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a b s t r a c t
Effluent from paper industry was oxygenated till saturation using Lark Hygiene Fermenter at 25°C 
under real time environment. Time, speed, and feed concentration were selected as dominant input 
factors to determine the dissolved oxygen (DO) under response surface methodology (RSM) based 
Box–Behnken design to provide 17 experimental runs. The experimental results were optimized 
using RSM and artificial neural networks (ANN). From RSM analysis, a second-order quadratic 
representation for single objective optimization was successfully fitted which produced R2 = 99.07 
and R2

adj = 97.87. Analysis of variance results shows that time and feed concentration were the most 
significant parameters than the speed, influencing the DO. Another single objective optimization 
tool ANN produced R2 = 96.27 and R2

adj = 94.06. Validation analysis provided the predicted values by 
RSM and ANN were close to the validation values, whereas RSM showed a better prediction than the 
ANN with the lowest deviation. Hence, the optimal condition predicted by RSM was taken to con-
duct the confirmatory experiment. The confirmatory experimental condition of time at 6 min, speed 
of 142 rpm with 90% concentration produced the minimal DO of 5.38 ppm. The error percentage 
of the predicted with confirmatory experimental and theoretical equations results were 1.11% and 
0.035%, respectively, which validates the predicted model.
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1. Introduction

Keeping in mind the environmental friendliness aspects 
of effluents released from any chemical industry, an attempt 
is made to optimize the dissolved oxygen (DO) in the efflu-
ents released from the paper industry. Contaminants can be 
detected at reduced concentrations and techniques to treat 
the same and to identify the degree of reduction of concen-
tration to the required level are available [1]. When compared 
to the domestic and commercial waste waters, the industrial 
waste waters are highly polluted. The characteristics of the 
effluents differ from industry to industry as well as depend 
on the processes [2].

Contamination manifests via various medium, and 
mainly through water and air. The industrial waste water 
with various degrees of biochemical oxygen demand released 
from chemical processing industries, and other industrial 
units, is the major source of water pollution [3]. Saravana-
thamizhan et al. [4] employed artificial neural networks 
(ANN) and response surface methodology (RSM) modeling 
to study and develop the prediction model for electro-oxi-
dation of Acid Red 88 dye house effluent using Ruthenium 
oxide-coated electrode in a CSTER; and confirmed the sat-
isfactory matching of the ANN model, with the experimen-
tal observations. Ghosh et al. [5] investigated the ability to 
remove Cu2+ ions from aqueous solution using calcium oxide 
[Ca(OH)2] treated orange peel and optimized the process 
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parameters using RSM and ANN. Their optimization process 
showed a close interaction between the observational and 
modeled values of copper removal.

Huang et al. [6] research was conducted on urban river 
(Nanfei) in China. Authors were investigated, longitudinal 
profiles of DO and other related water constituents with 
high spatial goals observing at low stream. A DO model for 
the span was redone and aligned with the data obtained. 
Venkatesh Prabhu et al. [7] focused on the modeling and 
optimization of the decolorization procedure of real textile 
dye, and process parameters were optimized and compared 
using [8] a system model with two time-varying parameters 
used to relate the DO concentration in a bioreactor and model 
parameters were estimated using a regularized constant 
trace recursive least-squares method. An extended Kalman 
filter was used to remove the effect of noises from the DO 
concentration measurements and thus to improve control 
performance. Mondal et al. [9] investigated the removal of 
ranitidine hydrochloride from simulated pharmaceutical 
aqueous solution using steam-activated charcoal from mung 
bean husk by batch adsorption technique and showed that 
ANN has better prediction capability than RSM. Rokhina 
et al. [10] observed the pulp mill effluent treatment, using 
ruthenium on carbon, as the Novel Catalytic Adsorbent in 
the presence of hydrogen peroxide. They developed an opti-
mization process and a mathematical process model with an 
orthogonal second-order design.

Arulmathi et al. [11] studied the electrochemical treat-
ment optimization process and suggested that the COD and 
colour of distillery spent wash can be treated using Ti/Pt as an 
anode (batch mode) using RSM. Barrak et al. [12] observed 
that when reduced to industrial circumstances of the SITEX 
(Textile Industrial Company-Ksar Hellal, Tunisia), the treat-
ment of Indigo dye (leuco form), reduced in the industrial 
circumstances through a batch electro coagulation with alu-
minum electrodes. For color removal [CR (%)] optimization 
they used RSM and BBD. Ahmad et al. [13] used RSM to study 
the coagulation–flocculation process optimization of palm 
oil mill effluent. Thirugnanasambandham et al. [14] experi-
mented the application of RSM in the chemical coagulation 
process optimization in treating the waste water from the 
rice mill and to study meat industry waste water treatment 
by the enzymatic catalysis treatment method using lacasse.

