I is the additional step composed by the NNs
approach.TheNNtooladdedtoModelIusestheresultsof

FISinModelII.TheoutputsofFISwereusedasinputparam-
etersbytheANNtoolinModelII.Thegeneralstructureof
ModelIIisshowninFig. 7.

In thismodel, outputs of all fuzzymodelswere fed to
thefinaldecisionmodel.Thismultilayerapproachprovided
weighting and fuzzified each cluster regarding their influ-
enceon thedrinkingwaterquality. In thisway, a sensitive
estimationofthedrinkingwaterqualitycouldbemade.The
feed-forwardNNswereappliedbydeterminingthedrinking
water quality.

4.3. Multiple linear regression analysis

Temperature, EC, pH, NO3
–, Na+, Cl–, K+, TDS, Mg2+, 

Ca2+, SO4
2–, alkalinity, andBa and Si contentswere used as

Fig.6.GeneralstructureofModelI.

Fig.7.GeneralstructureofModelII.
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independent variables, and groundwater quality scores 
(GWQS)wasusedasdependentvariablestomakemultiple
linear regression (MLR) analysis. An empirical correlation
wasdevelopedtopredictGWQSbyusing288datasamples
collectedfromthearea.Eq.(2)showstheMLRpreparedto
predicttheGWQSofGoksuDelta.

GWQS=–0.51×Temperature+12.49×E.C–0.43×pH+
0.0002×NO3

––0.05×Na+–0.02×Cl–+1.01×K++0.0003×
TDS+0.10×Mg2+–0.08×Ca2++0.01×SO4

2–+1.15× 
Alkalinity–0.03×Ba–5.38×Si (2)

5. Results and discussions

The relationship between the input and output vari-
ables was establishedbyusing three approaches including
twoartificialintelligencemodels(ModelIandModelII)and
anMLRmodel.Thepredictabilityofthedevelopedmodels
wasevaluatedbyusingmeanabsoluteerror(MAE)statistics
defined by Eq. (3).

MAE =
−

=
∑
i

n
i iy y
n1

^
 (3)

Here,inthisequation,yiisthemeasuredvalue,ŷiisthe
predicted value and n is the number of data samples. The
predictionaccuracyisveryimportantforaforecastingtech-
nique. For this reason, tomoremeaningfully interpret the
prediction success of the models, both the monthly based
resultsobtainedfromthewellsandtheresultsofeachwell
werecomparedseparately.Matchingfiguresandcorrelation
figuresweredrawntoobservetherelationshipbetweenpre-
dictionmodels, MLR, and expert opinion results. Besides,
MAE statistics were calculated to evaluate the prediction
errors. Fig. 8 (monthly) and Fig. 9 (wells-based) show the
matchingfiguresofGWQSresultsobtainedthroughdiffer-
entapproachesandexpertopinionresults.

Inaddition to thematching figures provided in Figs. 8 
and 9,MAEvalues between the results of each estimation
approach and expert opinion results are given in Table 2 
(monthly)andTable 3 (well based), respectively, to evaluate 
thepredictabilityofthemodels.

The results derived fromTables 2 and 3 show that the
proposedModelIIforpredictingGWQShasahighpredic-
tivecapabilityforbothmonthlybasedandwaterwell-based
results rather than Model I with lower prediction errors.
Model II alsopointedout abetterperformance thanMLR.
Fig. 10 (monthly) and Fig. 11 (waterwell-based) show the
correlations of the expert opinion results with the results
obtainedfromMLR,ModelI,andModelII.Asitcanbeseen
from the figures, the expert opinion results and Model II
resultshavethebestcorrelationsascomparedwiththepre-
dictionabilitiesofotherapproachesbothinmonthlybased
andwaterwell-basedresults.

The correlations provided in Figs. 10 and 11 support 
theMAEvaluesandmatchingfigures provided in Tables 2 

Fig. 8. Matching figure of GWQS results found by different
approaches(monthly).

Fig.9.MatchingfigureofGWQSresultsofeachwellfoundby
differentapproaches.

Table 2
MAEvaluesbetweeneachestimationapproachandexpertopin-
ion(monthly)

Months Exp-MLR Exp-MODELI Exp-MODELII

May’12 1,298,109 1,280,635 946,386
June’12 8,041,159 1,198,238 6,811,696
July’12 1,044,106 2,303,021 8,767,736
August’12 9,264,312 2,399,074 7,037,107
Sep’12 1,036,759 177,187 5,397,271
Oct’12 1,076,801 1,136,303 485,914
Nov’12 1,642,758 1,182,805 8,926,495
Dec’12 1,424,934 1,247,437 8,516,206
Jan’12 7,050,238 182,662 7,496,348
Feb’12 654,714 17,494 8,087,348
March’13 1,395,505 1,936,658 7,967,218
April’13 1,289,258 27,375 3,019,038
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and 3 and Figs. 8 and 9, respectively. All results indicate 
thatMODELIIisthebestapproachfortheestimationofthe
GWQS.According to theMAEvaluesprovided inTable 3, 
thebestpredictedwellisW-24forModelII.Whenthewells
fromW-1toW-12werecomparedwiththeresultsofModel
II,itisobservedthatnearlysimilarMAEswerecalculated.

