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a b s t r a c t
The paper presents models of artificial neural networks (ANN) approximating the benzo(a)pyrene, 
indeno(c,d)pyrene, dibenzo(a,h)anthracene and benzo(g,h,i)perylene concentrations after anaerobic 
and aerobic phases of the sequencing batch reactor operating with aerobic granular activated sludge 
(GSBR). Selected technological parameters of active sludge and concentration of benzo(a)pyrene, 
indeno(c,d)pyrene, dibenzo(a,h)anthracene and benzo(g,h,i)perylene at the beginning of anaerobic or 
aerobic phase were the input variables layer in ANN models. Variables set depended on the approx-
imation algorithm purpose. The models were characterized by determination of coefficients ranging 
from 0.995 to 0.999 and showed a good adjustment to changes trend of studied high molecular weight 
(HMW) PAHs. All ANN models were the most sensitive to benzo(a)pyrene, indeno(c,d)pyrene, diben-
zo(a,h)anthracene and benzo(g,h,i)perylene at the beginning of modelled GSBR reactor phase. The 
activated sludge technological parameters showed less influence on the approximation process of 
individual HMW PAHs.
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1. Introduction

Aerobic granular activated sludge is a new element in 
wastewater treatment technology. According to the defini-
tion proposed by the International Water Association, these 
aggregates are not coagulated as a result of hydrodynamic 
shear forces and have better sedimentation capacity than 
flocked sludge [1]. The key features of granular activated 
sludge are, among others, high resistance to changes of 
organic compound loading in the reactor [2] and resistance 
to substances potentially toxic to the microorganisms pres-
ent in activated sludge [3–5]. Examples of such compounds 
are polycyclic aromatic hydrocarbons containing more than 
four aromatic rings in their structure, which are referred to 
as high molecular weight PAHs [6]. In the literature, there 
are reports on the degradation of this compounds group 
by a number of microorganisms, including a consortium of 

microorganisms present in activated sludge [7,8]. It should 
be noted that the PAHs removal mechanism from wastewater 
is complex and consists of biosorption, anaerobic and aerobic 
decomposition processes [9]. Diversity and different charac-
ter of above mentioned unit processes of PAH decomposition 
requires taking into account many variables related not only 
to the technological parameters of activated sludge but also 
to the wastewater treatment conditions in GSBR reactors. It 
should be emphasised that the degradation of PAHs contain-
ing four and more aromatic rings is relatively problematic in 
wastewater treatment systems as these compounds are more 
toxic to PAHs with less than four rings in their structure. This 
fact contributes to the increased complexity of static models 
and may affect their accuracy [10]. Therefore, artificial neural 
networks are one of the tools to describe such complexities 
[11]. This method allows for arbitrary parameters selection 
at the stage of phenomena modelling and seeking the sim-
plest relations between variables, hence to reflect the nature 
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of changes in the approximated variable set as accurately as 
possible [12]. In the literature on the modelling of activated 
sludge processes with the use of ANN, the results obtained for 
flocked sludge are most often taken into account. The issue of 
modelling of HMW PAH removal in reactors operating with 
granular sludge is not often discussed, while the research 
studies focus mainly on modelling changes in the concen-
tration of nitrogen, phosphorus and carbon compounds 
expressed as chemical oxygen demand (COD). Therefore, an 
attempt was made to describe the process of benzo(a)pyrene 
(B(a)P), indeno(c,d)pyrene (I(cd)P), dibenzo(a,h)anthracene 
(D(ah)A) and benzo(g,h,i)perylene (B(ghi)P) removal in the 
anaerobic and aerobic phases of GSBR reactor.

The aim of the study was to develop models of ANNs 
approximating benzo(a)pyrene, indeno(c,d)pyrene, diben-
zo(a,h)anthracene and benzo(g,h,i)perylene concentrations 
after the anaerobic and aerobic phases of GSBR reactor and 
to identify the most important variables influencing the 
algorithms approximating the concentrations of individual 
compounds.

2. Materials and methods

Studies were carried out in a model GSBR reactor made 
of reinforced polyethylene. The experiment assumed that a 
single reactor cycle would be 12  h and consist of five unit 
phases, including separate filling, mixing (anaerobic), aer-
ation (aerobic), sedimentation and decantation phase. The 
reactor was equipped with a slow-running agitator with a 
mixing speed of 70  rpm, which worked during the mixing 
and aeration phases to prevent the formation of blind spots 
in the reactor volume contributing in activated sludge bio-
mass rotting. The work of wastewater dosing pump, agita-
tor, aerator and duration of individual GSBR unit phases was 
coordinated with the Siemens LOGO! type 230RC PLC pro-
grammable logic controller. The technological and hydrau-
lic parameters of the GSBR reactor, which were maintained 
during the experiment, are presented in Table 1.

