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a b s t r a c t
Remote sensing applications in agricultural practices are comprehensively reliable and cover a 
multidisciplinary fundamental interest both in local and regional level. Significantly, vegetation 
indices are the foremost essential in remote sensing applied for agricultural activities related to veg-
etation and/or water, particularly in an arid environment. Adequate water resources management 
plans are based on better fulfilling the water demand and supply equation. In arid environments, 
this equation is barely achieved due to water resources limitations. Remote sensing techniques 
improve the water resources management schemes by using five different water radiometric indi-
ces of Sentinel-2. Each of them plays a specific role in the quantification of soil/plant water content 
based on the interpretation of map surface water features and monitors the dynamics of surface 
water. The study area is located within the main agricultural region of Wadi As-Sirhan. The area 
is characterized by flourishing agricultural activities. Remote sensing data acquired by Sentinal-2 
proved to be statistically sufficient to estimate soil water content in two different climatic conditions. 
Statistically, estimated winter indices are with better fit than summer indices. Modified Normalized 
Difference Water Index and second Normalized Difference Water Index best fitted winter soil water 
content estimations. Meanwhile, RMSE showed no differences between Normalized Difference 
Water Index and Normalized Difference Turbidity Index for both climatic conditions.

Keywords: �Integrated water resources management; Sentinel-2; Soil water content; Remote sensing; 
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1. Introduction

The Kingdom of Saudi Arabia (KSA) has very low
annual precipitation, high temperature, no lakes or flowing 
rivers and is classified as an arid region. Water, therefore, is 
infrequent and extremely valuable. With the rapid country 
growth and increasing water demand, the effect becomes 
cumulative. The scarcity of fresh water resources presents 
the most severe problem for the existence of biotic life in 
Saudi Arabia (Elhag 2016). Generally, the average annual 
rainfall is closely less than 80  mm, with a sporadic maxi-
mum annual rainfall that exceeds 500  mm, particularly in 
the south-western region (Bahrawi et al. 2016) 

Saudi Arabia has experienced an elevated development 
in all divisions over the last four decades. As a result, a swift 
intensification in agricultural, industrial and domestic water 

demands has been perceived. Agriculture is the major water 
consumption sector as it consumes about 85% of the total 
national water use (Elhag et al. 2017). The government of 
Saudi Arabia subsidized the agricultural sector during the 
period 1974–2006 to improve the standard of living in rural 
areas and to attain self-sufficiency. 

Soil water content depends on many parameters that are 
spatially and temporally variable such as soil type, vegetation 
cover, crop type, topography and precipitation. Considering 
all these variable factors, in collecting enough measure-
ments for the account of the spatial variations of the vadose 
zone, soil water content is neither financially nor technically 
practical.

Soil water content is the amount of water available for 
plants uptake at the root zone; coarsely this zone is less than 
50 cm of depth (Zhu et al. 2008). Within this thin layer, several 
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essential biological and hydrological processes take place 
(Crippen 1990 and Walker 1999). It is very crucial to monitor 
this layer to ensure plants survival (Su et al. 1999). Traditional 
methods of soil water content estimation are usually valid for 
a small local level similar to a farm but it always costs time 
and effort and is not a sufficient method to estimate spatial 
and temporal variations of soil water content on a regional 
scale (Engman 1991 and Wood et al. 1992).

Remote sensing techniques are now widely used to 
forecast, monitor and estimate soil water content (Ochsner 
et al. 2013 & Psilovikos and Elhag 2013). Estimation of soil 
water content using remote sensing practices is different and 
divided generally into two groups of methods: (1) passive 
remote sensing method of estimation and (2) active remote 
sensing method of estimation (Palecki and Bell 2013). Both 
techniques depend on the capability of a certain wavelength 
to penetrate the root zone and register its reflection (Myneni 
et al. 1995 and Dasgupta 2007). Short wave infra-red (SWIR) 
wavelength can penetrate in the shallow root zone as it is 
either registered passively from the sun or actively using 
ground penetration radar (GPR) systems (Gao 1996 and 
Moghadas et al. 2013).