Revollar et al. [15] proposed an IMC based PI control 
structure to improve the overall waste water treatment plant 
performance. The efficiency index considered as the propor-
tion between the nitrogen expelled in the actuated sludge 
process and the energy required for taking out that measure 
of nitrogenated mixes and the efficiency index is used as the 
controlled variable in order to maintain the DO as close as 
possible to set point. Tony et al. [16] identified that one of 
the potentially useful oxidation process in the treatment of 
waste water effluents by RSM analysis, is the photo–Fenton’s 
process. Tetteh et al. [17] focused the industrial mineral oil 
wastewater pre-treatment using RSM.

Guoweishu et al. [18] studied the effect of liquid, solid 
ratio, cellulose concentration, and reaction time on the 
extraction of jili polysaccharide from fruits of Tribulus ter-
restris L. Zahraee et al. [19] analyzed to integrate simulation 
modeling along with RSM and design of experiments in 
order to analyze and improve the productivity in a selected 

continuous paint manufacturing industry. Yang et al. [20] 
considered the real alkaline cleaning waste water for analysis 
and it was treated by a process consisting of neutralization, 
NaClO oxidation, and aluminum sulfate coagulation and a 
novel RSM coupled nonlinear programming approach was 
developed and used to optimize the oxidation–coagulation 
process under the constraints of relevant discharge standards.

Qiu et al. [21] used the application of Box–Behnken 
design (BBD) with RSM for modeling and optimizing ultra-
sonic oxidation of arsenite with H2O2. Saravani et al. [22] 
addressed the influence of various process parameters on 
the biosorptive foam separation performance of o–cresol 
onto Bacillus cereus and cetyl ammonium bromide using 
RSM. Wu et al. [23] addressed the application of the BBD 
to optimize the process parameters of foam cup molding. 
Suguna Nanthini et al. [24] developed an automated expert 
system using soft computing techniques such as fuzzy 
logic, neural network, evolutionary computation to analy-
sis EEG signal classification. Mourabet et al. [25] used RSM 
for optimization of fluoride adsorption in an aqueous solu-
tion. Navamani Kartic et al. [26] addressed the importance 
of RSM and ASM modeling approach for pigment industry 
effluent. Nie et al. [28] projected their work on field studies 
of naidid distribution in a drinking water plant were con-
ducted, and the effects of temperature and DO on naidid 
population dynamics were investigated using the life table 
method. Literatures show that very few studies reported 
quantitatively on the effect of dilution and the duration of 
aeration of DO [6]. This work investigated experimentally 
the effect of effluent to water ratio and its effect on DO. The 
significance of input function such as time, speed, and feed 
concentration toward the contribution of DO was analyzed 
using [18] BBD and ANN [5]. Based on the data analysis var-
ious models were analyzed and found that best fitted one is 
found to be a second-order quadratic model [11,17]. RSM 
and ANN were implemented to optimize the significant 
batch process.

2. Materials and methods

2.1. Experimental setup and procedure

Aeration and agitation are important variables to pro-
vide an effective oxygen transfer rate during aerobic pro-
cesses [6]. Hence, the knowledge of the volumetric mass 
transfer coefficient (kLa) is required. Mass transfer and mix-
ing are mostly influenced by stirrer speed, type and num-
ber of stirrers and gas flow rate used. Also, the knowledge 
of gas hold up (φG) in a bioreactor is essential in order to 
establish its aeration efficiency and to quantify the effects 
of operating variables on oxygen supply. In this work, DO 
level in the fluid is considered for analysis and is measured 
using DO probe, Lark Hygiene Fermenter, model: SS316L, 
4–20 mA for inline measurement of oxygen in the reactor. 
The gas hold up is φG is obtained using Eq. (1), for Reynolds 
number = Re0.7(ndi/VG) 0.3 < 30,000, is (Treybal [27]).
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VG = superficial gas velocity (m/s); Vt = terminal settling 
velocity of a single bubble (m/s); µG = gas viscosity (kg/ms); 
µL = liquid viscosity (kg/ms).

And the kLa is determined using Eq. (2) [29]
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where kLa is the volumetric gas–liquid mass transfer 
co-efficient, (1s–1), N is the impeller speed, rps; Ncd is the min-
imum impeller speed for complete dispersion of the sparged 
gas, rps.

Further, the fractional DO is found out using Eq. (3) [30]
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where DO is the fractional dissolved oxygen; Co2* is the 
concentration of oxygen at saturation in ppm; Co2

i is the 
initial concentration in ppm. Co2 is the concentration of oxy-
gen at any time t in ppm.