The aerobic granular activated sludge used in the study 
has been inoculated and treated for a period of 30  d prior 
to the beginning of main experiment. The length of this 
period allowed for sludge retention time stabilization and 
microorganisms present in sludge adapted to new oxygen 
conditions. The considered technological parameters of the 

activated sludge were calculated based on the equations used 
for flocked activated sludge:
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In presented equations, V30 stands for activated sludge 
velocity after 30  min of sedimentation, VGSBR is defined as 
actual GSBR capacity, G is activated sludge dry mass in GSBR 
reactor, ΔG defines activated sludge daily growth rate, Qd is 
the amount of raw wastewater inflowing to GSBR reactor in 
1 d, SBOD represents BOD concentration in raw wastewater, 
LBOD stands for BOD loading rate inflowing to GSBR reactor, 
tR is defined as duration of GSBR aeration phase, tC stands for 
duration of single GSBR reactor cycle and T is temperature in 
Celsius degrees. Activated sludge technological parameters, 
which were observed during the experiment, are presented 
in Table 2.

Wastewater used in the studies was prepared from 
casein peptone (0.113–4.520  g/L), enriched dry broth 
(0.076–3.040 g/L), NH4Cl (0.010–0.400 g/L), NaCl (6.59 g/L), 
CaCl2·6H2O (0.004–0.160 g/L), MgSO4·7H2O (0.001–0.040 g/L), 
KH2PO4 (0.008–0.320 g/L), K2HPO4 (0.020–0.800 g/L) and oily 
substances solution (0.032 µL/L). An oily wastewater solution 

Table 1
GSBR reactor hydraulic and technological parameters

GSBR technological parameter Value range

Aerator capacity, L/h 550.0
Total GSBR capacity, L 16.0
Actual GSBR capacity, L 15.0
Volume exchange factor 0.33
Filling phase duration, min 30.0
Mixing phase duration, min 90.0
Aeration phase duration, min 540.0
Sedimentation phase duration, min 30.0
Decantation phase duration, min 30.0

Table 2
Activated sludge technological parameters

Activated sludge technological parameter Range

Activated sludge dry mass (G), kg/m3 3.9–4.1
Sludge volume index (SVI), cm3/g 59–70
Hydraulic retention time (HRT), d 31–60
Sludge retention time (SRT), d 21–42
Activated sludge growth rate (ASG), mg/d 0.05–1.48
BOD loading rate (LBOD), kg BOD/kg d 0.05–1.40
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was prepared on the basis of naphtha (60%), burned-out car 
oil (30%) and petroleum oil (10%) and was used as a base 
PAH solution. Similar wastewater composition was used in 
previous studies [13,14]. The components of oily solution 
were selected so that HMW PAHs group constitute the dom-
inant part of polycyclic hydrocarbons. 

The quantities of reagents used in the preparation of 
model wastewater increased with the increase of activated 
sludge BOD load. Presented wastewater mixture contained 
both easily and hardly decomposable carbon compounds, 
nitrogen and phosphorus compounds. The aim of this 
approach was to adjust the laboratory conditions as closely 
as possible to those that may occur in real objects. Activated 
sludge BOD load was increased when after 2 d (four complete 
cycles) any changes in the efficiency of wastewater treatment 
were observed. The studies were carried out at room tem-
perature (20 °C ± 2 °C). Parameters of raw wastewater inflow-
ing to the reactor are presented in Table 3. The analysis of 
individual wastewater parameters, including HMW PAHs, 
was carried out in accordance with methodology described 
in the previous paper [14]. HMW PAHs were determined by 
means of gas chromatography coupled with mass spectrome-
ter (GC/MS) with a DB-5MS column. The stationary phase of 
column was polydimethylsiloxane with 5% phenyl groups. 