Low crop productivity is highly related to the availabil-
ity of water resources. To optimize the use of limited water 
resources in arid environments unconventional methods of 
planning are required (Elhag and Bahrawi 2017). Soil water 
monitoring is a crucial feature of managing water require-
ments of agricultural fields founded on advanced irrigation 
techniques (Muñoz-Carpena et al. 2002). The main goal 
and challenge for farmers and decision makers is to keep 
soil water content within optimized range for better and 
efficient crop production and unsaturated soil (Muñoz-
Carpena et al. 2005 and Elhag and Bahrawi 2014).

Relevant research studies were conducted in similar 
arid environments. Modified Normalized Difference Water 
Index (MNDWI) was applied by Zhang and Huai-Liang 
2016 to monitor drought condition. Mathieu et al. 1998 was 
the pioneer in studying the relationship between laboratory 
reflectance data and remote sensing data. Other significant 
scholarly work was conducted by Elhag and Bahrawi 2017 
who assessed the hydrological drought indices in other 
parts of Saudi Arabia. 

Several radiometric water indices have been developed 
within the past few decades. Principally, McFeeters 1996 
projected the Normalized Difference Water Index (NDWI). 
The index uses the green and the near infrared bands of 
remote sensing data. The index was projected to improve 
the extracted information from the remote sensing data 
regarding the soil moisture content. Later, MNDWI was 
developed by Xu 2006 to improve the limitations of NDWI, 
where the shortwave infrared was used instead of NIR band. 
Several academic research works were conducted by Xu 
2006, Li et al. 2013, Du et al. 2014 and Singh et al. 2015 where 
MNDWI was considered to be a better radiometric water 
index over NDWI.

Remote sensing techniques provide the tool to estimate 
soil water content on a large scale in time and effort cost-
effective manner (Chauhan 2003). Irrigation network in the 
designated area relays on advanced sprinkling irrigation sys-
tems. The huge plant water requirement in the study region 
is supplied from the underlying groundwater aquifer. Spatial 

correlation between soil water content and vegetation stress 
may alter the strategy of water management in the study area. 
Image correction is a preliminary procedure in digital image 
analysis. Atmospheric and radiometric correction techniques 
are also essential steps. According to Chavez 1996, atmo-
spheric correction depends on the calibrated radiance value 
of these offset consents to decide the κ value. The κ decision 
rule is based specifically on the flying height. The λ–Κ deter-
mines the offset values for the green, red and near infra-red 
band calibration (Beisl et al. 2008). Moreover, radiometric 
correction is required to harmonize the conducted measure-
ments made with a variety of different satellite sensors under 
different environmental conditions (Zhu et al. 2015).

The current research work is based on founding a regres-
sion correlation between values of remote sensing water 
radiometric indices conducted from satellite images and 
ground truth data. Therefore, accurate synchronization of 
ground truth data collection and satellite bypassing were 
exercised to maximize the use of the irrigational water in 
the study area.

2. Materials and methods

2.1. Study area

The Wadi As-Sirhan or Sirhan Valley is a quadrangle 
wadi which lies in the Northwestern part of Saudi Arabia 
at about 1,000 km north of Jeddah. It expands from Sakakah 
city up to Jordan and lies between Lat 30 45–29 30  N and 
Long 37 50–39 30  E on the border with the Kingdom of 
Jordan (Fig. 1). It is in the west-central part of the Sirhan 
turayf basin and is underlain by Silurian to Miocene-Pliocene 
sedimentary rocks that are partly covered by volcanic flows. 
The map area also contains large areas of surface sand and 
gravel. Wadi As-Sirhan is characterized by 5 Million Cubic 
Meter (MCM) annual flow and 18 MCM annual discharge 
and safe yield of 7–10  MCM/y (Bahrawi and Elhag 2016). 
Hydrogeological investigations in Saudi Arabia demon-
strate that groundwater is stored in more than 20 primary 
and secondary aquifers (Hoetzl 1995). It has been estimated 
that the groundwater reserves are about 1,919  ×  109  m3 of 
which 160  ×  109  m3 stored in deeper secondary reserves 
(Al-Rashed and Sherif 2000). The total volume of ground-
water abstracted for irrigation in the designated study area 
has increased from 23 MCM in 1973 to 2,051 MCM in 2006, 
while the annual recharge does not exceed 10% (Elhag and 
Bahrawi 2014). The climate in the study area is confined to 
the semi-arid climate. About 80% of the study area receives 
precipitation less than 100 mm/y, mostly during the spring 
months. The area of Wadi As-Sirhan, situated at an altitude 
of around 650  m.a.s.l., is characterized by very hot sum-
mers with average monthly maximum/minimum in July: 
33.9°C/17.7°C, and mild winters with average monthly 
maximum/minimum in January: 14.7°C/3.8°C. The calcu-
lated annual potential evapotranspiration (ETo), Penman-
Monteith approach (FAO) for Wadi As-Sirhan is 2,643 mm/y. 
The soil of the study area is generally sandy with pH from 
6.65 up to 7.4 and with electric conductivity (EC) from 0.031 
up to 1.634 ms/cm. There were no significant differences in 
soil colors either in dry summer soils or wet winter soils. 
Organic matter content is low around (2.11%). The study 
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area is not covered by natural vegetation. It is reclaimed 
land for crop production mainly. Water radiometric indices 
interpretation is exercised on the ratio between red, near 
infra-red and infra-red bands of Sentinel-2 over the study 
acquired in 2016. 