The DO concentration in ppm at time t can be calculated 
from Eq. (4). As air flows into the semi-batch reactor from the 
compressor, oxygen dissolves and obviously DO increases. 
Eq. (3) shows that a plot of ln(1–DO) vs. time is linear with 

negative slope equal to kLa. Based on theoretical analysis, real 
time experiment was carried out in semi batch fermenter.

The schematic diagram of the experimental set up for 
the process model used in this study shown in Fig. 1 and 
Table 1 shows semi-batch fermenter dimensions and the 
operating variables range of process setup which consist of 
a Lark hygiene fermenter, peristaltic pump, effluent stor-
age, rotameter, DO probe, magnetic stirrer, control valve, 
and personal computer (PC). The 1.5 L fermenter has provi-
sions for adjustment of air flow, temperature, and speed of 
the stirrer. Fresh effluent was diluted with water to obtain 
various feed concentrations ranging from 10% to 90% in 
steps of 40%.

One liter of the effluent of known feed concentration was 
charged into the fermenter from the storage tank using a per-
istaltic pump. The DO was monitored using an online Lark 
DO probe interfaced with a PC. At time t = 0, purified air was 
suddenly metered through a Gallenkamp rotameter at a rate 
of 1 Lpm. The DO was monitored and recorded for three inlet 
feed concentrations (10%, 50%, and 90%) and three speeds 
(135, 145, and 155 rpm) with respect to time till saturation 
(0, 15, and 30 min). The experimental data for the input of 
90% feed concentration at speeds of 135, 145, and 155 rpm are 
shown in Fig. 2. Similar data were obtained for other effluent 
feed concentrations and speeds.

2.2. Experimental design employing BBD with RSM

For evaluating the relationship between input factors 
and responses (or) experimental outputs, [11,12] RSM is the 

 

Fig. 1. Experimental setup for process model.

Table 1
Semi batch fermenter dimensions and operating variables ranges

Fermenter vessel Total Volume: 3 L, H × D: 250 × 150 mm

Mixing assembly
Contamination free with lip seals and Viton V-rings, two smooth bearings, two height adjustable ruston 
impeller with six blades each, three baffles

aeration air sparger–L–type with Micro pores, Air outlet with 0.2 micro filter
agitation Stirrer motor PMDC, Speed range: 20–1000 rpm, Accuracy: 1 rpm

DO control
DO range: 0–100%,
Accuracy: ±1% or 0.1 mg/L

Rotameter Range: 0.5 to 5 L/min
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best suited empirical optimization technique. RSM method 
has adopted the combination of factorial design methods 
such as BBD and central composite designs [10,18]. Making 
use of BBD can precisely reduce the number of experimen-
tal sets without affecting the optimization accuracy when 
compared to the conventional factorial design method [21]. 
Table 2 illustrates the coded variables and uncoded variables 
with minimum and maximum ranges for three factors [23]. 
The following equations describe the relationship between 
the coded and uncoded variables.
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where A1, A2, and A3 are the uncoded variables and a1, a2, 
and a3 are the coded variables, respectively. Clearly, all three 
uncoded factors have their own units. To make the factors 
dimensionless, coded variables are introduced [17]. The 
effects of these three variables on the DO can be approxi-
mated using a quadratic model as shown in Eq. (6)
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where Y = the predicted response (DO in ppm); b0 = the off-
set term, bi = the linear effect, bii = the square effect, bij = the 
interactive effect and Xi, Xj = the variables which are 
independent as well as coded [22,23].

2.3. ANN modeling

ANN is a machine learning technique with artificial 
neurons (processing units or elements) imitates the func-
tion of the human brain to perform a data classification pro-
cess [5,7]. Feeding forward of neurons from one input layer 
to one output layer is called a perceptron. Perceptron is a 

linear classifier. Back propagation algorithm and perceptron 
are second generation neural network [9]. Back propaga-
tion technique is used as a model for the neural network in 
order to minimize the objective function [26]. Levenberg–
Marquardt algorithm is used for training the network and 
the performance of the system is measured by using mean 
square error (MSE). The Levenberg–Marquardt algorithm 
works as follows: The algorithm also known as a damped 
least squares method. It works with a gradient vector and 
the jacobian matrix. It has been designed to work with loss 
function (sum of the squared errors).

Consider the loss function of the form:

f e i mi= = …∑ 2 0 1, , ,  (9)

where m is the number of vectors in the data set.
Jacobean matrix of the loss function can be defined as:

J f w
de
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i m j nij
i

j
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where m stands for the number of vectors and n stands for the 
number of parameters.

Therefore, we can compute the gradient vector of the loss 
function as:

∇ = ×f J Et2  (11)

where E stands for error terms and J for Jacobean Matrix.
Finally, the approximation of the hessian matrix as;

Hf ≈ × +2J J IT λ  (12)

Here, λ is the damping factor and I symbol stands for 
identity matrix. When λ is large, it becomes gradient descent 
with a small training rate.