In order to observe quantitative changes of studied HMW 
PAHs, a sample of raw wastewater and wastewater after fill-
ing phase, after anaerobic phase (mixing) and after aerobic 
phase (mixing and aeration) was collected for analyses. Each 
wastewater sample was filtered through the quantity filter to 
determine changes in the concentration of studied PAHs in 
the wastewater. The aim of this approach was to omit the pro-
cesses of biodegradation, biotransformation and biosorption 
of PAHs retained in the structure of activated sludge aerobic 

granules in developed ANN models. ANNs are character-
ized by flexibility in the selection of variables. The principle 
of this type of calculation algorithm allows to find the sim-
plest relations between variables. Consequently, this type of 
approach leads to a relatively accurate description of the phe-
nomena described by the collected database. The structure of 
a neural network can be divided into three main layers. These 
include the input layer, which constitutes the variables used 
to describe a given phenomenon. The next element is the hid-
den layer, in which the calculation process is carried out in a 
discreet way and the simplest and most accurate reflection 
of variables in the output layer is obtained. In turn, the out-
put layer includes variables that are subject to the modelling 
process.

Input variables in ANN models describing changes 
of individual HMW PAHs were selected on the basis of 
Pearson’s linear correlation coefficients. Only technological 
parameters of activated sludge were considered in the anal-
ysis. Variables describing the technological and hydraulic 
parameters of GSBR reactor were skipped due to the fact that 
they were constant during the experiment. Therefore, the 
parameters of GSBR reactor are the criteria, for which ANN 
models can be used in further research. Correlation coeffi-
cients observed between the technological parameters of 
activated sludge and the concentrations of HMW PAHs after 
individual phases are presented in Table 4.

ANN models were developed using Statistica 13.1 soft-
ware running on Windows 10 Home Edition platform. The 
database used to develop ANN models was divided into 
three sets, including a learning set, which constituted 75% 
of all measurement results, a test and validation set, which 
contained 15% of all measurement results each. Dividing all 
results into individual data sets made it possible to verify 
the obtained approximation results. The Broyden–Fletcher–
Goldfarb–Shanno algorithm (BFGS) was selected during the 
learning phase of the individual models. Selection of this 
machine learning algorithm was based on the experience 
from previous studies, where the best learning results of the 
neural network were obtained with its use [15,16].

It was assumed that the number of epochs in a single 
model could not exceed 200 during the learning phase. Such 
an approach minimized the risk of neural network overturn-
ing, which would result in a good adjustment to changes 
trends in particular approximated variables, but would pre-
vent from accurate approximation of variables introduced 
outside the learning scope. When developing a single model, 
500 networks were sampled, from which the algorithm best 
describing the behaviour of a particular compound in a given 

Table 3
Raw wastewater parameters range

Parameter Range Standard deviation
BOD, mg/L 36–1,000 303.74
COD, mg/L 57–1,618 461.89
Total N, mg/L 5.89–166.56 50.72
Total P, mg/L 1.49–43.84 13.35
B(a)P, µg/L 10.42 0.01
I(cd)P, µg/L 12.61 0.01
D(ah)A, µg/L 8.58 0.01
B(ghi)P, µg/L 11.23 0.01

Table 4
Correlation between activated sludge technological parameters and selected PAHs concentration after anaerobic and aerobic phase

Anaerobic Aerobic

Variable B(a)P I(cd)P D(ah)A B(ghi)P Variable B(a)P I(cd)P D(ah)A B(ghi)P

BOD load 0.88 0.88 0.88 0.88 BOD load 0.88 0.88 0.88 0.88
SVI –0.69 –0.69 –0.69 –0.69 SVI –0.68 –0.68 –0.68 –0.68
HRT –0.60 –0.60 –0.60 –0.60 HRT –0.59 –0.59 –0.58 –0.59
SRT –0.62 –0.62 –0.62 –0.63 SRT –0.61 –0.61 –0.61 –0.61
ASG 0.88 0.88 0.88 0.88 ASG 0.88 0.88 0.87 0.88
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process phase of a GSBR reactor was selected. The error 
function in the developed models was the sum of squares. 
Activation functions of neurons in the hidden and output 
layer were selected automatically by the program. The best 
describing parameters from obtained ANN models are pre-
sented in Table 5.

3. Results and discussion

The developed ANN models were characterized by a 
good representation of benzo(a)pyrene, indeno(c,d)pyrene, 
dibenzo(a,h)anthracene and benzo(g,h,i)perylene both in the 
anaerobic and aerobic GSBR reactor phases. The determina-
tion coefficients between the observed and approximated 
values in individual data sets (learning, test and validation) 
were greater than or equal to 0.993. Determination coefficient 
values can be interpreted as a linear adjustment of observed 
to approximated values. This means that the approximation 
of both the concentration and changes trend of individual 
compounds in individual phases have been reflected with 
an accuracy of more than 99%. The achieved level of accu-
racy was additionally confirmed by relatively small values of 
approximation error in individual data sets. Table 6 presents 
determination coefficients values and estimation errors of 
individual ANN models approximating the concentrations of 
benzo(a)pyrene, indeno(c,d)pyrene, dibenzo(a,h)anthracene 
and benzo(g,h,i)perylene in anaerobic and aerobic phases of 
the GSBR reactor.

