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a b s t r a c t
Nanofiltration membranes have been widely used in various separation and purification 
applications such as industrial wastewater treatment, food, and pharmaceutical industries. During 
the last three decades, several mathematical models have been progressing to illustrate the trans-
port phenomena and both the expression of water and solute fluxes in such a process. This paper 
looks into the aims and the limitations of the most used models by the research community, which 
gives a better understanding of these phenomena according to the complexity of this process. In 
this review, 24 mathematical models were presented from (Solution–diffusion models, irreversible 
thermodynamics models, extended Nernst–Planck equation and the Maxwell–Stefan model) those 
who give an overview contribution in this such study regarding the frequently problems (multi-ions 
solution, charged/uncharged solutes, pore geometry, membrane charge, and concentration polariza-
tion), each model present in this review was discussed in the terms of assumptions, advantages and 
disadvantages noticed.

Keywords:  Nanofiltration; Mathematical models; Solution–diffusion models; Irreversible thermody-
namic models; Extended Nernst–Planck models

1. Introduction

Nanofiltration is a pressure-driven membrane process, 
that able to remove divalent ions as well as multivalent ions 
from a solution. Nanofiltration membrane is considered to 
be “leaky” reverse osmosis (RO) membrane because of its 
similarity to RO, the exception is that nanofiltration mem-
branes allow more ions to pass through than RO membranes 

in which it needs lower operating pressure than RO case. In 
general, nanofiltration has two distinct properties [1–3]:

• Nanofiltration has molecular weight cut off (MWCO) 
between MWCO of RO and ultrafiltration membranes 
approximately 300–500 g/mol [1,2]. This MWCO value 
corresponds to the membrane pore size.

• Nanofiltration membranes have a slightly charged sur-
face. The charge interaction plays a dominant role when 
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the dimensions of the pores are less than one order of mag-
nitude larger than ions size. This charge interaction allows 
nanofiltration to separate ions with different valences.

Due to its separation ability, nanofiltration has become 
an important process for various applications, including 
pulp processing [1], water purification [4], demineralization 
of whey in the dairy industry [5], organics concentration [6], 
and water softening [7] Table 1 was summarized the most 
common applications of nanofiltration in the industry.

As can be seen in Fig. 1, in the last two decades, there 
was increasing published research related to nanofiltration 
for both modeling and simulation subject.

Nanofiltration membranes can be produced in various 
configurations such as a spiral wound, plate, and frame, 
hollow fiber, capillary and tubular with a wide range of 
materials, including cellulose derivatives, synthetic poly-
mers, inorganic materials and a hybrid of organic and 
inorganic. The spiral wound module (SWM) design was 
originally made exclusively for water desalination, but due 
to its compact design (high packing density), adequate foul-
ing resistance and low price, it became attractive for other 
industries such as dairy industry and pulp and paper indus-
try [51]. In SWMs, the feed flows through a narrow channel 
between two membrane sheets in the axial direction. The 
membranes are glued along three sides to form leaves and 
are wound around a permeate collecting tube to which the 

fourth side, the unsealed edge of the leaf, is attached. Inside 
leaves permeate spacer is located to support the membrane 
and to direct the permeate stream spirally to the permeate 
collecting tube. The configuration is shown in Fig. 2.

Many researchers have developed mathematical models 
to properly design and predict the performance of nanofil-
tration on the salt separation process. Several models are 
available in open literature; models most commonly used to 
describe nanofiltration processes are [53]:

• Solution–diffusion model (SDM) [55]
• Irreversible thermodynamic equations of Kedem and 

Katchalsky [63]
• Spiegler–Kedem model [66]
• Extended Nernst–Planck model [77]
• Maxwell–Stefan model [101]

Numerous reviews related to the nanofiltration process 
can be found in the literature. However, a specific review on 
the comparison of mathematical models for transfer via nano-
filtration membranes can hardly be found. This paper has 
reviewed 24 mathematical models for transport in the nano-
filtration process, such as solution–diffusion models, irrevers-
ible thermodynamics (IT) models, extended Nernst–Planck 
equation, and the Maxwell–Stefan model. Fig. 3 schematic the 
most common models used to describe the transfer phenom-
ena within nanofiltration membranes.

Table 1
Application of nanofiltration in the industry

Industry Application

Food Demineralization of whey [5,8,9]
Demineralization of sugar solutions [10]
Separation of sunflower oil from solvent [11]
Recovery of regeneration liquid from decoloring resins in sugar industry [12,13]

Textile, clothing and leather,  
paper and graphical

Effluent treatment [14]
Purification of organic acids [15–17]
Separation of amino acids [18]
Recovery of water and salts from wastewater [19–21]
Recovery and reuse of chromium(III) and chromium(II) [22,23]
Recovery of water from wastewater or wastewater treatment effluent [24–26]

Chemical Recovery of bleaching solution [27–29]
Sulfate removal preceding chlorine and NaOH production [30]
Preparation of bromide [31]

Metal plating and product/ 
electronic and optical

Recovery of Cu-ions from ore extraction liquids [32]
Removal of degreasing agents from water [33]
Removal of precursors of disinfection by-products [34]

Water production Hardness removal [35,36]
Removal of natural organic matter (a.o. color) [37–39]
Removal of pesticides [40]
Removal of heavy metals (As, Pb), Fe, Cu, Zn and silica [41,42]
Treatment of brackish water [43]

Landfills, agriculture Removal of phosphate, sulfate, nitrate and fluoride [44–47]
Removal of algal toxins [48]
Purification of landfill leachate [49]
Removal of selenium from drainage water [50]
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Fig. 1. Publications related to nanofiltration in the last two 
decades (indexed by Scopus: Nanofiltration Technology; Janu-
ary 26th, 2019).

Fig. 2. Representation of an elemental volume of a spiral wound 
membrane module. (Adapted from Roy et al. [113], Shi et al. [52], 
and Al-Obaidi and Mujtaba [117]).
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2. Solution–diffusion model

2.1. Classical solution–diffusion model

In solution–diffusion model, each solute dissolves in the 
membrane at the high-pressure side and diffuses through 
the membrane in response to the concentration and pres-
sure gradients, without any coupling between the individ-
ual fluxes [54,55], the main assumptions characterized this 
model are:

• Membrane is ideal: nonporous, homogeneous, contin-
uum medium. The solutes dissolve inside the membrane 
and diffuse through it due to the chemical potential 
gradient.

• There is chemical equilibrium at phase interfaces.
• The solute and water fluxes are not coupled [56].

The solution–diffusion model supposes that the pres-
sure within a membrane is uniform and that the chemical 
potential across the membrane is expressed only as gradient 
of concentration [54,56], Fig. 4 shows the permeation of one 
solute through the membrane as a solution–diffusion model.

In the review presented by Wijmans and Baker [56] 
which they detailed the transport within a membrane using 
the solution–diffusion model, they supposed that the driv-
ing forces of pressure, temperature, concentration, and elec-
tro-motrice force are interrelated and that the overall driving 
force producing movement of a permeant is the gradient in 
its chemical potential.

The flux can be described according to the chemical 
potential as:

J L d i
dxi i= −
µ  (1)

where dµi/dx is the gradient in chemical potential of solute i 
and Li is a coefficient of proportionality linking this chemical 
potential driving force with flux.
where

d R T C V dPi g i i iµ γ= ⋅ ⋅( ) +ln  (2)

µ µ γi i g i i i i iR T C V P P= + ⋅ ⋅( ) + −( )0 0ln  (3)

where Pi
0, µi

0, γi and Vi are the reference pressure, the 
chemical potential of solute i at a reference pressure, the 
activity coefficient for the solute i and molar volume of 
solute i respectively.

The combination of the Eqs. (2) and (1) yields:

J
R T L
C

dCi
dxi

g i

i

= −
⋅ ⋅

 (4)

According to Fick’s law where the term (Rg·T·Li/Ci) can be 
replaced by the diffusion coefficient Di.

If the membrane compaction is negligible and the solu-
tion is diluted, the flux is linearly proportional to the net 
pressure difference by the proportionality constant, namely 
pure water permeability A. Membrane constant can be deter-
mined from the measurements of pure water flux as a func-
tion of transmembrane pressure. The resulting equation is 
the water flux after many rearrangements to Eq. (4):

J A Pw = −( )∆ ∆π  (5)

In the case of the application of Fick’s law assumes that 
the solute flux is not moved by the pressure gradient we 
obtain the equation of salt flux as:

J B Cs s= ∆  (6)

where A = Dw·Cw·Vw/RgT·1/Δx and B =  (Ds·Ks/Δx) can be 
represented respectively as the pure water permeability and 
solute permeability.

From Eqs. (5) and (6) we noticed that the rejection 
approaches unity with increasing pressure.

For the very large pressures (ΔP → ∞) the assumption of 
Vs << RT Δ(lnCs) is no longer fulfilled. From Eq. (1) the con-
centration in the low-pressure side was assumed [55]:

C J
C
J

D C V C
D C Vs

w

w

s s

w w
sp

sm wm

wm

= ⋅ =
⋅ ⋅ ⋅( )
⋅ ⋅( )

 (7)

While the maximum retention can be given as:

R
C
C

K
K

D
V
D
Vs

w
s

s

w
w= −









 = − ⋅1 1sm

sf

 (8)

Here Ks and Kw are the distribution coefficients of solute 
and water, respectively, between the total membrane phases 
and bulk solution [55].

2.2. Modified steady state solution–diffusion model

The classical form of solution–diffusion model can be 
written as Eq. (9) [57–59]:

J
D C V
R T

P A Pw
w w

g

=
⋅ ⋅
⋅ ⋅

−( ) = −( )wm

δ
π π∆ ∆ ∆ ∆  (9)

Fig. 4. Pressure-driven permeation of a one-component solu-
tion through a membrane according to the solution–diffusion 
model (Adapted from Wijmans and Baker [56] and Vandezande 
et al. [119]).
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The solution–diffusion model, assumes that both solute 
and water transport across the membrane occurs by diffu-
sion; for organics that can be strongly sorbed in the mem-
brane [57–59] was supposed that the total concentration in 
the membrane Ctm equal to the total concentration of water 
and solute in the membrane:

C C Ctm sm wm= +  (10)

If the above equation is substituted into Eq. (9), we got 
the following expression:

J
C C
C

C D V
R T

P
C
Cw

w w

g

=
−







 ⋅

⋅
⋅ ⋅

−( ) = −








tm wm

tm

tm wm

tmδ
π∆ ∆ 1  ⋅ −( )A P* ∆ ∆π

  
 (11)

where A* is a new permeability constant and does not depend 
on the water concentration in the membrane but instead the 
total concentration in the membrane.

The term of Cwm/Ctm can be defined by the Langmuir type:

C
C

b C
b C

f

f

wm

tm

=
⋅

+ ⋅
0

01  (12)

This upon substitution in Eq. (11), results in:

J b
C
b C

A P
b C

A Pw
f

f f

= − ⋅
+ ⋅












⋅ −( ) =

+ ⋅
−( )1

1
1

10
0 0

* *∆ ∆ ∆ ∆π π  (13)

The value of A* was calculated using the distilled water 
flux of the membrane and Eq. (13):

A
J
P
w* = 0

∆
 (14)

Eq. (13) indicates that the flux of water through the 
membrane depends on two parameters, the initial solute 
concentration as well as the effective pressure driving force. 
In the presence of the concentration polarization, Cf must be 
replaced with the wall concentration.

In dilute systems, the solute transport across the mem-
brane can be defined by their diffusion as:

J
D
C Cs

s= −( )
δ smf smp  (15)

Langmuir isotherm was used to determine the partition 
as in the case of water flux equation:

C C b
C
b C
f

p
smf tm= ⋅ ⋅

+ ⋅0
01

 (16)

C
C b C

b C
p

p
smp

tm=
⋅ ⋅

+ ⋅
0

01
 (17)

which when substituted in Eq. (14) results in:

J D
C b C

b C
b C
b C

B
b C
b Cs s

f

f

f

p

f

f
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⋅

+ ⋅
−

⋅
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




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⋅
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0

01 1 1
−−

⋅
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







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b C
b C

p

p

0

01
  

 (18)

where B* represents a solute permeability constant.
The value of b0 was determined using the experimen-

tal water flux and concentrate concentration using Eq. (13) 
(with Cf = Cc).

Based in the case of the modified solution–diffusion 
model (MSD), both Eqs. (13) and (18) correspond to the 
water and solute fluxes across the membrane. Were found 
the permeate concentration from the substitution of Cp = Js/Jw 
and solving the quadratic equation for Js [60].

2.3. Diffusion–Adsorption unsteady state model

Some solutes can adsorb in the membrane pores as these 
are transported across the membrane and, as a result, tran-
sient behavior is observed in the permeate concentration. 
A diffusion–adsorption (DA) model has been implemented 
by Williams et al. [60] to describe this solute transport behav-
ior in which they assumed the water and solute transport 
occurs by uncoupled diffusion across the membrane.

Fig. 5 shows a cross-section of the RO membrane with 
solute flux Js, taking into account Δz as a material balance of 
the membrane [60].

According to the Fick’s law were described Js, then was 
obtained as:

∂
∂

= ⋅
∂
∂

−
∂
∂

C
t

D
C
z

q
ts
msm sm

2

2  (19)

Eq. (19) along with an expression for the rate of adsorp-
tion (adsorption rate = ∂qm/∂t) describes the concentration 
of solute in the membrane. Before the membrane feed was 
introduced, there is no solute in the membrane, thus the 
initial condition can be written as:

Fig. 5. Schematic illustration of flux and solute partitioning on 
membrane cross-section (Adapted from Williams et al. [60], 
Garba et al. [118], and Spiegler and Kedem [66]).



99B. Abderrezak et al. / Desalination and Water Treatment 184 (2020) 94–129

C zsm 0 0,( ) =  (20)

The same boundary conditions were obtained as in the 
MSD model:

C C
C b C

b Cm t
f

f
smf

tm= =
⋅ ⋅

+ ⋅( ),0
0

01
 (21)

C C
C b C

b Cm t
p

p
smp

tm= =
⋅ ⋅

+ ⋅( ),δ
0

01
 (22)

For the case of the dilute system, the permeate concen-
tration can be removed from Eq. (22) utilizing:

C
J
Jp
s

w

=  (23)

Along with the evaluation of Js (using Fick’s law) at Z = d.
Eqs. (19)–(21) and the modified Cm(t,d) equation can be 

rewritten using the transformation (x = Z/δ and De = Dsm/δ2), 
these equations then become:

∂
∂

= ⋅
∂
∂

−
∂
∂

C
t

D
C
x

q
te
msm sm

2

2  (24)

C xsm 0 0,( ) =  (25)

C
C b C

b Ct
f

f
sm

tm
,0

0

01( ) =
⋅ ⋅

+ ⋅
 (26)

C
C b D C

x
x

J b D C
x
x

t

e

w e

sm

tm
sm

sm
,1

0

0

1

1
( ) =

− ⋅ ⋅ ⋅ ⋅
∂
∂

=

− ⋅ ⋅ ⋅
∂
∂

=

δ

δ
 (27)

The concentration of permeate can be found by refor-
mulating Eq. (17) with the same modification.