2.2. Methodological framework

2.2.1. Dataset and soil sampling

A total number of 150 random soil samples were col-
lected from the cultivated land in Wadi As-Sirhan area with 
a minimum distance of 1,000 m between the location of the 
sample to avoid data clumping and only bare soil locations 
without crop cover were considered. Soil samples were 
taken from 0 to 10 cm depth then mixed well for soil mois-
ture estimation in triplicates to obtain the average sample. 
The standard procedure of determining soil extract salinity 
in terms of electrical conductivity (EC) was followed accord-
ing to Rhoades and Chanduvi 1999 under laboratory con-
dition and validated against soil salinity values estimated 
from remote sensing data according to Elhag 2016. Location 
of winter samples was marked with wooden sticks for sum-
mer data collection (Fig. 2). Sentinel-2 images acquired in 
January and July 2016 were downloaded and processed to 
represent the winter and the summer seasons correspond-
ingly. Sentinel-2 is made of 12 spectral bands with a 10-m 
resolution of visible bands (VI), 20 m resolution of vegetation 

red edge (VRE) bands and SWIR bands in addition to three 
bands related to coastal aerosols and water vapor of 60-m 
resolution. The remotely sensed water radiometric indices 
are conducted from several algorithms’ exercises, basically 
VI, VRE and SWIR bands.

2.2.2. Estimation of soil water content

This study adopted the common gravimetric method 
of soil water content estimation. The soil water content is 
expressed either in terms of weight or volume. In the current 
research study, the soil water content is expressed in terms 
of weight as a ratio of the mass between dry and wet soil. 
Determination of the soil water weight ratio is carried out by 
drying the soil to a constant weight and calculating the soil 
sample mass after and before drying. The criterion for drying 
the soil samples to a constant weight is considered after heat 
treatment in an oven at a temperature between 100°C and 
110°C. Within this range of temperature, it is assured that the 
water content in the examined samples will be evaporated 
without any alteration that may occur to the physical or the 
chemical characteristics of the soil samples. The soil water 
content in dry weight approach is calculated according to the 
formula (Klute 1986).

θd =
wt of wet soil-wt of dry soil

wt of dry soil
	 (1)

Fig. 1. Study area location in false-color composite over a natural color base map.
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Soil water content is calculated as the ratio between 
water mass and the mass of wet soil (θw). The alteration 
from θd to θw can be calculated as follows:

θd =
wt of water
wt of dry soil

	 (2)

After manipulation, the water content in wet and dry 
basis can be expressed as follows:

θ
θ
θd
w

w

=
−1

	 (3)

and

θ
θ

θw
d

d

=
+ 1

	 (4)

2.2.3. Remote sensing analysis

The amount of water present in leaf internal structure 
mainly affects the spectral reflectance in the SWIR interval 
(ca. 1.2–1.7  μm). The SWIR reflectance is also sensitive to 
the canopy internal structure. Because the NIR is exagger-
ated by leaf internal structure and leaf dry matter, but not 
by the water content, the combination of SWIR and NIR into 
NDWI calculation removes the leaf dry matter and internal 
structure and retains the water content. NDWI is less sus-
ceptible to atmospheric scattering than NDVI, but it cannot 

eliminate totally the effects of the background soil reflec-
tance’s comparable with NDVI. 