The sensitivity analysis of developed ANN models was 
an important element in modelling studies of PAHs changes. 
All ANN models showed the highest sensitivity to concentra-
tion of modelled compound at the beginning of GSBR reac-
tor process phase. In case of models approximating benzo(a)
pyrene, indeno(c,d)pyrene, dibenzo(a,h)anthracene and ben-
zo(g,h,i)perylene concentrations in the anaerobic phase, the 
input variables were the concentrations of these compounds 
after the filling phase, whereas in case of ANN models 
describing changes in the aerobic phase, the concentrations 
of these compounds after the anaerobic phase were assumed.

In the experiment, the HWM PAHs concentrations 
inflowing with raw wastewater into each GSBR cycle were 
constant values and the activated sludge BOD loading was 
regularly increased. It should be noted that an increase in the 
active sludge BOD loading indirectly resulted in increased 
amount of easily available carbon compounds supplied with 
enriched broth and casein peptone. Therefore, the removal 
effectiveness of individual compounds from the HMW 
group decreased with the increase of BOD load. As a result, 
the amount of benzo(a)pyrene, indeno(c,d)pyrene, diben-
zo(a,h)anthracene and benzo(g,h,i)perylene present in the 
reactor gradually increased. On the other hand, a progressive 
increase in the amount of these compounds resulted in their 
higher concentrations after the filling and anaerobic phases 
(Figs. 1–4). Therefore, this phenomenon may have directly 
contributed to the highest sensitivity of benzo(a)pyrene, 
indeno(c,d)pyrene, dibenzo(a,h)anthracene and benzo(g,h,i)

Table 5
Summary of developed ANN models

HMW PAH GSBR  
phase

ANN 
topology

Machine learning algo-
rithm and epochs

Error 
function

Hidden layer 
activation function

Output layer 
activation function

B(a)P Anerobic MLP 6-6-1 BFGS 36 SOS Exponential Tanh
I(cd)P MLP 6-6-1 BFGS 22 SOS Exponential Tanh
D(ah)A MLP 6-6-1 BFGS 33 SOS Exponential Tanh
B(ghi)P MLP 6-10-1 BFGS 14 SOS Logistic Sinus
B(a)P Aerobic MLP 6-5-1 BFGS 18 SOS Exponential Tanh
I(cd)P MLP 6-5-1 BFGS 128 SOS Logistic Tanh
D(ah)A MLP 6-7-1 BFGS 17 SOS Exponential Tanh
B(ghi)P MLP 6-10-1 BFGS 14 SOS Logistic Sinus

Table 6
Matching the quality of individual ANN models

HMW PAH GSBR  
phase

Learning 
quality

Test  
quality

Validation  
quality

Learning  
error

Test  
error

Validation 
error

B(a)P Anaerobic 0.997 0.999 0.999 0.043 0.019 0.025
I(cd)P 0.997 0.999 0.999 0.070 0.018 0.051
D(ah)A 0.997 0.999 0.999 0.032 0.012 0.021
B(ghi)P 0.995 0.993 0.999 0.068 0.122 0.103
B(a)P Aerobic 0.998 0.999 0.999 0.024 0.012 0.010
I(cd)P 0.997 0.999 0.999 0.052 0.017 0.007
D(ah)A 0.998 0.999 0.999 0.019 0.005 0.016
B(ghi)P 0.995 0.993 0.999 0.068 0.122 0.103
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perylene concentrations, depending on the ANN model, after 
the filling phase or after the anaerobic phase.

Other variables taken into account in the models were 
activated sludge technological parameters. It should be noted 
that in all models, those variables were characterized by sim-
ilar influence on the calculation of ANN algorithms. Among 

the considered technological parameters of active sludge, the 
active sludge growth rate had the greatest influence on the 
approximation of benzo(a)pyrene and dibenzo(a,h)anthra-
cene concentrations in the anaerobic phase, while the SRT had 
the greatest influence on the concentrations of indeno(c,d)
pyrene and benzo(g,h,i)perylene. On the other hand, in the 

Fig. 1. Observed and approximated values of B(a)P in anaerobic and aerobic GSBR phases.