If the equilibrium between the adsorbed and non- 
adsorbed diffusing solute is assumed to exist within the 
membrane, several adsorption isotherms can be used to 
describe the solute adsorption in the membrane [60]. If were 
taken Henry’s law in this case, the DA model changed to 
DA–HA model:

q q C
q
t

q
C
tm

m= ⋅ ⇒
∂
∂

= ⋅
∂
∂0 0sm
sm  (28)

∂
∂

=
+

∂
∂

C
t

D
q

C
x

esm sm

1 0

2

2  (29)

If the Langmuir adsorption isotherm was supposed, we 
found:

q q
C q

t
q

C
tm

m= ⋅ ⋅
+ ⋅

⇒
∂
∂

= ⋅
+ ⋅( )

∂
∂1 1

1
1

1

1

21 1
b

b C
b

b C
sm

sm sm

sm  (30)

Thus, the DA model can be transformed into the DA–LA 
model:

1
1

1
1

1

2

2

2+ ⋅
+ ⋅( )




























∂
∂

= ⋅
∂
∂

q
b

b C

C
t

D
C
x

m

m
e

m  (31)

To determine Ds for DA–HA and DA–LA models, it was 
supposed that the diffusion of the solute in the membrane 
takes place through the water dissolved in the membrane 
polymers. Since the effective diffusivity of organic solutes 
through the membrane is unknown, the following equation 
was used to calculate the value Ds:

D
D
bs
w=  (32)

“b” is Ferry–Faxen-type friction parameter; was esti-
mated by Sourirajan and Matsuura [61] as:

b = − + +44 57 416 2 934 9 302 42 3. . . .λ λ λ  (33)

where λ = rs/rp and it’s valid for the interval of 0.22 < λ < 1; the 
diffusivities Ds for the solutes in water were calculated using 
the Wilke–Chang estimation method and Stoke’s radius (rs) 
for each solute.

If we work with a batch membrane system, it should 
include the evolution of both volume and concentration 
changes against time so solute material balance results in:

dC
V
dt

S J C
dq
dtc

c
w p

m⋅ = − ⋅ ⋅ −0  (34)

where qtm defined as the membrane total solute adsorption 
and Eq. (34) can be expanded to:

V
dC
dt

C
dV
dt

S J C
dq
dtc

c
c

c
w p

m⋅ + ⋅ = − ⋅ ⋅ −  (35)

In which the water material balance is given, as:

Y
V
Vp
p

f

=  (36)

Then

V V Y
dV
dt

V
dY
dtc f p

c
f

p= ⋅ −( )⇒ = −1  (37)

and

dY
dt

S
J
V

p w

f

= ⋅  (38)

Combining Eqs. (37) and (38):

dV
dt

S Jc
w= − ⋅  (39)
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Substituting Eqs. (39) and (36) into Eq. (35) and rearrang-
ing results in:

dC
dt

S J C S J C dq
dt

V Y
c

w c w p
m

f p

=
⋅ ⋅ − ⋅ ⋅ −

−( )1
 (40)

The system of Eqs. (38) and (40) along with an expression 
for the adsorption in the membrane, the water flux, solute 
flux (Jw, Js) and concentration of permeate (Cp) describe the 
batch membrane system taking into account the conditions 
of the initial state.

The permeate concentration Cp value obtained from RO 
transport models is instantaneous permeate concentration 
with time t. The cumulative permeate concentration for a 
batch process is represented as the concentration of the total 
collection of permeate volume, according to a specific time or 
at a specific water recovery [60] it is calculated as:

C
C dV

dV

C V

V

V

p p

V

p

N

p p

i

N

p

i

p

ppc =
⋅

≈
⋅∫

∫
∑
∑
=

=

0

0 1

1
∆

∆
 (41)

3. Irreversible thermodynamics models

Irreversible thermodynamic models are used to describe 
transport on the membrane as an irreversible process that 
continuously produces entropy and dissipates free energy. 
This class of models is useful, especially when the membrane 
structure is not known and the mechanism of transport 
within the membrane is not fully understood. Although less 
information is required to set-up the models [62].

3.1. Kedem–Katchalsky model

Based on dilute solution of two non-electrolyte solutes 
Kedem and Katchalsky [63] were developed, new formalism 
to handle the case where water and solute transport across 
the membrane is physically coupled, typically by co-trans-
port through a single species of pores.

In this case, the water flux physically interacts with solute 
flux, with the degree of interaction that can be characterized 
by a reflection coefficient, σ. In which this model based on 
three parameters, the hydraulic permeability A, solute per-
meability B, and reflexion coefficient σ where they are con-
stant and independent of each other to maintain the interac-
tions between solute, water, and the membrane, with linear 
variation of both pressure and concentration gradients for 
lower solvent flow rates.

In the Kedem–Katchalsky model, the relation of the vol-
ume flux (Jv) and the solute flux (Js) through a membrane is 
defined as:

J A Pv = ⋅ −( )∆ ∆π  (42)

where

∆ ∆π = ⋅ ⋅ = ⋅ ⋅ −( )R T C R T C Cms ps  (43)

∆π is the osmotic pressure difference, Rg is the constant 
of ideal gazes, T is the temperature and ∆C is the solute 

concentration difference, while Csm and Csp are corresponded 
to the concentration of solute at the membrane and permeate 
phases, respectively.
where the solute flux Js is defined by:

J B C Js s s w= ⋅ + ⋅ −( ) ⋅∆π σave 1  (44)

where Cs
ave represents an average concentration of solute that 

can be written as:

C
C C

s
ave fs smf≈

+
2

 (45)

Case of dilute solution
So the solute flux can be given in the way as:

J B R T C C Cs g s= ⋅ ⋅ ⋅ −( ) + ⋅ −

↑

sm sp
ave

Diffusive solute flux

� ���� ����
1 σ(( ) ⋅
↑

Jw
Solute transport by convection

� ��� ���
 (46)

Diffusive solute flux Solute transport by convection
The solute rejection R can be written as:

R
C
C

J
J C

s

w

= − = −
⋅

1 1sp

smf smf

 (47)

3.2. Schlögl model

Schlögl [64] developed a model in which he derived an 
integral formula for particle fluxes, starting from the very 
general equation based on the Kedem–Katchalsky model 
and integrating them across the membrane. In which he dis-
cussed only the isothermal system for stationary case in his 
work, taking into account the case of dilute solutions.

Both fluxes of (solute and water) for a dilute mixture 
solutions is given as:

J C J A C j ni w j

n

ij jsi ..= ′ −( ) + = ……( )
=∑1 1
1

σ ∆  (48)

where Aij is solute–solute interaction and refers to the con-
centration difference of other solutes in the system, while the 
water flux can be illustrated by:

J A P C Xw
j

j j j= −








∑ +∆ σ  (49)

X X
V
V
Xj j

j

w
w

+ = −








  (50)

Xj, Vj, Xw, and Vw are respectively the molar fraction and the 
mean molar volume of solute j and water.

Then Eq. (50) describes the expression of the ion flux 
of solute at the point (x) of the membrane surface, as:

J C J D K
dC x
dx

j ni w j

n

w j
j

si = ′ −( ) −
( )

= …
=∑1 1
1

σ  (51)
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where Dw represents the membrane diffusion coefficient that 
writing as Dw = Aij·l/Kj, Kj represents partition coefficient of 
j and Aij is the permeability coefficient between two solutes 
(i–j), l is the membrane length.

The integration of the above equation across the 
membrane thickness yields to:

J C J A z
C F
R T

A
V
V
C Ci w i i

i

g
i

i

i
si smf smpsinh
= ′ −( ) +

′
+ −( )1 σ ϑ∆  (52)

where C’i = (Csmf + Csmp)/2, Csmf = C'i + 0.5ΔCi.
F, zi and Δϑ are respectively the Faraday’s constant, the charge 
of valence of solute i and the electrical potential difference.

J A P AR T
V
V
C Cw g

i

i

i

= −( ) − −( )∑∆ ∆π σ
sinh smf smp  (53)

These equations are more accurate expressions than 
alluded to before by containing a new term Vi/sinhVi which 
describes the non-linearity between the fluxes of solutes 
and the driving forces.

3.3. Galey and Van Bruggen model

Galey and Van Bruggen [65] extended the Kedem–Kat-
chalsky model for multi organic solutes in dilute solution by 
using three different membranes, in their work Galey and 
Van Bruggen [65] showed that an existing interaction caused 
by the solute flux in which this interaction is related to three 
parameters (solute permeability, concentration, and molecu-
lar size).

The expression of flux for solutes i and j in a dilute 
solution of multi-solutes can be given:

J C J A C A Ci w ii i ij ji jsi ~= ′ −( ) + +1 σ ∆ ∆  (54)

where Jsi can be obtained by rotating the i to j; ωij rep-
resents the solute-solute interaction given by the coefficient 
of cross-permeability between solutes, while Aii is the self- 
permeability coefficient of solute i. Also, ΔCi and ΔCj are the 
concentration differences of solutes i, j across the membrane.

Eq. (54) can be modified to indicate the solute flux in the 
multi-component mixture as:

J C J A C A Ci w ii i j j

n

ij jsi = ′ −( ) + +
= ≠∑1
0 1

σ ∆ ∆
,

 (55)

J
A
A
Jij

jj
si sj=











  (56)

where the reflection coefficient σ can be defined as:

σ
π

=
∆CRT

 (57)

where π is the observed osmotic pressure, and ΔCRT rep-
resents the Van’t Hoff osmotic pressure given as in Eq. (43).

Eq. (56) describes the impact of the solute flux of j on 
the flux of solute i in term of concentration difference, the 

new term of self and cross permeability coefficients. In 
which Galey and Van Bruggen [65] stated that this new term 
named effective permeability coefficient Aij/Ajj increase with 
decrease of pore size.

3.4. Spiegler–Kedem model

The classical Spiegler–Kedem model [66] was developed 
based on IT. It provides a simple framework to describe 
solute transport in both RO and nanofiltration processes. 
In the Spiegler–Kedem model, the membrane is regarded 
as a “black-box” that can be characterized in terms of two 
coefficients: the solute permeability (B) and the reflection 
coefficient (σ). Spiegler–Kedem model [66] is different from 
the traditional solution–diffusion model. The traditional 
solution–diffusion model is based on the primary assump-
tion that the solute and water flux are independent of each 
other, while the Spiegler–Kedem model considers convec-
tive coupling of solute and water species. Solute transport 
occurs predominantly via diffusion in the RO membrane, 
while for “looser” membranes such as nanofiltration, both 
the convective and diffusive contributions to the solute flux 
are important and cannot be ignored.

In which the water and the solute fluxes must take into 
account the difference concentrations profile at different flow 
rates, in this context Eqs. (42) and (46) can be transformed 
into [66]:

J A dP
dx

d
dxv = − −











* σ
π  (58)

J B
dC
dx

C Js
s

s v= − + −( ) ⋅* 1 σ  (59)

where

A A
x

=
*

∆
 (60)

and

B B
R T Xg

=
⋅ ⋅

*
∆

 (61)

A*, B* are respectively the local water permeability and the 
local solute permeability coefficients.

Reflection coefficient σ, which represents the selectivity 
of a membrane for the solute it can be determined when the 
osmotic pressure difference is compensated by the hydraulic 
pressure difference where no permeate flux is observed:

σ
π

= =
∆
∆
P Jp 0  (62)

For an unselective membrane (σ = 0) osmotic pressure 
effect in Eq. (58) disappears and solute convective transport 
is predominant. Whereas, for an ideal semi-permeable mem-
brane (σ = 1), water flux definition turn to the one in SDM 
and convective salt transport vanishes.
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By integrating Eqs. (58) and (59) over the membrane 
thickness ∆x and implementing in the rejection equation 
gives:

R
m
m

=
−( ) ⋅
− ⋅

1
1

σ

σ
 (63)

where m is:

m J x
Bw= −( ) ⋅ ⋅









exp σ 1 ∆

*  (64)

B* and σ can be determined by measuring the solute 
rejection as a function of water flux. Eq. (64) is a difference 
in comparison to the SDM since with an increase in water 
flux the rejection approaches to the reflection coefficient 
σ. We noticed that the concentration dependence on rejec-
tion was considered in the model developed by Schirg and 
Widmer [67].

3.5. Perry and Linder model

Perry and Linder [68] used a modified thin-film compos-
ite membrane endowed with high rejection to low molecular 
weight organic and high salt passage to describe the inter-
action between the mixture of salts and organic ion on the 
membrane performance, in which they extended Spiegler–
Kedem model for the effluent solution of (mixture of salt 
and organic solutes), in their study Perry and Linder [68] 
observed high negative salt rejection value when charged 
organic solutes are concentrated or purified under this 
membrane.

In their study, it was assumed that a constant value of 
both permeability and reflection coefficient with no con-
centration polarization effect, as shown by the following 
equations of rejection rate:

R
m C

C
m

X

s=

− ⋅( ) − −( ) +
′











− ⋅

−

1 1 1

1

0 5

σ σ
γ

σ

.

 (65)

where CX
– and C’s, γ are respectively organic solute concen-

tration in the solution, the salt concentration in the feed and 
the number of charge groups from the organic ion. This 
equation can express the impact of organic ion concentra-
tion CX

– and the flow parameter m as shown in Eq. (64) with, 
(1 + γCX

–/C’s)0.5 = α.
Eq. (65) can be rewritten as:

R
m

= −
−( ) ⋅
− ⋅

1
1
1

σ α

σ
 (66)

The above transforms to Eq. (64) for pure salt, where 
CX

– = zero and α = one.
The observation of Perry and Linder [68] study showed 

that the presence of organic ions in saline electrolyte solu-
tion could sustain an impact on promoting by the organic ion 
rejection in spite of negative salt rejection.

3.6. Ahmad et al. [69] model

According to Spiegler–Kedem model, Ahmad et al. [69] 
developed a new form of a one-dimensional model for mix-
ture system filtration in which Ahmad et al. [69] extended 
the Spiegler–Kedem model with incorporation of the solute- 
solute interaction.

In addition, were proposed a new equation to calculate 
the water and solute fluxes for a multi-ions system. They did 
this by integrating their model over the membrane thickness 
and considered the effects of concentration polarization in 
their model.

To valid it this model they took six assumptions by 
consideration:

• Each solute exist in the system are semi-permeable to 
the membrane.

• Each solute exist in the system can be either the neutral 
ions or salts ions. The extended Spiegler–Kedem model 
was assumed to adequately predict both transports of 
solutes and water regardless, the type of solvent, mem-
brane or solutes and its charges.

• Each solute will have its independent value of the diffu-
sion and mass transfer coefficients in the concentration 
polarization layer thickness.

• The pressure and concentration gradients are driving 
forces.

• The water transport was related to the interaction solute–
water, solutes concentration, and membrane properties.

• The solute transport was related to the interaction solute–
water, solute concentration, membrane properties, and 
solute–solute interactions.

The expressions of water and solute fluxes, which are 
controlled by the water and solute forces for a multi-ions 
system, are represented as shown below:

J A F A Fw w s

n

s= ⋅ ⋅ ⋅
=∑ww ws1

 (67)

J B F B F i ns w i

n

i= ⋅ + ⋅ = …
=∑sw si1

1 2 3, , , , ,  (68)

where Fs, Fi and Fw are the exerted driving forces of solutes 
s and solute i and water respectively.