The MNDWI algorithm was developed by Xu 2006 to 
improve the open water features through an efficient elim-
ination of land noise as well as vegetation and soil noise. 
MNDWI is calculated by the following equation: 

MNDWI Green SWIR
Green SWIR

=
−
+

	 (5)

The Normalized Difference Pond Index (NDPI) was 
developed by Lacaux et al. 2007 to distinguish the vegetation 
cover apart for its aquatic surroundings. NDPI is calculated 
by the following equation: 

NDPI SWIR Green
SWIR Green

=
−
+

	 (6)

The Normalized Difference Turbidity Index (NDTI) was 
developed by Lacaux et al. 2007 to estimate water turbidity. 
NDTI is calculated by the following equation: 

NDTI Red Green
Red Green

=
−
+

	 (7)

The NDWI was found by Gao 1996 and after that 
improved by Ganaie et al. 2013 to measure the liquid water 
molecules at the top of canopy  level. NDWI is calculated 
by the following equation: 

 
Fig. 2. Soil sample location in a false color composition of Sentinel-2.
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NDWI NIR SWIR
NIR SWIR

=
−
+

	 (8)

The second Normalized Difference Water Index (NDWI-2) 
was developed by McFeeters 1996 to detect and measure the 
surface water extent in addition to the surface water of wet-
land environments. NDWI-2 is calculated by the following 
equation: 

NDWI 2 Green NIR
Green NIR

− =
−
+

	 (9)

where

B3 “G” is the green band of Sentinel-2.
B4 “R” is the red band of Sentinel-2.
B8 “NIR” is the near infra-red band of Sentinel-2.
B11 “SWIR” is the short-wave infra-red band of Sentinel-2.

The final step in image data analysis in the current study 
is data normalization. The above-mentioned Water Radio
metric Indices are calculated within a range of –1 to +1. 
Therefore, Water Radiometric Indices were transformed into 
the same range of soil water content weights for compara
bility reasons using Hawkins and Pole 1989 transformation: 

Z r
r

r=
+
−









 = ( )1

2
1
1

ln arctanh 	 (10)

where

ln is the natural logarithm function.
arctanh is the inverse hyperbolic tangent function.
r is the Fisher’s z-transformation.

2.3. Regression analyses

The purpose of the regression analyzes is to envisage the 
regression potentials between soil salinity index from one 
side and the rest of the hydrological drought indices from 
the other side. Principle component analysis (PCA) is per-
formed to transform a set of likely correlated with unlikely 
correlated variables. Principal components number is less/
equal to the variables original number. Following Monahan 
2000, PCA fundamental equations are:

First vector w(1) should be answered as follows:

w t x ww i
t

w
t

1 1 1

2

1 1

2

( ) = ( ) == ( )






= ×( )








∑ ∑argmax argmax 	 (11)

The matrix form of the above equation gives the following:

w Xw w X Xww w
T T

1 1

2

1( ) = == { } = { }argmax argmax 	 (12)

w(1) should be answered as follows:

w w X Xw
w w

T T

T1( ) =











argmax 	 (13)

Originated w(1) suggests that first component of a data 
vector x(i) can then be expressed as a score of t1(i) = x(i) × w(1) in 
the transformed coordinates, or as the corresponding vector 
in the original variables, (x(i) × w(1)) w(1).