Demirel et al. [7] pointedout that the fertilizers, heavy
metals,andotherpollutantsaretransportedtotheriverwater
bytheirrigationreturnflowinupsiteareasintheDelta.This
situationmaybeduetothemaindrainagelineintheupsite
region,whichisconstructedtoberearrangedintheDeltaflow
intoAkgöl and Paradeniz. Sediments and chemicalwastes
fromagriculturalareasarecarriedtotheselakesviadrainage
channels[31].Also,agriculturalactivitiesarenonpointsource
polluters ofwater quality, and almost all of thewellsmay
havebeenequallyaffected.Thesecircumstancesassessdrink-
ingqualityachallengingtask;however,theproposedmethod
primarilyovercame thesedifficultiesanddeduced thispat-
ternintheDelta.Justaswithcoastalgroundwaterinvarious
partsoftheworld,theGoksuDeltaisalsofacingthethreatof
seawaterintrusions[4,8].Asexpectedfromthispointofview,
W-24istheclosestwelltotheMediterraneanSea,anditwas

mostaffectedbyseawaterintrusion.Althoughthiscondition
exists,theproposedmethodandlinearregressionhavemade
accurate predictions of drinking water quality. Additionally, 
wellW-17isthenearesttotheParadeniz,whichcontainshigh
salt concentrations and had quite reliable predictionswith
theproposedmethod.Thehydrochemicalanalysesindicated
thatnitrogenisanimportantcontaminationparameterinthe
Delta[6,32,33].Amongtheotherwells,wellsW-19andW-20
wereespeciallyaffectedbytheanthropogenicactivitiesinthe
Deltaareaduetoagriculturalactivityandsewage.Therefore,
thesewellshaveslightlyhighererrorvalues.WellsW-13and
W-14areclosertotheGoksuRiverthanwellsW-15andW-16,
whichareneartheMediterraneanSea.Thispositionofwells
mayhelptodilutesalinity,EC,andotherqualityparameters
inwellsW-13andW-14.However,theseparametersarecon-
centrated inwellsW-15 andW-16 near the sea. Therefore,
assessingthegroundwaterqualitymaybemoredifficult in
thesewellsas itcanbeunderstoodfromtheerrors.Finally,
our results are consistentwhen comparedwith the studies
thatanalyzedthephysicalandchemicalpropertiespresentin
theregion[2,8,33].

Table 3
MAEvaluesbetweeneachestimationapproachandexpertopinion(wellbased)

Wells Exp-MLR Exp-MODELI Exp-MODELII Wells Exp-MLR Exp-MODELI Exp-MODELII

W-1 6,550,167 1,099,217 6,167,235 W-13 1,941,201 1,462,053 1,276,048
W-2 4,136,893 9,294,102 5,333,023 W-14 1,194,543 1,467,066 8,290,369
W-3 9,818,524 2,075,721 720,772 W-15 110,636 2,530,321 1,032,775
W-4 100,993 1,236,083 6,392,055 W-16 8,429,328 3,562,065 7,682,159
W-5 7,554,487 1,675,982 6,098,598 W-17 131,807 1,867,758 4,695,945
W-6 9,247,995 1,176,806 4,696,716 W-18 1,228,803 10,958 5,021,563
W-7 1,395,504 1,663,912 6,784,855 W-19 1,890,012 701,699 1,106,813
W-8 8,564,884 1,862,104 5,908,917 W-20 1,993,379 6,327,697 111,235
W-9 6,009,045 1,991,571 7,579,917 W-21 8,091,431 1,661,669 7,412,778
W-10 3,601,987 1,122,868 7,402,942 W-22 9,492,292 2,375,932 8,771,755
W-11 9,921,758 2,766,667 6,801,106 W-23 1,798,834 1,106,649 9,133,331
W-12 1,673,855 2,683,333 4,337,198 W-24 9,046,612 2,791,667 1,700,879

Fig.10.CorrelationsofModelI,ModelIIandMLRwithexpert
opinion(monthly).

Fig.11.CorrelationsofModelI,ModelIIandMLRwithexpert
opinion(waterwell-based).
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6. Conclusion

Themeasurementofgroundwaterquality is a complex
processduetovariousfactorssuchashydrogeology,geology,
biology, and land-usepractices.TheGoksuDelta,which is
an economically and ecologically important area, has a lot
ofgroundwaterresources.Additionally, thisvaluableDelta
is protected by national and international treaties. In this
researchstudy,twodifferentpredictionmethodsandanMLR
methodwerestudiedtoassessthegroundwaterqualityofthe
GoksuDeltafordrinkingpurposesbyexaminingthephysi-
calandchemicalwaterqualityparameters.Thecombination
ofFIS+SOMs+NNstechniquesemployedinthisstudypro-
videdanefficientwayofanalyzingthehydrochemicaldata-
set (288casesand14variables) fromtheGoksuDeltaarea.
Theresultsofthisstudyarepromisingandsuggestthatthe
combinationofthesetechniquescanbesuccessfullyapplied
inthecharacterizationofgroundwaterdrinkingquality.The
resultsdemonstratethatModelII(SOM+FL+ANN)canbet-
terreflectthecontinuouschangeinwaterchemistryvariabil-
ityingroundwaterqualityinthestudyarea.
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