The total flux of the volume was written as:

J A V dp
dx

A C
A C

d s
dxw w s

n w

i

= − ⋅ − −
⋅
⋅



















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


=∑ww
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ww

2
1
1 π










 (69)

where Cw is the molar concentration of water:
Eq. (69) can be simplified as:

J A dp
dx

d s
dxw s

n
= − ⋅









=∑*

1
σ

π  (70)

where A* = –Aww·V 2
w,

σ = −
⋅
⋅









1

A C
A C

w

i

ws

ww

 (71)



103B. Abderrezak et al. / Desalination and Water Treatment 184 (2020) 94–129

In addition, the total osmotic pressure gradient dπ for 
the mixture can be calculated from the summation of the 
osmotic pressure gradient caused by each solute, dπs:

d s
dx

d s
dxs

nπ π
=

=∑ 1
 (72)

d R T C C
s

n

g iπ = −
=∑ 1

( )tm  (73)

where Cx is solute concentration, Ctm is water concentration 
in the bulk and the permeate sides of the membrane. Van’t 
Hoff’s equation [70] was used for the calculation of the 
osmotic pressure, in the case of a dilute aqueous solution was 
given as Eq. (43), while the solute flux for each component is 
written as:

J B d i
dx

C J i ns i

n

s w= + −( ) = …( )
=∑ 1

1 1 2 3si
* π

σ , , , ,  (74)

where ω–
s–i is the local solutes permeability constant of sol-

ute s with the consideration of the interaction of the solute i 
have given as:

B A
A

A C
B
Ci i

si
*

ws
wi

ww

si= ⋅
⋅

−  (75)

The integration of Eqs. (67) and (43) gives:

J A p R TR Cw s

n

g j s= +



= ′′∑∆

1
σ  (76)

F C
C
Cs = −

−( )
smf

sm

smf

1 σ

σ
 (77)

where Csm, R is the interfacial solute concentration in the 
membrane and actual rejection of solute, R = – Csmp/Csmf, 
respectively:
where Fs can be written as:

F
J

B O
s

w

i

n

i

=
− −( )

+















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where

O
B C C J

k

J C C
i

w

w s

=
−( ) 









− −( )

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



( ) ( )

2

δ
 (80)

where Bss is defined as the solute permeability coefficient 
with itself interaction, Bsi is defined as the solute permea-
bility coefficient with solute (i) interaction and δ the mem-
brane thickness. Cs

(av) is the average concentration of solute. 
The rearrangement of Eq. (77) gives the expression of (actual 
rejection) as:

R
F
F
s

s

=
−( )

−

σ

σ

1
1

 (81)

In the later work of Ahmad et al. [71] were demonstrated 
the efficiency of this model in the case of multi solute incor-
porate with a complex organic solution with the determi-
nation of each solute concentration.

In the same context, we distinguish several models devel-
oped based on the Spiegler–Kedem model in which they 
incorporate the film theory equation, we could cite briefly:

The Schirg and Widmer model [67] were combined the 
film theory in the Spiegler–Kedem model taking into account 
the effect of concentration polarization on both concen-
trations of permeate and bulk solute, based on this model 
Wadley et al. [72] developed a new approach for the case of 
mixture separation of (NaCl + organic ion).

According to the same context, Gupta et al. [73] devel-
oped a model for electrolyte dilute binary solution, in which 
they supposed that the boundary layer thickness over the 
membrane is constant.

4. Nernst–Planck equation

Nernst–Planck equation is a fundamental equation for 
ion flux that was introduced by Nernst [74] and perpetuated 
by Planck [75]. This equation takes into account the elec-
trochemical potential gradient as driving force for electro-
lyte solutions. It is expressed in the Teorell equation as flux 
=  concentration·mobility·driving force.

Accordingly:

J c
D
R T

d
dxi i

i

g

i= − ⋅ ⋅
µ

 (82)

After substituting Eqs. (2) and (3) in Eq. (82) we find:

J c
D
R T

R T
d a
dx

V dP
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z F d
dxi i

i

g
g

i
i i= − ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅











ln ϕ  (83)
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i
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  (84)

Assuming constant activity coefficient and neglecting 
pressure terms, Nernst–Planck equation was obtained as 
follows:

J D
dc
dx

z F c
D
R T

d
dxi i

i
i i

i

g

= − − ⋅ ⋅ ⋅ ⋅
ϕ  (85)

In the difference to the solution–diffusion membranes, 
a convective solute transport occurs in nanofiltration mem-
branes. Schlögl [76] introduced the convective salt transport 
along with permeating water in Nernst–Planck equation 
in 1964.

Nernst–Planck equation models equation accounts for 
the transport of ions across the membrane by diffusion due 
to the gradient of concentration, electro-migration caused 
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by a gradient of electrical potential, and convection by the 
pressure difference as Eq. (86) indicated:

J D
dc
dx

z F c
D
R T

d
dxi i

i
i i

i

g

= − − ⋅ ⋅ ⋅ ⋅

Diffusion
Electro-migratio

���

ϕ

nn

Convection� ���� ����
�+ ⋅c vi  (86)

Diffusion electro-migration convection.

4.1. Dresner model [77]

Dresner [77] suggested a new method for the integra-
tion of the extended Nernst–Planck equation in the hyper- 
filtration of a multi-ion solution through the ion exchange 
membrane. This method is based on the assumption of co-ion 
exclusion, in which Dresner [77] introduced a coupling 
coefficient βi in the equation proposed by Schlögl Eq. (87):

J J c D
dc
dx

z c D F E
RT

c D
d
dxi w i i

i
i i i i i

i= ⋅ − ⋅ + ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅
lnγ

 (87)

To realize the membrane as an active component in mass 
transport. Accordingly, the interactions between permeating 
solutes and the membrane are expressed in the convective 
term. Herewith, velocities of solutes through the membrane 
were prevented to be the same as the water velocity.

J J c D
dc
dx

z c D F E
R T

c D
d
dxi i w i i

i
i i i

g
i i

i= ⋅ ⋅ − ⋅ + ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅β
γln

 (88)

Accordingly, when counter-ions are adjacent to the pore 
surface due to electrostatic attraction, only a fraction of 
overall concentration can be transported convective. In this 
case, βi < 1 and even can be more decreased in the case that 
counter-ions are attached to the pore surface.

In addition, co-ions may accumulate in the middle of the 
pore due to the pore charge exclusion and transported con-
vective with a higher velocity than at pore walls so that βi > 1.

In addition to Eq. (88), Dresner [77] introduces the 
electro-neutrality equations in the membrane:

i
i i Mz c X∑ ⋅ + = 0  (89)

And in the external solution:

i
i iz c∑ ⋅ = 0  (90)

Since no electric current flow in hyper-filtration:

i
i iz J∑ ⋅ = 0  (91)

The condition of thermodynamic equilibrium at each 
interface membrane/solution occurs the form of:

c
C

z F
R Ti

i

i i
i

g

⋅
⋅

= − ⋅ ⋅












γ
γ

ϕexp ∆  (92)

where Δϕ is the potential difference between a point just 
inside the membrane and the contacting solution (Donnan 
potential); and about the composition of the filtrate is found 
it using the fluxes Ji and J:

c
J
Jp
i

w

=  (93)

If co-ions were eliminated from the membrane, no cur-
rent for any counter-ion could flow in the steady-state, for 
then a steady separation of charge would occur in this case 
Ji, would vanish for each counter-ion, and Eq. (88) could be 
solved as:

1
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where E ≡ –dϕ/dx represents as electrical potential in the feed/
membrane interface, so Eq. (95) can written as:
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The electrical potential ϕ is given as constant; therefore, 
in the feed solution, we took ϕ = 0 according to Eq. (92):
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Then Eq. (96) was written as:
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Those equations were used only in the case of counter-ion 
only.

If we took constants value of activity coefficients γi in the 
membrane, we can find (ϕ(x)) using electro neutrality Eq. (89) 
to Eq. (98):
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For the case of co-ion currents, in this case, was assumed 
that the calculation using the electric potential for currents 
co-ion, the solution of Eq. (88) can be written as:
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We verified the solution of Eq. (100) by substitution into 
Eq. (88) or by setting x = 0+ which satisfies the boundary con-
ditions at the feed/membrane interface.

The conditions where we have a satisfactory state of affairs 
for this equation is that the term of F·ϕ(x)/RgT had the sign of 

–q and were to increase exactly as rapidly as 
β j

j j
wz D
J x

⋅
,, the 

term on the left-hand side of Eq. (99) for which i = q in which 
have turned Jw x from a finite limit as Jw x become infinite, 
whereas the other terms i ≠ j would vanish.

4.2. Tsuru et al. [78] model

Tsuru et al. [78] used Donnan equilibrium at the phase 
interfaces (Eq. (101)) to account for ion distribution.
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In nanofiltration membranes, the Donnan effect stems 
from membrane charge. Expressed simply, the repulsion of 
co-ions from the charged nanofiltration membrane surface is 
described by Donnan exclusion; because of electro-neutrality, 
counter-ions are also rejected and salt retention occurs. 
Rejections of more permeable monovalent salts are mainly 
determined by the concentration ratio of the permeable mon-
ovalent salt and the retained multivalent salt [79,80]. The dif-
ference in concentration of solute between two phases (bulk 
solution and membrane surface) originated from charge 
effects between membrane charge and charged ions in the 
solution, leads to an osmotic pressure difference between 
the membrane and the solution. A potential difference at the 
interface compensates this osmotic pressure difference due 
to the thermodynamic equilibrium The effect of Donnan 
potential is to repel the co-ion from the membrane was given 
as follows [79]:

∆ϕ ϕ ϕD M B
g

i

R T
z F

C
c

= − =
⋅

⋅
ln smf  (102)

where ϕM the potential in the membrane, ϕB is the potential 
in the bulk, Ci and ci defined as the concentration of solute 
i in the bulk and the membrane.

Referring to the Nernst–Planck equation models (ENP) 
equation by Dresner [77], the effect of the interactions 
between the cation and the negative membrane charge on the 
coupling coefficient was interpreted similarly in Tsuru et al. 
[78] model. However, the anion mobility inside the pore is 
concluded to be the same as in the bulk solution based on 
the measurements performed by Kobatake and Kamo [81]. 
Consequently, a coupling coefficient above 1 is not the case 
for the anion transport inside the pore. In this model, the 
mobility in the pore is considered to be the same as in the 
bulk. Additionally, measurements by Kobatake and Kamo 
[81] also showed that the activity coefficients relation in 
the membrane to the bulk is similar to that of the mobil-
ity. Therefore, Tsuru et al. [82] considered the same activity 
coefficients in the membrane and the bulk, γim/γib = 1, where 
the activity coefficients in the bulk are set to 1 [82].

The electro-neutrality conditions in the membrane and 
the bulk are the same as Eqs. (89) and (90).

The model uses two fitting parameters: the effective 
membrane charge density (XM) and the surface porosity to 
the membrane thickness ratio (ε/δ). The former parameter 
changes as a function of salt concentration and salt type. 
In this model, both parameters are calculated by fitting the 
experimental single salt rejection data to the model. Effective 
membrane charge density for salt mixtures is described as 
an additive value of the ones obtained through single salt 
measurements:

X X i xM
i

M i= ( ) ⋅∑  (103)

From the continuity equation in the membrane and the 
permeate, salt flux is correlated to the permeate concentra-
tion and the velocity inside the membrane:

J C vi p= ⋅  (104)

Substituting Eq. (104) in Eq. (86) and applying the elec-
tro-neutrality conditions, two first-order differential equa-
tions (ODE) for the concentration and the potential gradients 
are obtained. These equations are solved numerically, by 
the Runge–Kutta method.

4.3. Donnan steric pore model

Several models used to describe the separation within 
nanofiltration membranes, among those models the use of 
extended Nernst–Planck equation is best known for pre-
dicting ion transport [77]. This equation describes the ions 
transport across the membrane by taking into account three 
main mechanisms: diffusion, electro-migration and convec-
tion this due to concentration, electric potential gradient and 
the pressure difference across the membrane respectively. 
Donnan steric pore model (DSPM) was introduced by Bowen 
and Mukhtar [83]. The model considers the membrane as 
having the cylindrical pores and necessitates three parame-
ters of the membrane; the effective radius of membrane pore 
(rp), the ration of effective membrane thickness to the poros-
ity (δ/ε) and the effective membrane charge density (XM). A 
prior membrane characterization is essential to determine 
the structural parameters. The effective pore radius can be 
determined through an approach based on the continuum 
hydrodynamic models proposed by Ferry [84] by using the 
uncharged solute rejection data where the charge effects can 
be ignored. The distributions of the ions at the membrane 
interfaces are expressed through both the Donnan and the 
steric effects (Donnan-steric partitioning):

c
C

z F
R T

i
i i

g
D

smf

= ⋅ − ⋅ ⋅












θ ϕexp ∆  (105)

where θ is the steric hindrance factor defined as:

θ λi i
s

p

r
r

= −( ) = −












1 1
2

2

 (106)
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The ion transport can be described by the ENP equation, 
which is modified to include the hindered transport inside 
pores due to the pore geometry:

J D
dc
dx

z F c
D
R T

d
dx

K c vi
i

i i
g

i= − ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅ip
ip

ic
ϕ  (107)

Kic is the hindrance factor for convection.

K i i i iic = −( ) ⋅ + − +( )2 1 0 054 0 988 0 4412 3θ λ λ λ. . .  (108)

Pore diffusivity is defined as:

D K Dip id ib= ⋅  (109)

where Kid is the hindrance factor for diffusion.

K i i iid = − + +1 2 3 1 154 0 2242 3. . .λ λ λ  (110)

The concentration gradient of solute i in a solution can be 
derived from Eq. (107) by applying Eq. (104) as:

dc
dx

v
D

K c C z F
c
R T

d
dx

i
i c i i

i

g

= ⋅ ⋅ −( ) − ⋅ ⋅ ⋅
ip

smp,
ϕ  (111)

When the electro-neutrality condition in the mem-
brane is concerned (Eq. (89)), the differentiation of it with 
respect to the coordinate x will be equal to the multiplica-
tion of Eq. (111) with zi and summation over all ions. When 
this operation is performed, the differential equation for the 
potential gradient was obtained as:

d
dx

z v D K c C
F
R T

z c

i

n

i i

g
i

n

i i

ϕ
=

⋅ ⋅ −

⋅ ⋅

=

=

∑
∑

1

1
2

/ ( )ip ic smp

 (112)

The solution of these equations system is performed iter-
atively applying the boundary conditions derived from the 
Donnan-steric partitioning Eq. (105).

4.4. Donnan steric pore model + Film model

Bowen and Mohammad [85] developed a model for the 
performance of the nanofiltration membrane in separating of 
a dye/salt solution. This model was developed based on the 
ENP and DSPM theoretical background (the same equations 
used as in 86, 89, 90, 91, 101, 103, 112) in which they incorpo-
rated the concentration polarization for a mixture of charged 
solute. This model was used to investigate the optimization 
of the processing condition in terms of the processing time, 
the membrane structure and the electrical properties were 
achieved.

The transport of organic solute through the membrane, 
in this case, they will neglect the electrostatic term in Eq. (86) 
the rejection can be written as:

R
C
C

K
Kj = − = −

− −( ) −( )1 1
1 1

sp

smf

ic

icPe
θ

ϑexp
 (113)

where the Péclet number Pe, is given as:

Pe ic

id ib

= ⋅ ⋅
⋅

K
K

V x
D
∆

ε
 (114)

In the limiting case of Pe → ∞, the asymptotic rejection 
values will approach (1 – θKic). Thus, (1 – θKic) is a parameter 
that can be used to compare the limiting rejections of solute 
ions for various sizes. The Hagen–Poiseuille equation gives 
the relationship between the two terms the pure water flux 
and the applied pressure across the membrane:

J r P
w p= ⋅

⋅










2

8

∆

µ
δ
ε

 (115)

If the concentration polarization close to the membrane 
surface was assumed to occur within a boundary film layer 
of thickness.