Fig. 2. Observed and approximated values of I(cd)P in anaerobic and aerobic GSBR phases.

Fig. 3. Observed and approximated values of D(ah)A in anaerobic and aerobic GSBR phases.
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aerobic phase, among the considered technological parame-
ters of active sludge, the HRT influenced the approximation 
of benzo(a)pyrene and indeno(c,d)pyrene, whereas the SRT 
showed the highest sensitivity to the dibenzo(a,h)anthracene 
and benzo(g,h,i)perylene concentrations. Both the activated 
SVI and loading with organic compounds expressed as BOD 
did not affect the estimation process of individual PAHs from 
the HMW group.

Similar sensitivity of ANN models to activated sludge 
technological parameters may have resulted from mathe-
matical similarity of those variables. This convergence is dic-
tated by the use of sludge dry matter in the calculation of 
activated sludge growth rate, hydraulic retention time in the 
reactor chamber, sludge retention time and its volume index. 
Therefore, the individual technological parameters of acti-
vated sludge are indirectly related to this value. The sensitiv-
ity analysis of individual models could show similar weights 
for these variables. Another reason for this phenomenon 
could be the fact that individual parameters of active sludge 
did not show any rapid changes that would be caused by an 
increase in BOD load inflowing into GSBR reactor. On the 
other hand, no significant changes in technological param-
eters of activated sludge under the influence of increasing 
activated sludge BOD load could have resulted from the 
properties of studied activated sludge structure. According 
to the literature data, granulated activated sludge shows 

resistance to fluctuations of BOD load inflowing to reactor 
with raw wastewater [17]. Additionally, this type of sludge 
is characterized by a high tolerance towards contaminants 
potentially toxic to microorganisms present in the activated 
sludge including HMW PAHs [18].

Figs. 1–4 show changes in benzo(a)pyrene, indeno(c,d)
pyrene, dibenzo(a,h)anthracene and benzo(g,h,i)perylene 
concentrations in anaerobic and aerobic GSBR reactor phases. 
Concentrations of individual PAHs in wastewater increased 
with increased activated sludge BOD loading. This relationship 
was well represented by individual ANN models. Both in the 
anaerobic and aerobic phases, the ANN models reflected with 
high accuracy the changes trend of individual compounds and 
their concentration during experiment. Presented trends are 
also reflected in basic statistics of observed and approximated 
data sets (Table 8). All statistical data (arithmetic mean, median, 
minimum, maximum and standard deviation) of the individ-
ual compounds were similar. This means that ANN models 
developed for approximation of benzo(a)pyrene, indeno(c,d)
pyrene, dibenzo(a,h)anthracene and benzo(g,h,i)perylene 
concentrations reflected not only changes trend in individual 
compounds in the modelled phases of GSBR reactor but also 
matched well the values within the approximation range.

Static models, used to describe changes in HMW PAHs 
concentration occurring in the anaerobic and aerobic phases 
of GSBR reactors, are rarely mentioned due to the complexity 

Fig. 4. Observed and approximated values of B(ghi)P in anaerobic and aerobic GSBR phases.

Table 7
Variable weights included in ANN models

HMW PAH GSBR phase Variable weight (w)

HMW PAH ASG HRT SRT BOD load SVI

B(a)P Anaerobic 98.55 2.24 1.83 1.78 1.42 1.07
I(cd)P 87.40 2.78 1.57 2.79 1.50 1.05
D(ah)A 98.04 2.52 1.48 1.40 1.33 1.07
B(ghi)P 23.08 2.58 2.65 4.23 2.12 1.33
B(a)P Aerobic 193.03 1.89 4.38 2.10 1.76 1.05
I(cd)P 160.76 1.18 1.26 1.23 1.13 1.05
D(ah)A 177.98 1.76 2.57 4.76 3.32 1.06
B(ghi)P 23.08 2.58 2.65 4.23 2.12 1.33
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of processes occurring during wastewater treatment with 
aerobic granular activated sludge [19,20]. Most often, pre-
sented ANNs models focus on approximation of nitrogen, 
phosphorus and carbon compounds expressed as COD 
during wastewater treatment in batch reactors operating with 
activated aerobic granular sludge [21,22]. The transformation 
mechanism of these compounds both in anaerobic and aero-
bic conditions is well known. This fact is directly related to 
the selection of input variables to the model and the possi-
bility of their initial narrowing without the use of additional 
tools [23,24]. The process of PAH modelling is additionally 
hindered by the fact that these compounds show different 
degradation mechanism under anaerobic and aerobic con-
ditions [25], and additionally those compounds are partially 
subject to biosorption processes [26].