Therefore, the parameters improvement process with the 
Levenberg–Marquardt as;

w w J J I J e ii i i
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i i
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1
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A drawback of this algorithm is that it cannot be relevant 
to the root mean square error function. It requires a lot of 
memory when the data sets are big. Jacobean matrix will be 
huge for big data sets when we train the neural network.

The neural network tool in Matlab (R2016b) developed 
by the Math Works Inc., (Massachusetts, USA) was used in 

 

Fig. 2. Effect of variation of DO vs. Time for 90% paper effluent 
for 135, 145, and 155 rpm.

Table 2
Three factors’ minimum and maximum levels—in terms of 
coded and uncoded symbols.

Experimental variable
Variables Levels

Coded Uncoded –1 0 1

Time (min) a1 A 0 15 30
Speed (rpm) a2 B 135 145 155
Concentration (%) a3 C 10 50 90
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this study. All possible combinations of parameters and val-
ues in Table 2 were taken and the number of experimental 
trials was 27. The network architecture consisted of one input 
layer with three inputs, one hidden layer with 10 neurons, 
and an output layer as shown in Fig. 3. The ratio of input 
data taken for training, validation, and testing was 70:15:15. 
Levenberg–Marquardt algorithm (trainlm) was used for 
training the network and the performance was measured 
using MSE. These parameters such as time, speed, and con-
centration are used for training the neural network. The per-
formance of the model has been evaluated through MSE. 
The R2 value predicted by ANN is 96.27 and R2

adj
 is 94.06.

3. Results and discussion

The effects of time, speed, and feed concentration were 
estimated using BBD with RSM and ANN. Initially, to suggest 
a model to depict the relationships, considering the effects of 
interaction BBD with RSM and ANN were employed; so as 
to forecast and control the DO under various feed concentra-
tions and different rotational speeds. Then, the influencing 
tendency of every factor is explored using RSM and ANN. 
Finally, the optimal conditions are determined for engineer-
ing use.

3.1. Optimization and determination of RSM

Experiments were carried out using the Box–Behnken 
experimental design. Table 3 shows the statistical sum-
mary of lack of fits for each model determined using Design 
Expert V8 software [14]. The experimental and predicted 
DO are tabulated in the experimental conditions as shown in 
Table 4. A second order quadratic model was suggested with 

the better R2 and R2
adj [21]. For a quadratic relationship, the R2 

and R2
adj

 values were obtained as 99.07% and 97.87%, respec-
tively; it is obviously evident that the quadratic relationship 
confirms the effects of interaction of input parameters and 
its percentage of contribution is tabulated in Table 5. In gen-
eral, the significant parameters time, speed and concentra-
tion give a linear contribution, time, and concentration have 
a good interaction among themselves because of depen-
dency on saturation along with the levels of time only. So, 
the time crucially involves in the saturation process to deter-
mine the DO levels. In other hand air when bubbled through 
the effluent creates the immense turbulence which provides 
effective mixing among them. Due to this external mixing 
with mechanical stirring, speed along with time or concen-
tration does not have any impact to influence the DO lev-
els. Hence, the level of saturation toward DO level existence 
clearly give a positive response toward the quadratic effect 
of time and concentration. As an evident from analysis of 
variance (ANOVA) Table 6, in our context linear, quadratic, 
and interactive effect among the chosen parameters contrib-
uted in their own way mechanism for the determination of 
DO levels. Hence, the quadratic model was identified.

3.1.1. Model fitting and analysis of variance

As per the analysis by the model, the data was fit the cho-
sen quadratic [20]. The association between the DO and the 
three chosen parameters is shown in equation (14)

Dissolved Oxygen = + + × − × − ×

− × − ×

8 20 1 10 0 25 1 03
0 075 0 18

. . . .
. .

A B
C AB AAC BC A

B C
+ × − × −

− ×

0 23 0 44
0 088 0 29

2

2 2

. .
. .  (14)

 

 

Fig. 3. Artificial neural network architecture.

Table 3
Statistical summary

Basis Total of 
squares

Degree of 
freedom

Mean  
square

F-value p-value  
prob > F

Suggestions

Linear vs. mean 20.13 3 6.71 51.66 <0.0001
2F1 vs. linear 0.19 3 0.062 0.41 0.7493
Quadratic vs. 2F1 1.39 3 0.46 27.53 0.0003 Suggested
Cubic vs. quadratic 0.12 3 0.039 6.366E+007 <0.0001 aliased
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A, time in min; B, speed in rpm, and C, feed concentration 
in %.
The ratio, the explained variation to the total variation is 
defined as coefficient of determination (R2); a measure of 
the degree of fit. When a model yields an R2 of at least 0.9, it 
can be considered as a good model [19]. This means that, the 
process can be articulated in a well manner by the response 
model used in this investigation, at 95% confidence level, 
keeping R2 = 99.07% and an R2

adj
 = 97.87%. Additionally, it 

is palpable that this is a noteworthy model, from its value 
of F = 82.75 (F) model with the probability value as low as 
p < 0.001. The p < 0.05 is the clear indication that this model is 
statistically considerable.