In the case of charged systems a mass balance for the 
film layer yields:

J D
dC
dx

z F
R T

C D
d
dx

C Ji
i

i
g

i
f

i V= − ⋅ − ⋅ ⋅ ⋅ ⋅ + ⋅ib ib

ϕ
 (116)

This is similar to Eq. (86) except for the diffusivity here 
represents the bulk diffusivity in the solution. The net solute 
flux was written as in Eq. (103). This equation can be solved 
using the assumption of the boundary conditions: at x = –δ, 
c = Cib and at x = 0, c = Ciw.

For a binary salt system, the cation and anion will 
move together due to the requirement of electro-neutrality. 
Eq. (116) can be solved for both ions and the flux expres-
sed as:

J J D
dC

dx
C Jc a b V= = − ⋅ + ⋅eff

cation anion
cation anion,

/
/  (117)

where Deff,∞, depict the salts effective diffusivity (m2 s–1):

D D D
z z

z D zbeff cation anion
cation anion

cation cation ani
,

( )
= ⋅ ⋅

−
⋅ − oon anion⋅D

 (118)

The boundary condition presented above can be used 
and the wall concentration Csm can be replaced with other 
measurable terms as:

J
k

C C
C C

V p

p

=
−

−
ln sm

smf

 (119)

The result is presented above can be applied also in the 
case of uncharged solute. Where k is defined as the coefficient 
of mass-transfer in the polarized boundary layer, but for a 
case of charged binary system was written as:

k
D b= eff,

δ
 (120)
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The correlation of the Sherwood number (Sh) was used 
to determinate the mass-transfer coefficient as a function 
of Reynolds and Schmidt numbers as follows:

Sh Sc
eff

= ⋅ = ( ) ⋅k r
D

s
b

n

,

.Re 0 33  (121)

Re = ⋅w r2

υ
 (122)

Sc
eff

=
µ
D b,

 (123)

In this case, the mass-transfer coefficient can be 
expressed as:

k r
D

D
r

w
b

b=



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


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
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


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2 0 567 0 33

0 567.
.

,

.

, .

υ
υ

eff

eff  (124)

In the diafiltration step, Csf and Csp respectively represent 
the bulk concentration of salt in the feed and permeate, thus 
a mass balance on salt in the system can be written as:

d V C
dt

J S CF
V

sf
sp

( )
= − ⋅ ⋅  (125)

C dV
dt

V dC
dt

J S CF F
V

sf sf
sp+ = − ⋅ ⋅  (126)

Since the volume is constant, Eq. (126) can be written as:
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 (127)

The calculation of the necessary time for the diafiltra-
tion phase, we needed to integrate the right-hand term of 
Eq. (127). The final concentration of salt in the initial solu-
tion was given by Csf,dt1. Eq. (128) can be defined as on the 
observed rejection R:

t

t

d d C t

C t

d

d

d

ddt t t
0

1

0

1

1 0
1
1∫ ∫= − = −

⋅ ⋅ −( )( )
V
S J C R dC
F

V
sf

sf

sf sf
,

,
 (128)

Since the continuous change of the dye and salts through-
out pre and post-concentration phases will get a complex 
concentration for that the mass balance for the dye gives:

d V C

dt
F f⋅( )

=
dye, 0  (129)

Thus

C dV
dt

V dC
dt

f F F fdye dye, ,⋅
+

⋅
= 0  (130)

While the dye was supposed to be eliminated in the feed, 
VF was connected to the dye concentration and mass as:

V
M
CF

f

= dye

dye,

 (131)

The change in VF was connected to the membrane area 
and the permeate flux as we show in Eq. (132):

dV
dt

S JF
v= − ⋅  (132)

Substituting Eqs. (131) and (132) into Eq. (130) yields:

dC
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S
J
M

Cf v
f

dye

dye
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,
,= ⋅ 2  (133)
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 (134)

Eq. (134) was used to calculate the concentrating time for the 
dye solution from Cdye,f ,tc0 to Cdye,f,tcl which was related only 
with the dye concentrations and the permeate flux as:

dC
dt

S
J
M

C C Rv
f

sf

dye
dye sf= ⋅ ⋅ ⋅,  (135)

The change in salt concentration in the solution was 
calculated by dividing Eq. (135) by (134) as a function of 
dye concentration:

ln , ,
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C
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f t
C t

C t
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0
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
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⋅∫ R
 (136)

4.5. Hagmeyer and Gimbel model

Hagmeyer and Gimbel [86,87] developed a model for 
salts rejection within the nanofiltration membrane under the 
assumption of constant membrane potential in which they 
used zeta potential to calculate the surface charge of the 
nanofiltration membrane. Their model was based on two 
fundamental theory Nernst–Planck equation as indicated in 
Eq. (88) and Teorell–Meyer–Seiver (TMS) in terms of Donnan 
and Donnan dielectric partitions.

Hagmeyer and Gimbel [86] fitted their model using NaCl 
rejection measurements at neutral pH to determine the pore 
radius and the ratio of pore density and membrane thickness, 
in which they compared the calculation with rejection mea-
surements for single salts and ternary ion mixtures at differ-
ent pH values carried out for two fairly tight nanofiltration 
membranes (MWCO 150-300).

In Eq. (88) the convective coupling factor βi was estimated 
by a center-line approximation for hindered particle motion 
in small pores for λ ≤ 0.4.

This approximation is equivalent to:

β λ λ λ λ λi = −( ) ⋅ − −( )




⋅ − ⋅




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


 ≤1 2 1 1 2

3
0 163 0 4

2 2 2 3. .  (137)
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The condition of electro-neutrality in the external solu-
tions and the membrane was given as Eqs. (89) and (90), 
were used the Donnan equation for calculating the solute 
distribution at the solution-membrane interface as Eq. (101), 
the permeate concentration in nanofiltration was given 
by Eq. (104), we’re using Eqs. (101) and (90) to Fig. 4 the 
concentration in both sides (feed/membrane).

We used the supposition that activity coefficient in the 
bulk and the pore phase is equal and they calculated the 
effective volume charge density in the pore using Eq. (138), 
taking into account an equal surface charge σc in the pore and 
the surface of the membrane:

X
r FM

c

p

= ×
⋅

2
σ

 (138)

The membrane effective surface charge density was 
estimated by the measurements of streaming potential to 
determine the zeta potential of the membrane and assum-
ing that the electro-kinetic charge density at the shear plane 
is close to the effective charge density in the membrane; 
The electro- kinetic charge density depends on the zeta 
potential as:
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 (139)

The membrane flux was:

J jw w= ⋅ ε  (140)

The integration of Eq. (88) across the membrane thick-
ness and changing the pore volume flux by the membrane 
flux (Eq. (140)) in which were determined the ratio of ε/δ. 
This ratio can be expressed by using the pore radius and the 
pore density n as follows:

ε
δ

π
δ
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rp

2

 (141)

Using the Helmholtz–Smoluchowski equation [88] to 
calculate the zeta potential according to this equation:

ς υ
ε

= ⋅ ⋅
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∆
∆

U L
P S Rr g

 (142)

In the case of low zeta potential Eq. (139) was simpli-
fied as:
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Comparing the above equation for 1–1 electrolyte by 
using the Freundlich type isotherm in which the effective 
charge density was related to the equivalent concentration cE:

σc E
se c= ⋅  (144)

The value of s depends on the membrane type.
Taking into account the change of dielectric constant 

between the bulk and the pores, an additional term will 
appear and Eq. (101) can be written as:
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If the bulk and the pore are an infinite medium of dielec-
tric constants (εb,εp), then the change of electrostatic free 
energy was gotten according to the Born model [89] as:

∆W z e
ri
s b p

= ⋅
⋅ ⋅

−












2
2

08
1 1

π ε ε ε
 (146)

where rs is the ion radius (m).
It was shown by several authors that in narrow pores the 

induced energy by the dielectric of the membrane should be 
considered so that the change of the electrostatic free energy 
of an ion between the bulk and the membrane pore was writ-
ten as:
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 (147)

4.6. Afonso and De Pinho model [90]

Afonso and De Pinho [90], they described the trans-
port of single salts solution of MgSO4, MgCl2, and Na2SO4 
through an amphoteric nanofiltration membrane, in their 
work Afonso and De Pinho [90] was involving the extending 
Nernst–Planck equation and the Donnan equilibrium at the 
membrane-solution interface.

The concentration polarization is defined by the follow-
ing relation:
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Reynolds numbers for the feed and the permeate was 
defined, as:

Re = ⋅
⋅( )ρ

υf
f

D v
P 2

 (149)

Rep p
p

p

D= ⋅ ⋅ρ
υ

υ
 (150)

The osmotic pressure effect on the permeate flux was 
given by:

J v A P C Cp p b p= ⋅ = − ( ) − ( )( )





ρ π π∆ smf smp  (151)
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The continuity equation in rectangular coordinates is 
given in the case of steady-state unidirectional flow of an 
incompressible fluid:

v vM p= =const  (152)

A differential steady-state mass balance for solute j yields 
after integration:

J v Cp jjy smpconst= = ⋅ ⋅ϑ  (153)

The expression of the total flux of solute j given as the sum 
of three parameters (diffusion, convection and electro-migra-
tion) in which can be defined by the extended Nernst–Planck 
equations:

J D
dC
dy

v C

D z

y s M

s

Cation Cation
cation

Cation

Cation Catio

, ,

,

= − ⋅ + −

⋅ nn cation smp Cation⋅ = ⋅ ⋅
F
R T

d
dy
C v C

g
p

φ
ϑ  (154)
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The system of Eqs. (154) and (155) satisfies the condition 
of null electrical current flux:
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In this case, the Donnan equilibrium is written as:
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The relations used for the electro-neutrality condition in 
the permeate and the membrane was given, as:

z C z Cp pCation cation Anion Anion⋅ + ⋅ =, , 0  (158)

z C z C cm m iCation Cation Anion Anion⋅ + ⋅ − =, , 0  (159)

where ci is the effective charge concentration that exists in the 
membrane active layer.

4.6.1. In the case of feed-membrane interfaces

MgSO4:
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Na2SO4:

C a a a a
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Here a1 and a2 represent:
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4.6.2. In the case of permeate-pore interface

MgSO4:
By involving the coefficients of the salts activity and the 

activity of the solute, associated with CCation,p = CAnion,p = Csmp; 
and supposing that γ±2 = γ±p, was obtained:

C C Csmp Cation Anion= ⋅, ,2 2  (165)

The interfacial expression for the Donnan equilibrium 
was written as:

( ), , , ,γ γ γ γCation Anion Cation Anion2 2
2 2

⋅ = ⋅( )p p  (166)

MgCl2:
By involving the coefficients of the salts activity and the 

activity of the solute, associated with CCation,p = CAnion,p/2 = Csmp; 
and supposing that γ±2 = γ±p, was obtained:

C C
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smp Anion
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,
2

2 23

4
 (167)

The interfacial expression for the Donnan equilibrium 
was written as:

γ γ γ γCation Anion Cation Anion, , , ,2 2

2 2
⋅( ) = ⋅( )p p  (168)

Na2SO4:
By involving the coefficients of the salts activity and the 

activity of the solute, associated with CCation,p/2 = CAnion,p = Csmp; 
and supposing that γ±2 = γ±p, was obtained:

C C
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smp Cation
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,
2
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 (169)
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The interfacial expression for the Donnan equilibrium 
was written as:

γ γ γ γAnion Cation Anion Cation, , , ,2 2

2 2
⋅( ) = ⋅( )p p  (170)

4.7. Bowen and Welfoot model

In this work Bowen and Welfoot [54] provided a more rig-
orous description of the rejection of charged and uncharged 
solute based on the DSPM, in which Bowen and Welfoot [54] 
included the effects of pressure on chemical potential, and 
hence on solute transport, and of a pore radius dependent 
viscosity.

In this new contribution, Bowen and Welfoot [54] 
reduced the parameters of the variation of uncharged sol-
ute rejection with effective pressure driving force which 
depends on only one parameter (rp) rather than two param-
eters (rp and Δx/δ), and for the charged solute the variation 
of ionic rejection with effective pressure driving force now 
being dependent on two parameters (rp and XM) rather than 
three parameters (rp, Δx/δ, and XM) presented in the pre-
vious models DSPM; wherein they included in this model 
the effect of dielectric exclusion due to the changes in the 
properties of the solvent in the pores and the corresponding 
increase in the solute solvation energy.

Description of solvent velocities based on the Hagen–
Poiseuille expression:

v r
P

p
e= ⋅

⋅ ⋅
2

8
∆
η δ

 (171)

where

∆ ∆ ∆P Pe = − π  (172)

4.7.1. Case of rejection uncharged solute

The hydro-dynamical model is frequently used to 
describe the transport for the uncharged solute, modified to 
incorporate the hindered convection and diffusion within the 
pores:

J K c v c
D
R T

d
dxs c

p

g

= ⋅ ⋅ − ⋅
µ  (173)

The chemical potential, μ, for uncharged solute was 
written as:

µ = + +R T a V Pg sln cst  (174)

With a low solute concentration, the solution can be sup-
posed to behave ideally preferably so that differentiation 
of Eq. (174) and substitution into Eq. (173) give:

J K v
D
R T

V dP
dx

D dc
dxs c

p

g
s p= ⋅ ⋅ − ⋅ ⋅ ⋅ −c c  (175)

In the nanofiltration pore and for laminar flow, the pres-
sure gradient was presented from the rearrangement of 
Hagen–Poiseuille expression in which the pressure gradient 
assumed to be constant along the pore so:

dP
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P v
r
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p

= =
∆
δ

η8 2. .  (176)

The expression for the concentration gradient was 
defined as:
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After neglecting concentration polarization, this equa-
tion was integrated over the membrane thickness (0 < x <Δx) 
using the following boundary conditions:

C C C Cx f x x p= == ⋅ = ⋅0 Φ Φ∆and  (178)

where Φ represents the coefficient of uncharged solute steric 
partitioning.