The degradation processes reflection involving microor-
ganisms is a relatively complex process in its nature. It requires 
consideration of a number of factors that are not controllable 
and may concern only selected microorganisms [27]. In the case 
of activated sludge processes, mathematical description is fur-
ther complicated by the fact that in the mineral-organic struc-
ture of aerobic granules, a consortium of both anaerobic and 
aerobic microorganisms is present, which differ in decomposi-
tion mechanism of individual HMW PAHs [28,29]. Therefore, 
generalized values describing the biomass behaviour in the 
wastewater treatment process are used for modelling. Most 
frequently, the papers on wastewater treatment modelling pro-
cess with the use of aerobic granular activated sludge include 
the active sludge volume index, reactor loading with BOD 
or COD, sludge retention time in the chamber, active sludge 
growth and age of active sludge [30–32]. A similar approach 
was applied in the ANN models describing benzo(a)pyrene, 
indeno(c,d)pyrene, dibenzo(a,h)anthracene and benzo(g,h,i)
perylene changes in the anaerobic and aerobic phases of the 
GSBR reactor. Apart from activated sludge technological 
parameters, an important element of wastewater treatment 
process modelling is to take into account the technological 

parameters of batch reactor, in which the process is carried 
out. Zaghloul et al. [33] suggest that the models should take 
into account the duration of individual GSBR process phases, 
volumetric exchange coefficient and concentration of dis-
solved oxygen in the aeration phase. In the presented ANN 
models, technological parameters of the GSBR reactor were 
not taken into account in the input variables layer. This was 
due to the fact that technological parameters of GSBR reactor 
in conducted experiment were constant. Therefore, they are 
the boundary conditions of the developed ANN models.

4. Conclusions

•	 The developed ANN models approximated changes in 
benzo(a)pyrene, indeno(c,d)pyrene, dibenzo(a,h)anthra-
cene and benzo(g,h,i)perylene concentration both in 
anaerobic and aerobic GSBR reactor phases with the accu-
racy exceeding 99%. The matching accuracy of individual 
models is also reflected in basic statistics of approximated 
and observed data sets, which are similar in value.

•	 All developed ANN models showed the highest sensitiv-
ity to benzo(a)pyrene, indeno(c,d)pyrene, dibenzo(a,h)
anthracene and benzo(g,h,i)perylene concentrations at 
the beginning of modelled GSBR reactor process phase.

•	 Activated sludge technological parameters had less influ-
ence on the calculation course of ANN models. This phe-
nomenon could be caused neither by significant influence 
of HMW PAHs nor increased activated sludge BOD load-
ing rate on activated sludge technological parameters nor 
wastewater treatment process.
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Table 8
Basic statistics on observed (O) and approximated (A) values in anaerobic (An) and aerobic (Ae) GSBR process phases

HMW PAH Arithmetic mean Median Min Max SD

B(a)P- An (O) 4.63 2.81 1.66 13.20 3.44
B(a)P- An (A) 4.61 2.42 1.68 12.39 3.41
I(cd)P- An (O) 5.63 3.42 2.01 16.15 4.20
I(cd)P- An (A) 5.61 3.03 2.10 15.09 4.10
D(ah)A- An (O) 3.96 2.33 1.39 11.57 3.00
D(ah)A- An (A) 3.94 2.06 1.41 10.88 2.97
B(ghi)P- An (O) 4.73 2.96 1.74 13.11 3.42
B(ghi)P- An (A) 4.76 2.62 1.62 12.21 3.39
B(a)P- Ae (O) 3.12 1.28 0.54 10.94 3.14
B(a)P- Ae (A) 3.11 1.14 0.54 10.30 3.11
I(cd)P- Ae (O) 3.81 1.57 0.65 13.47 3.86
I(cd)P- Ae (A) 3.79 1.36 0.67 12.36 3.79
D(ah)A- Ae (O) 2.68 1.06 0.45 9.62 2.74
D(ah)A- Ae (A) 2.68 0.97 0.49 9.05 2.69
B(ghi)P- Ae (O) 3.18 1.35 0.56 10.90 3.16
B(ghi)P- Ae (A) 3.17 1.19 0.72 10.31 3.09
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