A, B, C, BC, A2, and C2 are the noteworthy model from 
Table 6; the ANOVA results of the model obtained is shown. 
The coefficients for the quadratic terms for the time and 

feed concentration are indicated to be very significant, 
which infers that these factors have very big effects on the 
DO. Identification of dominant interaction effects study 
shows that the only interaction between time and feed 
concentration is more significant. This outcome also found 
that speed of stirring studies does not affect the time for 
saturation. Minimizing time of oxidation to achieve satu-
ration in terms of DO helps in reducing power required 
for running the compressor. Stirring does not affect as seen 
because the bubbling of air itself creates turbulence and bet-
ter mixing.

3.1.2. Model modification

After the significance of the parameters has been evalu-
ated, the model can be improvised by eliminating the very 
less significant terms. The final model for describing the rela-
tionship between the time, speed, and feed concentration is 
shown in Eq. (15):

Dissolved Oxygen = + + × − × − × +

× − ×

8 16 1 10 0 25 1 03
0 23 0 44

. . . .
. .

A B C
BC A22 20 29− ×. C  (15)

Although, the R2 value of 98.20 has decreased slightly, 
the R2

adj
 = 97.12, which is a more important factor for deter-

mining the fit of a regression model, has changed from 97.87 
to 97.12. Further P value of <0.001 denotes the more signif-
icant effect.

3.1.3. Model accuracy check

To obtain an ample model, an accuracy check is inevita-
ble; by comparing the predicted and experimental DO the 

Table 4
Experimental and predicted DO under different concentrations.

Run Coded variables Real variables DO (ppm)

a1 Time 
(min)

a2 Speed 
(RPM)

a3 Concentration 
(%)

A Time 
(min)

B Speed 
(RPM)

C Concentration  
(%)

Experimental Predicted

1 0 –1 1 15 135 90 7.0 6.85
2 1 1 0 15 145 50 8.2 8.20
3 –1 0 –1 0 155 50 6.4 6.54
4 0 1 1 30 135 50 9.1 8.96
5 –1 1 0 0 145 10 7.4 7.34
6 –1 0 1 15 135 90 6.8 6.87
7 –1 –1 0 15 145 50 8.2 7.20
8 0 0 0 15 135 10 9.2 9.35
9 0 –1 –1 15 145 50 8.2 8.20
10 0 0 0 30 145 90 7.2 7.26
11 0 1 –1 30 155 50 8.5 8.59
12 1 0 1 0 135 50 6.7 6.61
13 0 0 0 15 155 10 9.0 8.92
14 0 0 0 15 145 50 8.2 8.20
15 1 0 –1 30 145 10 9.9 9.89
16 1 –1 0 15 145 50 8.2 8.20
17 0 0 0 0 145 90 5.4 5.41

Table 5
Analysis of variance results for acquired model

S.no. Input parameters Percentage of contribution (%)

1 Time 48.11
2 Speed 2.49
3 Concentration 41.78
4 Time and speed 0.11
5 Time and concentration 0.61
6 Speed and concentration 1.01
7 Time2 4.01
8 Speed2 0.16
9 Concentration2 1.73
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accuracy of the model was checked. Fig. 4 shows the linear 
association between the predicted and experimental DO. In 
addition, a normal plot of residuals between the normal prob-
ability (%) and the internally studentized residuals was also 
obtained.

In this way, the residuals can be checked to determine the 
degree that the model satisfies the assumptions of ANOVA, 
and the internally studentized residuals can be used to mea-
sure the standard deviations separating the experimental 
and predicted values. Fig. 5 Shows the association among the 
normal probability (%) and the residuals, which are studen-
tized internally. No response transformation was required is 
inferred from the straight line and that there was no apparent 
problem with normality.

3.1.4. Response analysis

The relationships between the DO and these three fac-
tors are shown in Figs. 6–8. Every plot shows the effects 
of any two variables within their considered ranges, with 

the third variable fixed to the level of zero. The tendency 
of every factor in influencing the DO can be visualized bet-
ter in the response surface. An elliptical contour plot points 
out a prominent interaction, among two variables. From the 
surface of response and contour plot, it is evident, that the 
interaction effects of time and feed concentration is more 
significant.