To simplify the solution was introduced y as a dimen-
sional term which can be considered independent of sol-
ute concentration with the assumption that Vs and Dp are 
independent of concentration:

y
D
R T

V
r

p

g
s

p

= ⋅ ⋅
⋅8
2

η  (179)

The concentration gradient will be integrated using the 
boundary conditions above yields:

C
C

K Y

K Y
p

f

c

c

=
−{ }  ′

−{ }  − + ′

Φ

Φ

exp[ ]

exp[ ]

Pe

Pe1  (180)

where the expression for the modified Péclet number, Pe’, 
was given as:

Pe′ = −{ } ⋅ ⋅K Y v
Dc
p

δ  (181)

Eq. (180) can be substituted as the solute rejection defini-
tion, to writing as:
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The water velocity within the pore will be substituted 
using Eq. (171), redefine Pe’ as follows:

Pe
Pe
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−{ }
⋅ ⋅

r
K Y

Dp
c

p

2

8
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η
 (183)

In their model they took a cylindrical nanofiltration pore 
that has an annulus with the thickness of one water molecule, 
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which is represented an inner layer of adsorbed molecules, 
(d = 0.28 nm) having an increased viscosity (ηlayer = 10η0). We 
should note that the central part of the pore is supposed to 
have the same viscosity of bulk water, if we had an averaged 
viscosity in terms of area, the substitution of ηlayer and rear-
rangement give:

η
η0

2

1 18 9= +











−













d
r

d
rp p

 (184)

The diffusivity of the solutes will be affected by the 
change in viscosity, the pore diffusivity Dp must be redefined 
as follows:

D D K Dp p d
* = = ⋅ ⋅

η
η

η
η∞

0 0  (185)

So the modified Péclet number can be rewritten as:
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4.7.2. Case of salts rejection

The transport equation was based on extended Nernst–
Planck equation (Eq. (87)), the ionic flux of solute i was 
defined as follows:

J K c v c
D
R T

d
dxi i i

g

i= ⋅ ⋅ − ⋅ic
ip µ

 (187)

Electrochemical potential, μi, was defined as:

µ ϕi g i i iR T a V P z F= + ⋅ + ⋅ ⋅ +ln cst  (188)

The standard assumption used to connect the solute 
activity to its concentration was an activity coefficient as we 
have shown (ai = γici). Manipulation used with Eqs. (188) and 
(187) give the transport equation as:
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This expression gives us the different transport mostly 
used in nanofiltration models; in this model, the solute flux 
was defined on a pore area basis and it was assumed to 
neglect the gradient of lnγi which implies that the concen-
tration within the pore is very small. For dilute bulk electro-
lytes, the Debye–Hückel theory predicts that lnγi ∞√I [91]. 
However, were used the same theory to describe electrolytes 
within pores since the theory supposed that bulk solutions 
with equal numbers of cations and anions.

Substitution and rearrangement of Eqs. (103) and (179) 
into Eq. (189) allow the concentration gradient within the 
pore to be derived:
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The electro-neutrality condition within the pore pre-
sented as Eq. (89), the external summation of the potential 
gradient (supposed to be equal for all ions) defined as:
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The most commonly used partitioning equilibrium expres-
sion as Eq. (101), the orientation of the water molecule at the 
pore walls will similarly lead to a reduction in dielectric con-
stant, which they supposed a high value of frequency limit 
in the layer (ε* ≈ 6). For more understanding, they supposed 
that the solvent crossing the pore will compose of one layer 
of the orientated water molecule and inner part having bulk 
dielectric proprieties, in which they have bulk dielectric 
properties in the internal part. Then were calculated the vari-
ation of average pore dielectric constant in geometric basis 
(supposing εb = 80 for a monovalent ion in water):
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If we take into account the change of dielectric constant 
between the bulk and the pores an additional term called the 
solvation energy will appear and Eq. (101) is written as:
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The supported assumption in the experiment indicates 
that the salts rejection in the membrane iso-electric point can-
not be only described by the exclusion steric, in which they 
present another rejection mechanism; the final form of par-
titioning expression used in their study was represented as:
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where the solvation energy barrier was calculated from the 
Born model in which the Born energy gives the electrostatic 
free energy of an ion in the medium of dielectric constant 
[92], by using the molecular approach were found the expres-
sion of the solvation energy barrier presented as in Eq. (146).

For n solute and j data point of each solute then the least-
squares fitting objective function (they used this parameter 
for comparison between the different solute) was written as 
follows:

S
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4.8. Linearized model

To simplifies the solution of nanofiltration transfer phe-
nomena for electrolyte rejection, a finite-difference lineariza-
tion of pore concentration gradient was provided to simplify 
the solution of three parameters model (pore radius, mem-
brane charge, pore dielectric constant) described in the pre-
vious model; Bowen et al. [93] proposed a linearized model 
in which they introduce the dielectric exclusion effect to 
reduces the magnitude of predicted values of XM and changes 
the emphasis from XM to pore radius through pore dielectric 
constant as the dominant parameter [93]; this model used 
for reducing the systems of 1-ODE to algebraic equation by 
eliminating most of the numerical integration. The advan-
tage of this model over-analytical model is highlighted when 
the calculations made for mixtures solute systems.

4.8.1. Rejection of 1-1 electrolyte using linearization

In the case of all single electrolyte such as NaCl, KCl …, 
we propose C1,wl = C2,wl = Cwl, C1,p = C2,p = Cp, z1 = –z2 = 1, so the 
equation of the potential gradient will written as follows:
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The concentration gradient (Eq. (111)) was presented as:
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The concentration gradient will be effectively constant 
and hence the concentration profiles linear provided the 
effect of the c2 term is relatively small. Under these condi-
tions, the concentration gradient can be approximated as 
follows:
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where
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Inclusion of Eq. (200) in Eq. (199) and rearrangement 
yields to the following explicit expression for Cp:
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The Donnan potential at the pore inlet is the same for 
both solutes (although it differs from the potential at the pore 
outlet). Rearrangement and incorporation of partial partition 
coefficient θi in Eq. (194) gives:
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The concentrations of ion 2, c2, and C2,p, can be eliminated, 
by using the electro-neutrality conditions within the pore 
and the permeate solutions, by definition:
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Algebraic manipulation of Eq. (202) with Eq. (203) results 
in a quadratic expression which defined partitioning, so the 
solution can be written as:
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For the case of three ions rejection, Bowen et al. [93] was 
examined the system contain (Na+:SO4

2–:Cl–, Cl–:Mg2+:Na+), 
the detailed model will be found it in the appendix of his 
presented work [93], the ion valences of this mixture system 
are +1:–2:–1 and –1:+2:+1, respectively.

After many rearrangements used in this order of valence 
yields to the cubic equation in the pore inlet and outlet as 
follows:
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Solution of Eqs. (206) and (207) by using the Newton–
Raphson method shows that there is only one real root to 
each equation [93].

4.9. Lefebvre et al. model (Hindred electro-transport theory)

Lefebvre et al. [94,95] implemented a new approach for 
describing nanoscale solute transport by using two nanofil-
tration membranes (loose ceramic TiO2 and tighter organic 
nano filter) to study the rejection of single salts and multi-
ions mixture. Their model was based on the hybrid hindered 
electro-transport theory (HETT) in which it is taken into 
account (ion charge and size including the hindrance factors 
of steric and hydrodynamic) in the extended Nernst–Planck 
equation and the Stokes equation; in their study, Lefebvre et 
al. used a simulator for solving the different numerical equa-
tions this latter called NANOFLUX.

In ceramic membranes it possible to measure the electro-
phoresis mobility uE by using the assumption of double thin-
film theory (Eq. (208)) with low zeta potential (Eq. (209)), 
then were used the classical equation of Helmholtz–
Smoluchowski [88] (Eq. (210)), as follows:
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where ragg was ceramic powder particle radius:
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Hence, the membrane charge density was given as:
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In their work they supposed that the ENP equation was 
defined as:
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And the activity coefficient can be written as:
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The potential gradient is given as:
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After using the electro-neutrality condition (Eq. (89)) 
yields to:
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Eq. (215) was substituted in Eq. (212) with including the 
membrane electro-neutrality conditions (Eqs. (89), (93), and 
(216)), were obtained the expression of Péclet number as 
follows:
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The integration of Eq. (217) was given as:
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While
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Finally

a T t b Tf f= − ⋅ ⋅ = −ξ ξ 

1 ,

To obtain the limit transmission rate, Eq. (212) was used 
at the feed/membrane interface (Csm) for the co-ion (i = 2) after 
neglected the diffusive contributions for high fluxes.
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In this case, the potential gradient will be written as:
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Then Tlim was found after using the electro-neutrality 
equation normalized by cf,2 as Eq. (221) shows:
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Finally the rejection rate was defined as:

R T= −1 lim
 (222)

4.10. Bandini and Vezzani model (Donnan-steric-dielectric 
exclusion model)

Bandini and Vezzani [96,97] proposed a general model to 
describe nanofiltration membrane performance in the separa-
tion of an aqueous solution containing electrolyte; this model 
presents an extension of DSPM in which they assumed that:

• The membrane is considered a charged porous layer and 
is characterized using three adjustable parameters such 
as average pore radius, volumetric charge density, and 
effective membrane thickness;

• Partitioning effects are described through steric hin-
drance and the Donnan equilibrium;

• Mass transfer through the membrane is based on the 
extended Nernst–Planck equation.

This model called DSPM and dielectric exclusion (DE) 
which took into account the dielectric constant differences 
between aqueous solution in the pore and the membrane 
material, the latter causes an electrostatic interaction between 
the ions of the solution and the polarization charge induced 
by the ions themselves.

The determination of the rejection mechanism which is 
related to dielectric effect was supposed by the role of the 
difference existing between both dielectric constants (the 
aqueous solution in the pores and the membrane material), 
to validate this model Bandini and Vezzani using a nega-
tively charged membrane and the same parameters used 
as in the case of DSPM model for implemented their model 
(Nernst–Planck equation, electro-neutrality conditions in the 
both side, potential gradient, steric partition and membrane 

charge density), were cited the governing equations related 
to this model as follows:

The ion partition is defined as:
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In which rB and γ are defined as:
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In the calculations, it was assumed that the dielectric con-
stant of the solution in the pore (ε*) is equal to its dielectric 
constant in the bulk (εb) and as the most of the nanofiltration 
polymeric membranes have dielectric constants in the range 
of 3–5, the membrane dielectric constant (εm) was taken as 
equal to 3 and εb was assumed close to the pure water value 
at room temperature so εm/εb = 3/80).

In the case of charged membranes, it can be reasonably 
supposed that the counter-ions concentration inside the mem-
brane is remarkably higher than the co-ions concentration; for 
the case of single symmetric electrolyte (NaCl) and negatively 
charged membrane, we obtain the following equation:

z c z c XM1 1 2 2⋅ ⋅ =  (225)

So the rejection rate will define as:
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In which,
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4.11. Aleman and Dickson model

Aleman and Dickson [98] performed one-dimensional 
mathematical model to predict the performances of com-
mercial nanofiltration membrane in case of multi-ions elec-
trolyte solution, in which Aleman and Dickson established 
their model according to three basic theory: ENP equation, 
Donnan equilibrium and Gouy–Chapman theory; Aleman 
and Dickson implemented their model based on several 
assumptions:

• The membrane is macroscopically uniform in thickness 
and is porous in nature.

• The pores are modeled as uniform capillaries that 
extend throughout the membrane with an evenly dis-
tributed throughout the surface of the membrane 
(cross-section).

• Entrance and exit effects are ignored since the membrane 
thickness is large compared to the pore radius (×1000).

• There is an equilibrium between the two sides of the 
membrane.

• Uniform distributions of charge density and mobile 
species within the pore; and dilute solution theory was 
applied in their implementation.

In their model Aleman and Dickson [98] introduce the 
Gouy–Chapman equation for the case of membrane charge 
calculation in somehow they treat the ions as point of charge 
taking into account the supposition of existence an electro-
static ionic adsorption which isn’t limited to low potentials 
as in the Debye–Hückel, and they used the same approaches 
as in DSPM model.

The surface potential in the dimensionless form was 
defined as:
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= ⋅∅  (227)

For cylindrical pore geometry the expression of volumet-
ric charge density was related to surface charge density and 
pore radius, this latter was given as Eq. (228):
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Using the solution of the Gouy–Chapman equation for 
mixed electrolyte solutions for a flat surface, the surface 
charge density is related to the surface electrical potential 
and the feed electrolyte concentration by:
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where ε0, ε*, εi respectively represent the dielectric constant 
of a vacuum, the relative dielectric constant of water, and the 
ion stochiometric coefficient. However, in this case, the pore 
surface cannot be considered flat.

For cylindrical coordinates, the analytical solution was 
only available for the case of single electrolytes as:
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where Csmf corresponds to the equivalent concentration of 
counter-ion in the feed solution and z+ represents the valence 
of the counter-ion.

4.12. Szymczyk and Fievet model (Steric electric and dielectric 
exclusion model)

In this model, Szymczyk and Fievet [99] give a new con-
tribution to describe the transport within a nanofiltration 
membrane for both geometry (cylindrical and slit-like) pore 
in which were included the dielectric exclusion in terms of 
both (Born effect and image forces).

The image forces were defined as the interactions with 
polarized interfaces this latter acting on an electric charge 
located near an infinite plane interface [100].

The steric, electric and dielectric exclusion model (SEDE) 
can be used to measure the rejection rate of the membrane 
and dielectric constant of the solution, with only adjustable 
parameter that taking into account the filling pores.

In the liquid phase the electrochemical potential of solute 
i (ũi) with valence zi was written as:
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They were assumed as the same local thermodynamic 
equilibrium between the two phases membrane/solution 
interface and bulk solution (ũi

m = ũi
b) so:
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where Ks the distribution coefficient of i was defined as:

K
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In this model they consider that ΔWi (total interaction 
energy) given as the sum of four terms as follows:
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The above relation represents the sum of multi-terms in 
which the first one denotes the steric exclusion defined with 
the steric partitioning coefficient θi; the two other terms indi-
cate the energy interaction due to the Born dielectric and 
image forces ΔWi,Born and ΔWi,im effects and the last one repre-
senting the difference of activity coefficient (γi) between the 
two side of the pore. Wherein the Debye–Hückel theory was 
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used the extended law to calculate the activity coefficient (γi) 
as shown in Eq. (235):
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where A, B, I are parameters used in this model.
Scaling ΔWi on k·T, Eq. (232) can be rewritten as:
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While the prime symbol indicates that both ΔWʹi,Born and 
ΔWʹi,im are scaled on kb·T and the expression of the normal-
ized potential of Donnan given as ΔϕD = (e/kb·T)Δϕ) involved 
in the mechanism of electrical exclusion. The work of charge 
transfer from a medium with the dielectric constant εb to a 
medium with the dielectric constant εp was given by:
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where εp, εb, respectively was given as the solution dielectric 
constant, inside pores and in the external bulk solution. The 
difference between this one and the one of Born model is that 
were used here the radius of the cavity formed by the solute 
i in water (ri,cav) this latter can be defined as the distance from 
the center of the ion and the point where the dielectric con-
stant becomes different from that of the vacuum.

In which the interaction energy equation due to the image 
force in the cylindrical and slit-like geometries was written as 
follows:
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where εm is the constant dielectric for the membrane, I0, I1, K0, 
K1 are respectively the modified Bessel functions, k was the 
wave vector and hence:
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While NA, rp, respectively was the Avogadro number 
and the pore size, that is, for a cylindrical pore was used as 
radius and for a slit-like pore, we took it as the half-width.

For the case of the electro-neutrality equation were used 
the same as above, by the substitution of the electro-neutral-
ity equation inside the pore and Eq. (236) were found that the 
electro-neutrality equations take the form:
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In this model, Szymczyk and Fievet [99] used the same 
extended Nernst–Planck equation as it’s frequently form but 
the only difference are in the hindrance factor for the two 
geometry (cylindrical and slit-like pores); in the case of cylin-
drical geometry pore, were took the assumption of equations 
for 0 ≤ λi < 1 as:
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where Ki,t and Ki,s defined as modified hindrance coefficient 
for diffusion and convection was given as:
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With a1 = −73/60, a2 = 77.293/50.400, a3 = −22.5083, a4 = −5.6117, 
a5 = −0.3363, a6 = −1.216, a7 = 1.647, b1 = 7/60, b2=−2.227/50.400, 
b3 = 4.0180, b4 = −3.9788, b5 = −1.9215, b6 = 4.392 and b7 = 5.006.