2.4. Validation

Validation of Water Radiometric Indices values was carried 
out using the ground truth data collection. 150 soil samples 
were analyzed for gravimetric soil water content and plotted 
against the remotely sensed values. The average accuracy is 
estimated by a horizontal function of the tested dataset. The 
average reliability is estimated by a vertical function of the 
tested dataset. The overall efficiency estimated the diagonal 
function of the tested dataset. Following Congalton et al. 1983, 
a correspondence analysis was constructed as follows: 

CA =
− ×( )

− ×( )
= =

=

∑ ∑

∑

N xii xij xji

N xij xji

i

r

i

r

i

r
1 1

2

1

	 (14)

where

r, the number of rows in the error matrix
xii, the number of observations in row i and column i 

(the diagonal cells) 
xi+, total observations of row i 
x+ I, total observations of column i
N, total of observations in the matrix 

3. Results and discussion

Realization of different water radiometric indices was 
computed succeeding to adequate atmospheric and radio-
metric corrections. Spatial distribution of the implemented 
water radiometric indices and their corresponded temporal 
acquisitions are illustrated in Figs. 3a–e. The first dataset 
was comprehended for winter Water Radiometric Indices 
(January 2016) then six months later (July 2016) the analysis 
procedures were repeated for the summer dataset (Figs. 3f–j).

Field data collection and remote sensing techniques 
were applied with precise synchronization to optimize the 
results. Soil water content collected from summer and winter 
seasons shows a significant correlation RMSE 0.01. There
fore, the agricultural practice in the designated study area 
suggests an equivalent amount of the irrigation water uti-
lized in both seasons (Elhag and Bahrawi 2017).

Water radiometric indices conducted from remote sens-
ing data showed inconsistent responses between winter and 
summer seasons (Table 1 and Figs. 4a and b).

The estimated radiometric indices tend to respond pref-
erably to winter rather than to summer climatic condition 
(Fig. 5a). MNDWI shows a coherent pattern of estimation 
in different seasons. Such behavior could be considered as 
a lack of the index sensitivity in summer season rather than 
winter season (Wang et al. 2013 and Gautam et al. 2015).

NDPI shows an idealistic correlation between the two 
seasons (Fig. 5b). Henceforward, the only foreseen explana-
tion is that there is no ponds formation in the study area and 
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Fig. 3. Spatial distribution of five different water radiometric indices in two different seasons (January/July-2016).
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Table 1
Statistical analysis of the estimated radiometric water indices

Summer indices Winter indices

R2 RMSE Equation R2 RMSE Equation

MNDWI 0.6117 0.08 0.3232x – 0.4061 0.7146 0.06 0.3813x – 0.4643
NDPI 0.9046 0.01 0.1432x – 0.4365 0.9476 0.01 0.1642x – 0.4439
NDTI 0.5397 0.07 0.258x + 0.0287 0.5859 0.08 0.3574x – 0.0029
NDWI 0.4916 0.15 0.5033x – 0.1983 0.5501 0.15 0.6539x – 0.2522
NDWI-2 0.5718 0.07 0.2702x – 0.4212 0.6455 0.07 0.3747x – 0.5051
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Fig. 4. Seasonal variation of the estimated radiometric water indices (a for winter and b for summer).
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hence the index cannot differentiate the seasonality dissim-
ilarities. Consequently, NDPI can be exercised all year long 
with no season preferences (Ji et al. 2009 and Dambach et al. 
2012). 

On the other side, NDTI shows steady correlation along 
with the seasonal variations (Fig. 5c). NDTI is the only 
index that showed optimum correlation stability among the 
other radiometric water indices. Accordingly, NDTI behav-
ior is explained by the lack of pure water surfaces and the 
irrigational water is considered as turbid water as it is mixed 
with soil particles at the surface level (Daughtry et al. 2005 
and Serbin et al. 2009).

Similar behavior to NDTI but with less accuracy is 
expressed by NDWI. NDWI shows a robust correlation 
between lower NDWI values rather than the higher values 
(Fig. 5d). Such results may promote NDWI to be used in 
winter rather than in summer conditions (Chen 2006 and 
Gu et al. 2007).

In contrary, the improved index of NDWI was exercised 
to contradict the sensitivity of the index to the seasonal condi-
tions. NDWI-2 shows significant correlations in summer con-
ditions with no winter condition preferences (Fig. 5e). There
fore, NDWI-2 could be considered as a summer index (Soti et 
al. 2009 and Sánchez-Ruiz et al. 2014).