Figs. 6a and b indicate speed has little effect on DO sat-
uration while Figs. 7a and b show that DO values change 
under feed concentration and time for a particular speed. 
Figs. 8a and b show once again that speed has little effect on 
DO variation with time and feed concentration. As it can be 
seen from these plots, speed is least significant factor as com-
pared to feed concentration and time. Feed concentration and 
time plays a greater role in saturation of the effluent studied. 
This effect suggests that speed of stirring does not affect the 
time for saturation.

Table 6
Analysis of variance results for acquired model

Basis Total of 
squares

Degree of 
freedom

Mean  
square

F-model  
value

P-value  
prob > F

Characteristics

Model 21.70 9 2.41 143.66 <0.0001 Significant
A time 9.68 1 9.68 576.68 <0.0001 Most Significant
B Speed 0.10 1 0.10 6.03 0.0437 Significant
C Feed concentration 10.35 1 10.35 616.67 <0.0001 Most significant
AB 0.02 1 0.02 1.34 0.2849 Not significant
AC 0.12 1 0.12 7.30 0.0306 Significant
BC 0.04 1 0.04 2.38 0.1666 Not significant
A2 1.16 1 1.16 69.14 <0.0001 Most significant
B2 0.00 1 0.00 0.00 1.0000 Not Significant
C2 0.17 1 0.17 10.03 0.0158 Significant
Residual 0.12 7 0.01
Lack of fit 0.12 3 0.03
Pure error 0.00 4 0.00
Cor. total 21.82 16

 

Fig. 4. Experimental and predicted data for paper effluent.

 

Fig. 5. Normal plot of residuals showing the relationship between 
normal probability (%) and internally studentized residuals.
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3.1.5. Modeling by ANN

ANN was used to develop a mathematical model using 
all the responses obtained from the experimental results. 
Fig. 9 shows regression plots done by ANN for train-
ing validation, testing, and overall predicted model [26]. 
Predicted response for DO by ANN is shown in Table 7. 
It can be observed that the overall R2 value for the model 
predicted by ANN was 96.27 and R2 = 94.06%; this model is 
suitable for modeling and optimizing paper industry efflu-
ent using DO as parameter. R2 values of training and testing 
also suggest that the model was sufficiently trained and it 
holds good for prediction of new value. Both predictions by 
RSM and ANN model are close to the experimental results 
but the R2 value of RSM prediction was higher than ANN 
prediction.

3.1.6. Condition optimization and confirmation tests

Based on the results of RSM and ANN, the predicted 
input factors were selected from RSM for the confirmatory 
experiment due to its closeness of fit (R2 and R2

adj), which is 
shown in Table 8. The Design Expert Software’s optimization 
function was used to find out the minimized DO. The min-
imized DO of 5.32 was predicted at a time of 6.2 min, feed 
concentration of 90%, and speed of 142 rpm. The confirma-
tory trials were administered keeping condition optimum to 
validate the predicted result from the RSM optimization. The 
study infers that time and feed concentrations individually 
contributed toward the minimization of DO. The interaction 
effect of time is predominantly significant toward the dif-
ferent concentrations of effluent. The minimum DO shows 
the fine agreement among the experimental and predicted 

 
Fig. 6. (a and b) The surface and contour plot indicate that speed has little effect on DO saturation.

Fig. 7. (a and b) The surface and contour plot shows that DO vary under concentration and time for a particular speed.



J. Sumathi et al. / Desalination and Water Treatment 188 (2020) 140–150148

 
Fig. 8. (a and b) The surface and contour plot shows once again that speed has little effect on DO variation with time and 
concentration.

 
Fig. 9. Regression plots for ANN model.
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results which authorizes the validity of the model with the 
error of 1.11%. From the predictive results on Table 9, it is 
obvious that RSM is a more powerful and effective tool for 
single objective optimization in a process, which is new.

4. Conclusion

This work investigates scientifically the effluent to water 
ratio effect on DO and the impact of stability of the process 
too, in a batch study. RSM and ANN models were imple-
mented to optimize the batch process. Based on the various 
models, data were analyzed and the best suited is found 
to be the quadratic model. From RSM the model fitted the 
experimental data well, with a coefficient of determination, 
R2 of 99.07% and R2

adj of 97.87%. From ANOVA time and feed 

concentration were linearly influenced the DO, whereas 
speed and feed concentration provided an interactive effect 
on DO.

However, the predicted ANN model showed the R2 of 
96.27 and R2

adj of 94.06, which ensures RSM prediction is 
performed better than ANN model. The optimal conditions 
predicted by RSM for DO, is at time 6.2 min, speed 142 rpm, 
and 90% feed concentration. The optimal response obtained 
from the RSM is very close to the confirmatory experimen-
tal value of 5.38. The error percentage obtained from the 
experimental and predicted value is 1.11% which validates 
the predicted and experimental data.