For cylindrical geometry pores, θi can be written as:

θ λi i= −( )1
2

 (245)

For a slit-like pore geometry, were used the expressions 
for Ki,c and Ki,d as below:
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where the steric partitioning coefficient was given by (accord-
ing to its definition):

θ λi i= −( )1  (248)

It should be noted that there is several research conduct 
the assumption of the hindered factors of diffusion and con-
vection Ki,c, Ki,d, we took the work of Geraldes and Brites 
Alves [101] where they introduced new forms of hindered 
factors of diffusion and convection were given as follows:
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For the hindered factor of diffusion Ki,d, it is related to the 
functions of the solute radius-pore radius ratio.

If λi ≤ 0.95:
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If λi > 0.95:
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5. Straatsma et al. model  
(Generalized Maxwell–Stefan model)

Straatsma et al. [102] studied the phenomena of nanofil-
tration transfer in the way to give a fully predicted model 
for the case of uncharged solute (glucose), single salt solution 
(sodium chloride, calcium chloride and sodium sulfate) and 
ternary ions mixture of those salts; their model based on the 
Maxwell–Stefan equation.

To describe the transport phenomena in this model four 
transport layers are distinguished: (1) a stagnant layer where 
concentration polarization of components that do not fully 
pass the membrane takes place; (2,3) interface layers at bulk/
membrane and membrane/permeate boundary; (4) the mem-
brane layer itself.

The frequent expression of the Maxwell–Stefan relation 
of solutes i, design for one direction (y) is:
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It is well known that the concentrations in the pore of the 
membrane differ from the concentration in the liquid because 
of the steric and electrostatic exclusion. The interface layer in 
which the concentration changes take place is very thin, so 
we can neglect the friction losses.

In the interface layer (Eq. (252)) would be written as:

∆ ∆ ∆µ ϕ0 0 0 0+ ⋅ + ⋅ ⋅ =V P z Fi i  (253)

The expression of chemical potential difference (Δμ) 
can be given as:
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where θi is the steric factor, which depends on both radius 
(solute (rs) and pore (rp)) based on the Ferry expression as 
presented in Eq. (106).

For transport through a membrane some extensions were 
needed in the application of the common Maxwell–Stefan 
equation; as a first step Straatsma et al. [102] added a fric-
tion force of solute i with a membrane Fm as illustrated in 
Eq. (255). Besides diffusive transport, viscous flow occurs in 
pressure-driven membrane processes and the viscous veloc-
ity (vv) written as Eq. (255):

F vm i M d i= ⋅ζ , ,  (255)

v A
u
dP
dyv = − ⋅  (256)

With A was taken as hydraulic permeability.
They replaced vd with:

v v vd t v= −  (257)

where vt is denoted to the total velocity. The combination of 
Eqs. (252) and (255)–(257) results in:
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It should be noted that if the membrane is highly charged 
so the Eq. (256) is not applicable for highly viscous flow, then 
were used the assumption in which we consider both flows 
diffusive and viscous as a whole and we changed the diffu-
sive frictions factors (ζ) that exist in Eqs. (252) and (255) by 
overall friction coefficients (ξ):
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The expression of chemical potential for solute i (µi) as 
used in Eqs. (252) and (259) it is written as:

µ γi iRT= ⋅ ln  (260)

where γi,M the molar activity is given as:

γ γi M i ix, = ⋅  (261)

The friction coefficient between solutes in the absence of 
any charge effects was estimated as:
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ζ ζ ζi j i w j w, , ,= ⋅  (262)

While ζi,w and ζj,w are respectively the friction coefficients 
in the water. In which the friction coefficients between cation 
and anion was calculated using this empirical expression:
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I represent the ionic strength.
Where they calculated the diffusive friction coefficient 

between solute-membrane using the expression below:
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The viscous friction coefficient (ζv) depends on the 
hydraulic permeability (A) as in this relation:

ζV
iA C

=
⋅
u  (265)

The global friction coefficients between (solutes-solutes 
(ξi,j) and solute-membrane (ζi,M))can be derived from the dif-
fusive friction coefficients as well as viscous friction coeffi-
cients by neglecting the effect of viscous selectivity; with this 
assumption, the relation of the mixture systems reduces to:

ξ
ζ

ζ
ξ ζ ζanion cation cation anion anion cation, , , ,

,= = + ⋅
+

=

i M
j M

V k

n

1∑∑ ⋅( )xk k Mζ ,

 (266)

And,
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In their work they used Freundlich isotherm to calculate 
the membrane charge:
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where Q0, g and xi respectively are model constants and the 
mole-fraction in the pores.

6. Teorell–Meyer–Sievers model

Teorell–Meyer–Sievers [62] discussed the fundamental 
mechanism of characteristics such as membrane potential, 
diffusion coefficient, transport number, electric conductivity, 
etc. based on the membrane phenomenon in an aqueous elec-
trolyte solution. The TMS model was developed based on the 
Donnan equilibrium theory and the extended Nernst–Planck 
equation. This model is a rigorous approach that has been 
widely used to describe the membrane electrical properties 
(in the case of a negatively charged membrane) by assuming 

a uniform radial distribution of fixed charges and mobile 
species.

For 1-1 type of electrolyte (e.g., NaCl), the membrane 
parameters can be written as follows:
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where α* represents the transport numbers of the cation 
in free solution and ξ* is the electrostatic parameter. Both 
nomenclatures can be defined by the following expressions:
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+

D
D D

cation

cation anion

 (271)
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where Dcation and Danion are the diffusivities of cation and 
anion, respectively, and XM and ci are the fixed charge density 
and the solute concentration of feed solution, respectively. 
However, the fixed charge density of most of the practically 
charged membranes varies with the solute concentrations, 
thus the effective fixed charge density XN

M was proposed by 
Wang et al. [103] to replace X as follows:
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where A° and B° are the empirical coefficients obtained from 
the permeation experiments of a salt.

7. Steric hindrance pore model and 
Hagen–Poiseuille model

The steric hindrance pore (SHP) [62] model is adopted to 
give a better description of the separation properties of the 
membrane with respect to two key parameters, pore radius, 
rp and membrane porosity-thickness ratio, ε/δ. Through mod-
ifying the pore model, Nakao and Kimura [104] proposed 
that the SHP model that can be used to calculate rp and ε/δ in 
the case of if single neutral solute. Those two parameters can 
be written as:

σ = − ⋅1 H SF F  (274)
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The nomenclature of Eqs. (Z.1) and (Z.2) can be defined 
as follow: HF = 1 – 16/9λ2, HD = 1, SF = (1 – λ)2[2 – (1 – λ)2], 
SD = (1 – λ)2, λ = rs/rp.
where HD and HF, are the steric parameters related to the wall 
correction factors in the convection coefficient and diffusion 
coefficient, respectively, and SF and SD are the distribution 
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coefficients of solute in the convection condition and dif-
fusion condition, rs and rp are the pore radius of solute and 
membrane, respectively. To determine the solute diffusivity 
where the solute is diluted in the water, the Wilke–Chang 
correlation is often used.
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where ViB is the solute molar volume at boiling point, T is 
the temperature, ϑj, Mj, and υ are an “association parameter,” 
molecular weight, and viscosity of the water, respectively.

Several assumptions are made in this pore model to 
determine the membrane properties which they:

• Pore-wall effects on solute moving across the pore are 
neglected.

• There is no discrepancy between the both model SHP and 
the fiction model.

On the other hand, water flux through uniform cylin-
drical pores where no significant concentration gradient is 
present across the membrane can be described by the Hagen–
Poiseuille equation as follows:
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8
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8. Discussion

In this section, we illustrate each model described above, 
in the terms of commonly used assumptions, the advan-
tages as well as the shortcomings noticed by the membrane 
researcher community related to the subject.

In this review we have presented state-of-the-art trans-
port phenomena within nanofiltration membranes according 
to four basic axes: SDM, IT models, Nernst–Planck equation 
models (ENP) and the Maxwell–Stefan model.

As we started, the SDM presented by Jonsson [55], 
Wijmans and Baker [56] and Rautenbach and Groschl [57–
59], which was based on the following assumptions:

• The permeants dissolve in the membrane material and 
then diffuse through the membrane down a concentra-
tion gradient.

• Constant material properties and ideal sorption and dif-
fusion behavior.

• There is a uniform pressure gradient along the membrane.
• The chemical potential gradient across the membrane 

was expressed only as a concentration gradient.
• There is no coupling between the water and the solute 

fluxes.

The net outcome for application of the SDM model gives a 
better explication of the separation procedure in non-porous 
and non-charged membranes, only two parameters needed 
to be found experimentally and the fundamental equations 
describing transport in this model can be derived from sim-
ple, basic principles without resource to process-specific fac-
tors. On the other hand, the main disadvantages of the SDM 

model depict the limitation of this latter in term of solute 
flux which in the SDM the rejection is independent of sol-
ute concentration and reach the unity at significantly high 
transmembrane water flux, ignoring the electrostatic effect 
which plays a dominant role in transfer within nanofiltration 
membrane.

Consequently, the solution–diffusion model is a phe-
nomenological model. The solute permeability parameter 
in SDM can be different for membranes, which is affected 
by electrostatic effects. Although the electrostatic effect is 
not mentioned in model equations, it’s combined in phe-
nomenological parameters, which wasn’t the case for the 
transport via nanofiltration porous membranes which were 
based on the convection. Yaroshchuk et al. [105] extended 
the solution–diffusion-film model to the case of electrolyte 
mixture consisting of a single dominant salt and (any num-
ber of trace ions) in which they developed a quasi analytical 
protocol for concentration polarization, in their study they 
used the same assumption as the solution–diffusion model 
which is no convective coupling between the solute and 
water inside the membrane (the same reflection coefficient 
for all solutes assumed equal to one) in addition they intro-
duced a virtual solution that could be in thermodynamic 
equilibrium with a given infinitely small volume inside the 
membrane. Future work mentioned by Reig et al. [106] in 
which were determinate the reliability of the data obtained 
using a flat-sheet (FS) laboratory-scale configuration when 
nanofiltration membranes are implemented at industrial 
scale level using spiral-wound (SW) configuration. The 
solution–diffusion–electromigration–film–model (SDEFM) 
was used to describe the experimental results, in which this 
model considers that the solute transport through the mem-
brane occurs via solution–diffusion and electric migration 
phenomena making the convection term negligible [107], 
also they take into account the concentration polarization 
layer.

The net outcomes for application of the SDEFM model 
are capable to fit satisfactorily experimental data of a dom-
inant salt with a trace mixture, were determinate the rejec-
tion curves for each of the ions vs. the transmembrane flux 
produced in each experiment, the rejection values obtained 
can be explained with the effect of the spontaneously arising 
electric fields [106].

Another example which was based on the solution–dif-
fusion model is the homogenous solution model (HSDM) 
modified to include film theory; Zhao et al. [108] applied 
this model to predict salt rejection by tight nanofiltration 
membranes during pilot-scale applications and developed 
an approach to correlate the solute mass transport coefficient 
to the salt type.

The IT models starting with Kedem–Katchalsky model 
[63] as a fundamental equation which was based on the fol-
lowing assumptions:

• The water and the solute fluxes were related by the 
reaction between the three parameters (solute/water/
membrane).

• The pressure and the concentration gradients had a linear 
variation in the case of low level of water flow rate near 
thermodynamic equilibrium expressed by a phenomeno-
logical constant.
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• Phenomenological constant depended on the salt concen-
tration which introducing by the new parameter named 
σ sigma (reflexion coefficient).

The advantages of the Kedem–Katchalsky model [63] 
was limited by, the water and the solute transport across the 
membrane is characterized by water and solute parameters, 
this model included a linear equation for dilute two-compo-
nents non-electrolyte system of water and solute. Based on 
the previous assumptions Schlögl [64] extended the Kedem–
Katchalsky model which he derived an integral formula for 
non-linear equation of both fluxes (solute/water) for mixture 
dilute system in which they removed the consideration of 
membrane morphology by assumed that the kinetic parame-
ters σi, Ai are constant in which he involved a new parameter 
to describe the non-linearity between the driving forces and 
particles fluxes.

Galey and Van Bruggen [65] also extended Kedem–
Katchalsky equations for the case of mixture of multi organic 
ions in their model they proposed that the flux of each solute 
is affected by other solute and an existing solute-solute inter-
action is mainly depend on the solute permeability, concen-
tration and molecular size, in addition, they examine the 
impact of pore size in the flux ratio and the solute interaction.

Those models presented above Kedem–Katchalsky model 
[63], Schlögl [64] and Galey and Van Bruggen [65] are limited 
on the following disadvantages: eliminates the description of 
the membrane transport mechanism; for Kedem–Katchalsky 
model [63] was sufficient only for case of dilute two com-
ponents solution; about Schlögl model [64] which was con-
firmed only in the case of lower concentration differences 
between the feed/membrane and membrane/permeate 
phases; in additional those models doesn’t take the impact of 
surface charge (electro-static effect), pore length or tortuosity 
the case of nanofiltration membranes.

In contrast, the Spiegler–Kedem model [66] based on the 
improvement of the Kedem–Katchalsky formula in which 
they derived the differential non-linear equations of both 
fluxes (solute and water) after they integrated them to rep-
resent the non-linearity between the fluxes and the potential 
forces of gradient, based on the following assumption:

• They consider the approximate constant value of fluxes 
and model coefficient L’p, σ, ω’.

• They related the high flow rate with a high concentration 
gradient.

• The model coefficients are independent of salt con centration.
• The solute rejection expression is derived for (1-1) elec-

trolyte according to the water flux.

The main advantage of this model lies in the simple 
application, few parameters needed to implement which 
the coupling of the water and the salt fluxes are taken into 
account; However is still an alternative to the complex physi-
cal models, mostly used in the single solute and binary solute 
systems with one solute is assumed to be impermeable to the 
membrane, as well as that the Spiegler–Kedem model doesn’t 
consider the electrostatic exclusion and the concentration 
dependence of the rejection.

Perry and Linder [68] improved the Spiegler–Kedem 
model which will be suitable for mixture of salt and organic 

ions, in their work they supposed that both coefficients (per-
meability, reflexion coefficient) had constant value and there 
is no effect of concentration polarization, The net outcome 
of this model is that could save time and effort for ultra-pu-
rification process with good economic effects; despite that 
this model cannot be applied for a multi-solutes system and 
restricted to a single solute of known molar mass and charge. 
In the work presented by Ahmad et al. [69] they extended 
the Spiegler–Kedem model in which they assume all solute is 
semi-permeable to the membrane, each solute has a constant 
value of diffusion and mass transfer coefficient in concen-
tration polarization layer thickness taking into account the 
solute-solute interaction.

Unfortunately, the limitations of those models based on 
the Spiegler–Kedem equation are:

In the case of Spiegler–Kedem model [66] wherein they 
neglected the solute-solute interaction, the solute rejection 
measure, without considering the concentration polariza-
tion effect, tested only for the case of single electrolyte, also 
for Perry and Linder [68] a complexity was noticed for the 
multi-solute system, no global salt permeability and reflex-
ion coefficient was related to the variation of the solute 
concentration in the feed.