-0.6

-0.4

-0.2

0

0.2

-0.6 -0.4 -0.2 0 0.2

 

-0.6

-0.4

-0.2

0
-0.6 -0.4 -0.2 0

 

-0.3

-0.15

0

0.15

0.3

-0.3 -0.15 0 0.15 0.3

 

a, MNDWI 

b, NDPI 

c, NDTI

-0.4

0

0.4

0.8

-0.4 0 0.4 0.8

 

-0.8

-0.4

0
-0.8 -0.4 0

 

d, NDWI 

e, NDWI-2 

Fig. 5. Seasonal radiometric water indices intercorrelation (x axis is the winter measurements; y axis is the summer measurements).



20913th Gulf Water Conference Proceedings / Desalination and Water Treatment 176 (2020)

Principally, the Water Radiometric Indices used in the 
current research varied based on the utilized bands in each 
rationing. Therefore, categorization of different indices using 
principal component analysis will help to examine the indi-
ces discrepancies. Fig. 5 presents the grouping of different 
indices according to the PCA on covariances in both seasons.

Generally, different water radiometric indices fell into two 
groups in both seasons. The first group contained NDPI and 
it showed no seasonal variation and kept a neutral behavior. 
Meanwhile, NDTI from one side and NDWI and MNDWI 
from the other side showed an alternative behavior across 
the two seasons (Fig. 6). Additionally, NDWI-2 significantly 
correlated and grouped together (Table 2). Consequently, 
NDWI-2 is a superposed group (Dehni and Lounis 2012). 
Lack of correlation is the main reason of NDTI and NDWI 
insignificance (Table 2). The implemented band length is the 
driving force of the correlation inconsequentiality between 
the previously mentioned indices (Lillesand et al. 2014).

The dynamics of the soil water content dissimilarities 
proved by the seasonal variations added further compli-
cations to designate soil water content in a systematic uni-
form perspective. The use of different algorithms based 
on implementing different combinations and/or ratios of 
Sentinel-2 bands in the form of water radiometric indices 
evidenced to be more efficient to overcome water dynami
city problems (Lei et al. 2014 and Zhang et al. 2015).

Moreover, higher soil water content was related to the 
improper and intense irrigation systems which are based 
on the lack of an operative water resource management 
plan in the designated study area (Koshal et al. 2012).

The selection of the profound satellite bands adequate 
for accurate water radiometric mapping is not systemati-
cally comprehensive (Lei et al. 2014 and Zhang et al. 2013). 
Spatial inconsistency and land cover dissimilarities are the 
main controlling factors of the band sensor selection (Zhang 
et al. 2015 & Allbed and Kumar 2013). Consequently, the 
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Fig. 6. Principal Component Analysis and its correlation matrix of the different water radiometric indices.
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utilized water radiometric indices may have different results 
in specific areas using different band ratios other than the 
use of Sentinel-2 as a source of remote sensing data (Zhu 
et al. 2015 and Drusch et al. 2012).

4. Conclusions

The groundwater resources in the Wadi As-Sirhan are 
the only water source for the agricultural practices that take 
place. Therefore, to sustain such agricultural activities in the 
designated study area, an adequate technique of monitoring 
soil water content is crucial. Remote sensing data acquired 
by Sentinal-2 proved to be statistically sufficient to estimate 
soil water content in two different climatic conditions. The 
implemented water radiometric indices in the current study 
can be primarily divided into two groups, climatic condi-
tion non-sensitive/ sensitive group. The non-sensitive group 
contains only the NDPI, while the sensitive group contains 
the rest of the Water Radiometric Indices. Within the sec-
ond group, there are indices which are less accurate in sum-
mer rather than in winter. MNDWI and NDWI-2 best fitted 
winter soil water content estimations. Meanwhile, NDWI 
and NDTI least fitted winter estimations. However, NDTI 
was statistically proved to be the most defined water radio-
metric index for estimating soil water content. The current 
irrigational schemes in Wadi As-Sirhan are not taking into 
consideration the temporal changes in the climatic condi-
tions, where both summer and winter irrigational schemes 
are almost the same. Thus, the existing agricultural strat-
egy in Wadi As-Sirhan needs to be revised precisely by the 
decision makers. Moreover, coherent groundwater resources 
consumption and soil water content monitoring need to be 
implemented.
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