Acknowledgment

The authors express their gratitude for the financial sup-
port extended by the department of science and technology 
(DST–Government of India) Grant No. SR/FT/ETA-0017/2012 
and Technical Education Quality Improvement Program 
(TEQIP II).

References
[1] F. Burton, G. Tchobanoglous, H. David Stensel, Waste Water 

Engineering Treatment and Reuse, 4th ed., McGraw-Hill, 
New York, 2002.

Table 7
Predicted response for DO by ANN

A time (min) B speed (RPM) C concentration (%) Experimental Predicted

15 135 90 7.0 6.87
15 145 50 8.2 8.11
0 155 50 6.4 6.41
30 135 50 9.1 8.86
0 145 10 7.4 7.31
15 135 90 6.8 6.66
15 145 50 8.2 8.11
15 135 10 9.2 9.26
15 145 50 8.2 8.11
30 145 90 7.2 7.09
30 155 50 8.5 8.63
0 135 50 6.7 6.61
15 155 10 9.0 8.86
15 145 50 8.2 8.11
30 145 10 9.9 9.77
15 145 50 8.2 8.11
0 145 90 5.4 5.37

Table 8
Predicted and confirmatory experimental results for RSM

Result Time 
(min)

Speed 
(rpm)

Concentration  
(%)

DO  
(ppm)

Theoretical DO (ppm) as per 
Eqs. (3) and (4) ([29,30])

Predicted result using RSM 6.2 142 90 5.32 5.625
Confirmatory experimental result 6.0 142 90 5.38 5.623
Error percentage (%) 1.11 0.035

Table 9
Comparison of predictive capacity of RSM and ANN

Parameters RSM ann

RMSE 1.02 1.05
R2 99.46 94.06
R2

adj 98.77 94.26



J. Sumathi et al. / Desalination and Water Treatment 188 (2020) 140–150150

[2] S.K. Garg, Environment Engineering (Vol. II), Sewage Disposal 
and Air Pollution Engineering, Khanna Publishers, New Delhi, 
India, 2003.

[3] J. Sumathi, S. Sundaram, Effect of dilution and model analysis 
of distillery effluent using dissolved oxygen as parameter, 
Sens. Transducers J., 105 (2009) 113–118.

[4] R. Saravanathamizhan, K.H. Vardhan, D. Gnana Prakash, 
N. Bala Subramanian, RSM and ANN modeling for electro-
oxidation of simulated wastewater using CSTER, Desalin. 
Water Treat., 55 (2015) 1445–1452.

[5] A. Ghosh, K. Sinha, P. Das Saha, Central composite design 
optimization and artificial neural network modeling of copper 
removal by chemically modified orange peel, Desalin. Water 
Treat., 51 (2013) 7791–7799.

[6] J. Huang, H. Yin, S.C. Chapra, Q. Zhou, Modelling dissolved 
oxygen depression in an urban river in China, Water, 9 (2017) 
520.

[7] M. Venkatesh Prabhu, R. Karthikeyan, M. Shanmugaprakash, 
Modeling and optimization by response surface methodology 
and neural network–genetic algorithm for decolorization of 
real textile dye effluent using Pleurotus ostreatus: a comparison 
study, Desalin. Water Treat., 57 (2016) 13005–13019.

[8] S.C. Lee, Y.B. Hwang, H.N. Chang, Y.K. Chang, Adaptive control 
of dissolved oxygen concentration in a bioreactor, Biotechnol. 
Bioeng., 37 (1991) 597–607.

[9] S. Mondal, K. Aikat, G. Halder, Optimization of ranitidine 
hydrochloride removal from simulated pharmaceutical waste 
by activated charcoal from mung bean husk using response 
surface methodology and artificial neural network, Desalin. 
Water Treat., 57 (2016) 18366–18378.

[10] E.V. Rokhina, M. Sillanpaa, M.C.M. Bolte, J. Virkutyte, Optimi-
zation of pulp mill effluent treatment with catalytic adsorbent 
using orthogonal second-order (Box-Behnken) experimental 
design, J. Environ. Monit., 10 (2008) 1304–1312.

[11] P. Arulmathi, G. Elangovan, A. Farjana Begum, Optimization 
of electrochemical treatment process conditions for distillery 
effluent using response surface methodology, Sci. World J., 
2015 (2015) 9.

[12] N. Barrak, R. Mannai, M. Zaidi, M. Kechida, A.N. Helal, 
Experimental design approach with response surface metho-
dology for removal of indigo dye by electrocoagulation, 
J. Geosci. Environ. Prot., 4 (2016) 50–61.