About the case of Ahmad et al. [69] which they neglected 
the charge of solute and the pressure difference along the 
vertical length of the membrane surface. In Van der Bruggen 
and Van de casteele [109] used the Spiegler–Kedem model to 
predict the removal of uncharged solutes with nanofiltration 
in which they used the effective diameter as a size param-
eter, the reflection coefficient distribution and the diffusion 
parameter can be determined for a given membrane with the 
log-normal model and Stokes–Einstein’s law.

The extended Nernst–Planck equation (ENP) accounts 
for the passage of solutes via the membrane by three trans-
port mechanisms, diffusion, convection and electro-migra-
tion. The transport of convection occurs as a result of the 
nanofiltration porous nature, hence the negative charge of 
the membrane plays important roles in the diffusive trans-
port, and electro-migration occurs due to the gradient in 
electrical potential.

According to Nernst–Planck proposed by Schlögl [64] 
in which he introduced the convective solute transport 
along with permeating water; Dresner [77] presented a new 
approach to simplifier the calculation of extended Nernst–
Planck equation which required only a small amount of cal-
culation in the case of hyperfiltration of multi-solute solu-
tion in which he resembles the Schlögl–Goldman method 
for the electric field taking into account the supposition of 
good co-ion exclusion, then he introduced a coupling coeffi-
cient βi in the original form presented by Schlögl; to simplify 
the discussion, he consider only thermodynamic system in 
which the mechanical equilibrium is fulfilled in the term of 
(the component velocity is independent of the position and 
the pressure gradient is equal to the sum of external forces). 
The advantage of the application of the Dresner approach 
that it needed only a small amount of calculation even when 
several ions are existing.

Tsuru et al. [78,82] Extended Nernst–Planck equation to 
calculate the rejection of single and mixed electrolyte solution 
of various valences using a negatively charged membrane 
taking into account porosity ration (ε/∆x), volume flux, mole 
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friction as well as effective membrane charge density Xd, in 
which they suppose that the anion mobility inside the pore 
is the same as in the bulk solution as well as the activity coef-
ficient relation in the membrane and the bulk is equal γi

M/
γi = 1, in their work, they found that for a single salts the 
rejection related to volume flux with the same evolution as 
the effective charge density, the same remark for mixture 
electrolyte the rejection was strongly related to the volume 
flux, mole friction and the ratio of feed concentration to the 
effective charge density.

An overview contribution related to this subject was 
conducted by Bowen and his research team in which they 
give a real understanding of the transfer phenomena within 
nanofiltration membranes, starting with hybrid model pro-
posed by Bowen and Mukhtar [83] as DSPM based on the 
extended Nernst–Planck equation which they solved ENP 
as if the membrane were homogenous and non-porous, hin-
drance factors of diffusion and convection were included to 
allow taking the transport of solute through the membrane 
which they depend on the ratio of ion radius to pore radius, 
the effective pore radius (rp), the effective membrane thick-
ness to the porosity ratio (∆x/ε) and the effective membrane 
charge density (XM) where the modeling parameters. The 
effective pore radius was calculated using experimental 
data for single salt rejection, in which they found that NaCl 
gives a better result, about the effective membrane charge 
density they presented in term of Freundlich isotherm as a 
linear expression depends on the bulk salt concentration; 
the model was successful in predicting the separation per-
formance of a ternary salt system (Na+: Cl–: SO4

2–) the neg-
ative rejection of Cl– at low flux was explained in terms of 
the interplay between diffusion, convection, and electro- 
migration mechanisms.

Future work presented by Bowen and Mohammad [85] 
introduced a model for separation solute of salt/dye solu-
tion this model was based on DSPM with the incorporation 
of concentration polarization (film model) for a mixture 
of charge solute in which they optimizing this process in 
term of process time, membrane structure and electrical 
propriety,

wherein they starting by membrane characterized in 
terms of the effective pore radius (rp), the effective ratio of 
membrane thickness over porosity (∆x/ε), and the volumet-
ric charge density (XM), were obtained using the rejection 
data of uncharged solutes and salts in combination with a 
Donnan–steric pore model. Using those parameters, which 
they also included a description of the solution concentration 
polarization for mixtures of charged solutes in their model. 
They found out that when the removal of salt in the dye-
salt solution is considered through the diafiltration, in which 
the process needs complete retention of dye with low reten-
tions of sodium and chloride ions, a membrane with a pore 
size smaller than the effective radius of the dye molecule is 
a good choice. Membranes with low charges were found to 
be favorable for the process since they resulted in negative 
rejections for chloride ions. They also ascertained that a low 
membrane thickness value shortens the processing time.

Bowen and Welfoot [54] they present an accurate model 
for a major understanding of the nanofiltration transfer phe-
nomena in which they reduced the calculation parameters of 
uncharged solute to one parameter (rp) related to the effective 

pressure difference according to the hydrodynamics demon-
stration with hindered solute transport through the pore, also 
they incorporated the pressure effect on chemical potential 
and pore radius dependent on viscosity, on the other hand 
for electrolyte solution they reduced to only two parameters 
(rp, Xd) by including dielectric exclusion in the expression of 
energy barrier for ion partitioning inside the pores so that the 
revaluation of the pore dielectric constant using the data of 
NaCl rejection at the membrane iso-electric point gives us a 
better understanding.

The quantification of DE would be hold by experimen-
tal studies of other salts over a range of concentrations at 
uncharged membranes and the potential would have great 
importance for the overall rejection at the membrane since 
the variation of water viscosity and dielectric properties with 
pore radius exist.

In the ensuing paper Bowen et al. present a linearized 
model [93] to describe transfer phenomena for electrolyte 
rejection based on following factors pore radius, membrane 
charge, pore dielectric constant in which they used for reduc-
ing the complexity of the previous differential equation 
systems by eliminating most of the numerical integration; 
wherein they introduced the changes in dielectric constant 
of water between the bulk and the membrane pores, this 
latter will change the emphasis from the effective mem-
brane charge to the effective pore radius. The comparison 
of the linearized model and the previous ones based on the 
numerical integration agreed over a wide range of conditions 
when the valences or the number of the ions increased, the 
programming efforts also increased; In addition, linearized 
model could save time required to generate predictions for 
rejection of mixture solute systems by at least two orders of 
magnitude.

According to the many advantages gives by the use of 
DSPM model for predicting the transfer via nanofiltration 
membranes several works was based on it, we could cite the 
following:

Chang et al. [110] presented a comparative perfor-
mance study of two membranes from the same manufac-
turer (nanofiltration and low-pressure RO) in the term of 
As(III) rejection, under a variety of operating conditions, 
they used a predicted model based on the DSPM for make 
comparison between the model results and the experimen-
tal results, in which they found an over-estimated values of 
rejection ratio obtained by this model, this over-estimation 
was explained by the use of larger molecular size arsenite 
than the real.

Déon et al. [111] implemented a dynamic model with an 
improvement of the Donnan-Steric-pore model for single 
salt solution (NaCl, MgCl2, Na2SO4) of 10 mol/m3 for filtra-
tion in concentration mode and the feed concentration was 
set at 100 mol/m3 for diafiltration which includes both vol-
ume and concentration variation over time is proposed, this 
model was suggested to treat a real effluent in nanofiltra-
tion for both cases concentration or diafiltration which the 
previous models were failing in the case of concentration 
progressively evolve due to collected of permeate stream. 
The parameters of the transport model were identified by 
fitting experimental results at a constant concentration before 
being used to predict the performance evolution over time, 
taking into account the variation of the membrane charge 
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due to the evolution of concentration over time through the 
use of adsorption isotherm.

This model proposed by Déon et al. [111] was successful 
in predicting the one-time and overall performance of the 
nanofiltration process during the filtration of various salt 
solutions in both concentration and diafiltration mode.

Hagmeyer and Gimble [86,87] introduced a model to 
predict the performances of nanofiltration membranes 
based on TMS and NP to investigate the rejection of the ter-
nary solute mixtures NaCl–Na2SO4 and NaCl–CaCl. They 
included the energy term in their model and proposed an 
empirical relation to incorporate the effect of the dielectric 
constant change between the bulk solution and the solution 
in the pore along with the membrane dielectric constant to 
calculate the energy difference term in which they used zeta 
potential measurement to calculate the membrane surface 
charge density. The main objective is to reduce the amount 
of needed fitting parameters in the case of the constant 
potential of the membrane surface to two membrane param-
eters, which are independent of the composition of the bulk 
solution. These are the ratio of pore density to membrane 
thickness and the pore radius, taking into account the 
supposition of constant potential.

Afonso and Depinho [90] integrated a model to predict 
a nanofiltration performance in term of membrane per-
meability, selectivity as a function of the salt nature and 
concentration where the transport of mixture through an 
amphoteric nanofiltration membrane conduct by combining 
extended Nernst–Planck equation and Donnan equilibrium 
at the membrane interface in the case of a single solution 
of MgSO4, MgCl2 and Na2SO4 taking into account the mass 
transfer mechanisms in those layers (the feed solution, the 
bulk/ membrane, membrane active layer) wherein the con-
centration polarization is described by correlation derived 
from tubular turbulent flow and high permeation fluxes.

The membrane effective charge parameter is found to 
depend on the solute nature and concentration; wherein 
the relative errors found between the experimental and the 
calculated permeation fluxes and salt rejections are lower 
than 22% and 12%.

Lefebvre et al. [94,95,112] used hybrid HETT for predict 
a nanofiltration transport for a multi-solute mixture (NaCl–
CaCl2) from the single salt result wherein was considered 
hindrance factors in transport and Donnan–steric partition-
ing; the difference between their model and DSPM model 
was in the pore radius in which they changed by bare ion 
crystal radius or (Pauling radius).

Theoretical solute rejection predictions for multi-elec-
trolyte solutions are obtained by numerically solving the 
hindered transport extended Nernst–Planck (ENP) ions 
flux equations using the computer simulation program, 
NANOFLUX, which incorporates electrostatic, steric, and 
hydrodynamic interactions and a new choice for ion size 
(bare crystal, or Pauling, radius). Lefebvre et al. [94,95] 
concluded that their method could lead to a cost-effective 
way for choosing appropriate nanofiltration membranes, 
optimizing the implementation of industrial nanofiltration 
processes, and finally dimensioning industrial-scale nano-
filtration plants.

Vezzani and Bandini [96,97] implemented a general 
model taking into account the difference in the dielectric 

constant of the solution in the pore and the membrane called 
DSPM-DE; the determination of the rejection mechanism 
which is related to dielectric effect was supposed by the role 
of the difference existing between both dielectric constants 
(the aqueous solution in the pores and in the membrane 
material). Several adjustable parameters which character-
ize the membrane such as (the volumetric charge density, 
the average pore radius as well as the effective membrane 
thickness). In this model, ionic partitioning at the interfaces 
between the membrane and the external phases takes into 
account three separation mechanisms: steric hindrance, 
Donnan equilibrium, and dielectric exclusion; in which 
they don’t notice the dielectric effect in case of mixtures 
containing various co-ions, such as NaCl + Na2SO4 [112].

Future work proposed by Roy et al. [113] aims at intro-
ducing a comprehensive model by extending the DSPM-DE 
model for flat-sheet and spiral-wound for large-scale nano-
filtration membranes and evaluates their performance for the 
seawater desalination application.

This model was introduced for analyzing commercially 
used nanofiltration elements that allow the user to under-
stand the mechanism of filtration and provides the flexibil-
ity to simulate a wide range of membrane types by adjusting 
the various key parameters that characterize the membrane. 
In their study has shown that the rejection and the recovery 
ration of the nanofiltration membrane were dependent on 
the net driving pressure across the membrane in which the 
net driving pressure increases with feed pressure it increases 
with an increase in feed flow rate until hydraulic pressure 
losses become dominant.

Aleman and Dickson [98] predict the performance of 
nanofiltration membranes by one-dimensional mathemat-
ical model based on three fundamentals theory (Extended 
Nernst–Planck, Donnan equilibrium and Gouy–Chapman 
theory) wherein they incorporate to the classical DSPM 
model the Gouy–Chapman equation for the calculation of 
the membrane charge by assuming that the solute adsorption 
is purely electrostatic in the case of mixed electrolyte solu-
tion in which that this model consists only three fitting para-
meters (Lp, rp, ϕ), two solutions (flat and cylindrical surface) 
of Gouy–Chapman theory is used and compared.

SEDE developed by Szymczyk and Fievet [99] by using 
the dielectric al exclusion mechanism into the classical 
theory (steric/electric exclusion), the main objective is to 
investigate the transfer phenomena within nanofiltration 
membranes in which they improved a model to describe 
this transfer for both geometries (cylindrical and slit-like) 
pore by using a new mechanism of the dielectric exclusion 
taking into account both terms (Born effect and image 
forces).

This model used to measure the membrane rejection rate 
and dielectric constant of the solution taking into account 
only the filling pores as adjustable parameter in this model 
The distribution of solutes at the membrane/solution inter-
faces is described as being the result of (size effects, Donnan 
exclusion and dielectric effects) these are expressed as sum 
of multi-terms: Born dielectric effect (which is related with 
the diminution of the dielectric constant of a solution inside 
nanopores), production of image forces increasing due to 
(the difference in dielectric constants between the membrane 
matrix and the solution filling pores).
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Szymczyk and Fievet has shown that the dielectric exclu-
sion plays a major role in the retention mechanism of the 
nanofiltration polyamide membrane and that the widely 
adopted steric/electric exclusion theory is not suitable to 
describe transport properties of such a membrane.

A future approach have been developed by Silva et al. 
[114] in which they incorporated the variation of charge 
inside the membrane pore to the previous model described 
by Szymczyk and Fievet (Steric-Electric and dielectric 
exclusion model) wherein were used to model the system, 
structural, electrical and dielectric al membrane parame-
ters to study the rejection of single and divalent salts and 
a mixture of them. Multi-solute solutions of NaCl–Na2SO4 
and NaCl–MgCl2 have been used to measure the retention 
of each one.

The main objective of Silva et al. [114] study is investigat-
ing the effect of a common counter-ion and co-ion in nano-
filtration for concentrated solutions, regarding the separation 
performance and electrical behavior.

Silva et al. [114] indicate that the SEDE-VCh model is 
able to describe the transport phenomena involved in both 
the studied systems, including both single and multi- solute 
mixtures, by using only three fitting parameters dielectric 
constant inside the pore, the effective diameter of solute 
and the bulk phase for a slit geometry.

Straatsma et al. [102]used generalized Maxwell–Stefan 
(GMS) transport equations to model the single salts and 
multi-solute electrolyte solutions with a common as a func-
tion of membrane properties (mean pore size, porosity, 
thickness, surface charge characteristic) and feed pressure. 
Generalized Maxwell–Stefan (GMS) equation takes into 
account ion interactions represented in terms of frictions 
of the solutes with each other. In this work Straatsma et al. 
[102] taking into account that the Maxwell–Stefan transport 
relations mentioned both frictions coefficients (diffusive 
(ζi,j and ζi,M) and overall (ξi,j and ζi,M)) appeared, wherein 
the diffusive interaction between two solutes was related 
to their type.

Hoshyargar et al. [115] developed a comprehensive 
mathematical model for the prediction of solutes trans-
port through nanofiltration membrane based on Maxwell–
Stefan approach which consider a multi-solute transport 
in two sections of the membrane system: boundary layer 
and membrane the main assumptions considered in this 
model was:

• All solutes have a constant molar flux at the steady-state 
condition.

• The transport process in the membrane is isothermal.
• The charge density is non-uniform along the pore, unlike 

many studies, considering probable solute adsorption to 
the pore wall through the Freundlich isotherm.

• Dielectric exclusion is considered in partitioning when 
combined with GMS.

• Not assuming linear profile for electric potential and con-
centration through the membrane.

Taking into account that the interactions of solute/sol-
ute, solute/water, water/membrane and solute/membrane 
in which the model incorporates the membrane microstruc-
tural parameters, the solute molecular properties, the feed 

solution physical properties and the operational conditions 
into one rigorous mathematical description [115].

The TMS model [116] is a rigorous approach to describe 
the membrane electrical properties in terms of the effective 
charge density XM and electrostatic effects ξ. This model 
has been extensively used to explain the transport mech-
anism in nanofiltration membranes considering the elec-
trostatic effects for the permeation of electrolyte (sodium 
chloride). The TMS model assumes a uniform radial dis-
tribution of fixed charges and mobile species, this model 
can be interpreted using the electrical properties of the 
membrane [116].

According to the SHP model, the viscosity (υ) is the 
only water parameter influencing permeation. Although the 
viscosity equation is usually used for porous membranes, 
it is also valid for nanofiltration membranes. The Hagen–
Poiseuille equation clearly shows the effect of membrane 
structure on transport as well as the effect of some specific 
parameters on the membrane performance. It gives a good 
description of the transport through membranes consisting 
of circular pores of the same radius, although this is generally 
not the case in practice [62].

According to the complexity of predicting the transport 
within nanofiltration membranes, regarding the system 
interaction, the electrostatic effect, membrane charge, pore 
geometry, multi-component system, concentration, concen-
tration polarization effect.

The models based on the solution–diffusion which they 
ignored the electrostatic effect are not possible to use for the 
case of transport within nanofiltration membrane, unless 
they incorporate the elector-migration effect as in the case of 
Reig et al. [106], but still applicable for one dominant solute. 
About Irreversible Thermodynamic models which originated 
historically from the modeling of RO processes [53]. In these 
models, the membrane is treated as a black box. Consequently, 
the characterization of structural and electrical properties is 
not possible [54] without considering the interaction between 
the system (solute/water/membrane) taking into account 
the effect of the multi-component system; Ahmad et al. [69] 
give a better contribution to predicting the transport within 
nanofiltration membranes by extending the Spiegler–Kedem 
model in the case of multi-component system, but still valid 
only for the case of binary system.

On the other hand, the extended Nernst–Planck and 
Maxwell–Stefan models were introduced simultaneously 
with the advent of nanofiltration to describe the transport 
of solutes through the membrane via sieving and electrical 
mechanism [87].

9. Conclusion

This paper has reviewed the main four mathematical 
models of Solution-Diffusion, irreversible thermodynamics, 
Extended Nernst–Planck equation and Generalized Stefan–
Maxwell equation used for describing the transport phenom-
ena within nanofiltration membranes. The purpose of this 
comprehensive review is focused on the efficiency of these 
models under different operating conditions from single 
salts to mixture system including (solutes valences, concen-
trations, concentration polarization, solute/solute interac-
tion, solute/water interaction, solute/membrane interaction, 
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electric effect, dielectric effect, Donnan effect, Born effect, 
image forces...).

Each model provided with a demonstration, theoretical 
background (governing equations) and discussion in the 
term of advantage and disadvantage.

Wherein concluded as the basic principle of separation 
mechanism of the nanofiltration membrane has been identi-
fied mostly due to charge and steric effect, according to the 
models described above:

• The solution–diffusion models that neglected the cou-
pling between the water and the solute fluxes, exclude 
the concentration and the electrostatic effects wherein it 
does not fit the principal of nanofiltration membranes.

• The irreversible thermodynamics models was highly 
dependent on the driving forces which limits their prac-
tical application, the system should be adjacent to the 
equilibrium, limited in the multi-solute systems, in sev-
eral cases were neglected the solute charge; rather than 
the solution–diffusion models, this latter had such place 
on nanofiltration modeling with further improvements.

• A large majority of modeling works on nanofiltration has 
been by models based on the extended Nernst–Planck 
equation based on (diffusion, convection and electro-mi-
gration) due to the net outcomes given by the latter, 
which taking into account the interaction between the 
system(solute, water and membrane), nature and concen-
tration of solute (charged or uncharged), single or multi-
ions, membrane charge, Donnan effect, steric effect, 
energy barrier wherein give a better understanding to the 
transfer phenomena within nanofiltration membranes 
due to the ability of the latter to provide information 
related to properties of both the membrane and the pro-
cess stream.

The prediction of nanofiltration membranes performances 
has been an active area of research; it still needs further 
improvements in the terms of technical models, software 
simulators and review papers, to get more understanding of 
this phenomenon.
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Symbols

a — Parameters using in Lefebvre et al. model
A — Water permeability coefficient, m3/m2tP
A* —  Modified water permeability constant, m3/

m2tP
Aij, Aji —  Cross permeability coefficient between solutes 

i and j, cm/s2

Aii, Ajj —  Self-permeability coefficient of solute i and sol-
ute j, cm/s

Aws —  Cross-phenomenological coefficients of water 
and solute, m

Aww — Straight phenomenological coefficients of 
water

A° — Empirical coefficients obtained from the 
permeation experiments of a salt

ai — Activity of ion, mol/m3

bi — Parameters using in Lefbreve et al. model
B — Solute permeability constant, mol/m2t
Bss, Bsi — Straight phenomenological coefficients of 

the solute and solute with ion i
Bsw — Cross-phenomenological coefficients of 

solute and water, m
B° — Empirical coefficients obtained from the 

permeation experiments of a salt
B* — Modified solute permeability constant, 

mol/m2t
b — Solute-membrane friction parameter, 

dimensionless
b0 — Sorption coefficient, m3/mol
b1 — Langmuir adsorption coefficient, m3/mol
ci — Concentration of ion i in membrane, mol/

cm3

Ci, Cif — Concentration of solute i in the feed, mol/
cm3

Cp — Permeat concentration, mol/cm3

Cw — Molar concentration of water, kg/m3 or 
mol/cm3

Csp — Molar concentration of solute at permeat 
interface, kg/m3 or mol/cm3

Cpc — Cumulative permeate concentration for a 
batch process, mol/cm3

Cs
ave — Represent an average concentration of sol-

ute, mol/cm3

Csm — Molar concentration of solute at mem-
brane/feed interface, kg/m3 or mol/cm3

Ctm — Total concentration of water and solute in 
the membrane, mol/cm3

Cwl — Wall concentration of ion i or uncharged 
solute, kg/m3 or mol/cm3

Cwm — Molar concentration of water at mem-
brane interface, kg/m3 or mol/cm3

Csf — Molar concentration of water at feed inter-
face, kg/m3 or mol/cm3

Csp — Molar concentration of water at permeates 
interface, kg/m3 or mol/cm3

Cdye,f — Molar concentration of dye in feed solu-
tion, kg/m3 or mol/cm3

Csmf — Solute concentration at feed or bulk side 
membrane surface, mol/cm3

Csmp — Solute concentration at permeat side 
membrane surface, mol/cm3

Canion,1, Ccation,1 — Concentration of the anion and the cation 
respectively in the iterface membrane/
feed, mol/cm3

Canion,2, Ccation,2 — Concentration of the anion and the cation 
respectively in the iterface membrane/per-
meat, mol/cm3

Ci’, Cj’ — Mean concentration of the solutes i and j 
respectively, mol/cm3

CX
– — Organic ion concentration in the solution, 

mol/cm3

Cs’ — Salt concentration in the feed, mol/cm3
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d — Thickness of the oriented solvent layer, m
Ds — Diffusion coefficient of the salt in the mem-

brane, cm2/s
Di — Diffusion coefficient of ion i in water, cm2/s
Dip — Diffusion coefficient of ion i in the pore, cm2/s
Dib — Diffusion coefficient of ion i in the bulk, cm2/s
Dp — Diffusion coefficient of uncharged solute in 

the pore, cm2/s
Dw — Diffusion coefficient of water in the mem-

brane, cm2/s
De — Normalized solute diffusivity, Dsm/δ2, 1/t
Dp

* — Corrected uncharged solute pore diffusion 
coefficient, m2 s−1

e — Electronic charge, C
E — Potential field, V
Fm — Molar friction force, N/mol
Fs, F, Fw — Driving forces exerted by solutes s and i and 

water
g — Model constant Freundlich equation
h — Parameter defined Bandini and Vanzini model
HF, HD — Steric parameters related to the wall correc-

tion factors in both convection and diffusion 
coefficients

I — Ionic strength (salt, total), m
IM — Ionic strength (salt, total) at the feed/mem-

brane interface, feed side m, m
IB — Ionic strength (salt, total) in feed/membrane 

interface, membrane side, m
Ji — Flux, mol/cm2 s
jp — Total flux of the membrane, mol/cm2 s
Js — Solute flux through the membrane, mol/cm2 s
Jsi, Jsj — Solute flux through the membrane for ion i 

and respectively, mol/cm2 s
Jw — Total water volume flux, cm/s or mol/cm2 s
k — Mass-transfer coefficient, m/s
kb — Boltzmann constant, J/K
Ks, Km — Distribution coefficients of solute and water 

between the total membrane phase and the 
bulk solution

Ki, Kj — Partition coefficient of the solutes i and j 
respectively (Ki = xi2/xi), dimensionless

Kic — Hindrance factor for convection
Kid — Hindrance factor for diffusion
Kc — Uncharged solute hindrance factor for con-

vection, dimensionless
K2eff — Effective convective coefficient
K — Parameter defined in dimensionless
Li — Coefficient relates the chemical potential 

with the flux equation
Mj — Molecular weight of ion j
m — Flow parameter or feed flow rate for single 

solute system, cm3/s
Ni — Mechanical permeability of the pores, m/s 

atm
Na — Avorgadro constant, 1/mol
Oi — Interaction parameter mentioned in Ahmad 

et al. model, m/s mol
P — Pressure, bar or kPa
Pi — Pressure of ion i, bar or kPa
Pi — Reference pressure of the ion i, bar or kPa

Pe — Péclet number
Pe’ — Modified Péclet number, dimensionless
qm — Solute adsorption in membrane, mol/L3

qtm — Total solute adsorption in membrane, mol
q0 — Henry’s law adsorption coefficient, mol 

adsorbed/mol
q1 — Langmuir adsorption coefficient, mol/L3

Q0 — Model constant Freundlich equation, mol/m3

Qm — Membrane charge concentration based on 
pore volume, mol/m3

r — Radius of stirrer, m
rp — Membrane pore radius, m
rs — Stoke’s radius of solute, m
rB — Bjerrum radius, m
Rg — Universal gas constant, 8.31 Pa m3/K mol or 

0.082 atm m³/kmol °K
R — Solute retention
Re — Reynolds number
Rep — Reynolds number in the permeat
S — Membrane surface area, m2

SF, SD — Distribution coefficients of solute in the con-
vection and diffusion

Sh — Sherwood number
Sc — Schmidt number
T — Absolute temperature, K
Ti — Passage, or transmission (ion i) (–) or, %
tc — Time during concentration phase, s
td — Time during diafiltration phase, s
uE — Electrophoretic mobility, V cm–1

ũi — Ion electrochemical potential of component i
ũi

m, ũi
b — Ion electrochemical potential of component 

I in the membrane/solution interface and in 
the bulk solution

v — Solvent velocity in pore, m/s
vM — Solution velocity across the membrane, m/s
vp — Permeate solution velocity, m/s
V, Vj — Partial molar volumes of ions i and j respec-

tively, cm3/mole
Vs, Vw — Partial molar volumes of solute and of water 

respectively, cm3/mole
Vc — Concentrate volume, m3

Vf — Feed volume, m3

Vp — Permeat volume, m3

VF — Feed volume during diafiltration, m3

ViB — Solute molar volume at boiling point
w — Stirring speed, s–1

x — Length coordinate or space coordinates in the 
transport direction, cm

x — Dimensionless membrane depth, z/δ
xi — Mole fraction of ion i
Xj, Xi — Mole fraction of ion j and i respectively
Xj

+ — Parameter defined in Schlögl model
XM — Fixed membrane charge density
XN

M — Effective fixed charge density
y — Uncharged solute function, dimensionless
Yi — Dimensionless group of ion i, dimensionless
Yp — Permeat water recovery dimensionless
yd — Dimensionless surface electrical potential
Z — Membrane depth, L
zi, zj — Charge of valency of ions i and j, respectively
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Greek

α — Parameter defined in Eq. (H.2)
α* — Represent the transport numbers of 

cation in free solution
β — Parameters using in Lefebvre et al. 

model
βi — Convective coupling coefficient
ΔP — Difference of pressure, bar or kPa
ΔC — Solute concentration difference, mol/L3

Δϕ — Potential difference, V
ΔϕΔ — Donnan potential difference, V
∆π — Osmotic pressure difference, bar or Pa
ΔU — Streaming potential difference, V
ΔWi — Born solvation energy barrier, J
∂qm/∂t — Adsorption rate
λ — Ratio of ionic or solute radius to pore 

radius, friction factor
σ — Reflection coefficient
σc — Surface charge, C/m2

δ — Membrane thickness, m
γ — Number of charged groups from the 

organic ion
γi, γj — Activity coefficient for the ions i and j 

respectively, mol/m3

γiM — Molar activity for the ions i, mol/m3

γib, γjb — Activity coefficient for the ions i and j 
respectively in the bulk, mol/m3

γim, γjm — Activity coefficient for the ions i and j 
respectively in the membrane, mol/m3

γanion,1, γcation,1 — Activity coefficient for the anion and 
the cation respectively in the interface 
membrane/feed, mol/m3

γanion,2, γcation,2 — Activity coefficient for the anion and 
the cation respectively in the interface 
membrane/permeat, mol/m3

φ — Potential, V
φb — Potential in the bulk, V
φm — Potential in the membrane, V
φD — Donnan potential, V
∇ — Debye length, m
∇DB — Debye length at the feed/membrane 

interface, feed side, m
∇DM — Debye length at the feed/membrane 

interface, membrane side, m
ζ — Zeta potential, V
ε — Porosity
εb — Dielectric constant of the bulk
εp — Dielectric constant in the pore
εm — Dielectric constant of the membrane
ε0 — Permittivity of free space, 

8.8542 × 1012C2/J m
ε* — Dielectric constant of oriented water 

layer, dimensionless
θi — Steric partition coefficient of ion i
ρ — Solution density, kg/m3

υ — Viscosity of solution, Pa s
υk — Kinematic viscosity, m2 s–1

ϑAnion — Moles of anions per mole of dissociated 
salt, mol/mol

ϑCation — Moles of cations per mole of dissoci-
ated salt, mol/mol

ϑj — Moles of ions j per mole of dissociated 
salt, mol/mol

η — Solvent viscosity in pores, Pa s
η0 — Bulk viscosity, Pa s
ζv — Viscous friction coefficient
ζ — Diffusive friction coefficient, kg/s mol
ξ* — The electrostatic parameter
ξ f
 — Normalized membrane charge density, 

ξ f
 = Xm/cf

τ — Tortuosity
U+00
∅ — Surface electrical potential, J/C = V
∈i,+∈i,– — Stoichiometric coefficient for cation 

and anion

Superscripts

p — Pore, permeate
m — Membrane
w — Water
s — Solute
B — Bulk
i, j — Ions
dye,f — Dye in feed solution
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