[13] A.L. Ahmad, S. Ismail, S. Bhatia, Optimization of coagulation-
flocculation process for palm oil mill effluent using response 
surface methodology, Environ. Sci. Technol., 39 (2005) 2828–2834.

[14] K. Thirugnanasambandham, V. Sivakumar, J. PrakashMaran, 
S. Kandasamy, Application of response surface methodology 
for optimization of chemical coagulation process to treat rice 
mill wastewater, Environ. Sci., 9 (2014) 237–247.

[15] S. Revollar, R. Vilanova, M. Francisco, P. Vega, PI Dissolved 
oxygen control in wastewater treatment plants for plantwide 
nitrogen removal efficiency, IFAC-PapersOnLine, 51 (2018) 
450–455.

[16] M.A. Tony, Z. Bedri, Experimental design of photo-fenton 
reactions for the treatment of car wash wastewater effluents 
by response surface methodological analysis, Adv. Environ. 
Chem., 2014 (2014) 8.

[17] E.K. Tetteh, S. Rathilal, M.N. Chollom, Pre-treatment of 
industrial mineral oil wastewater using response surface 
metho dology, Water Soc. IV, 216 (2017) 181–191.

[18] G. Shu, C. Dai, H. Chen, X. Wang, Application of Box–Behnken 
design in optimization for crude polysaccharides from fruits of 
Tribulus terristris L., J. Chem. Pharm. Res., 5 (2013) 342–350.

[19] S.M. Zahraee, J.M. Rohani, K.Y. Wong, Application of computer 
simulation experiment and response surface methodology for 
productivity improvement in a continuous production line: 
case study, J. King Saud Univ. Eng. Sci., 30 (2018) 207–217.

[20] Y. Yang, Z. Zhou, C. Lu, Y. Chen, H. Ge, L. Wang, C. Cheng, 
Treatment of chemical cleaning wastewater and cost optimi-
zation by response surface methodology coupled nonlinear 
programming, J. Environ. Manage., 198 (2017) 12–20.

[21] P. Qiu, M. Cui, K. Kang, B. Park, Y. Son, E. Khim, M. Jang, 
J. Khim, Application of Box–Behnken design with response 
surface methodology for modeling and optimizing ultrasonic 
oxidation of arsenite with H2O2. Ent. Eur. J. Chem., 12 (2014) 
164–172.

[22] N. Saravani, M. Arulmozhi, Influence of various process 
parameters on the biosorptive foam separation performance 
of o–cresol onto Bacillus cereus and cetyl trimethyl ammonium 
bromide, J. Taiwan Inst. Chem. Eng., 67 (2016) 263–270.

[23] L. Wu, K.-l. Yick, S.-p. Ng, J. Yip, Application of the Box–
Behnken design to the optimization of process parameters in 
foam cup molding, Expert Syst. Applic., 39 (2012) 8059–8065.

[24] B. Suguna Nanthini, EEG Signal Analysis for Automated 
Epileptic Seizure Detection using Soft Computing Techniques, 
Thesis, SASTRA University, Thanjavur, India, 2017.

[25] M. Mourabet, A. ElRhilassi, H. ElBoujaady, M. Bennani-Ziatni, 
A. Taitai, Use of response surface methodology for optimization 
of fluoride adsorption in an aqueous solution by Brushite, Arab. 
J. Chem., 10 (2017), S3292–S3302.

[26] D. Navamani Kartic, B.C. Aditya Narayana, M. Arivazhagan, 
Removal of high concentration of sulfate from pigment industry 
effluent by chemical precipitation using barium chloride: RSM 
and ANN modeling approach, J. Environ. Manage., 206 (2018) 
69–76.

[27] R.E. Treybal, Mass Transfer Operations, 3rd ed., McGraw - 
Hill Book Company, Malaysia, 1981.

[28] X.-B. Nie, Y.-Q. Wu, Y.-N. Long, C.-B. Jiang, L. Kong, Impact 
of temperature and dissolved oxygen level on the population 
dynamics of naidids and their reproduction in biological 
activated carbon filters: a life table demographic study, Water 
Supply 19 (2019) 1363–1370.

[29] A.A. Yawalkar, A.B.M. Heeink, G.F. Versteeg and V.G. Pan-
garkar, Gas-liquid mass transfer coefficient in stirred tank 
reactors, Canad. J. Chem. Eng., 80 (2002) 840–848.

[30] L.A. Tribe, C.L. Briens, A. Margaritis, Determination of the 
volumetric mass transfer coefficient (k,a) using the dynamic 
“gas out-gas in” method: analysis of errors caused by dissolved 
oxygen probes, Biotechnol. Bioeng., 46 (1995) 369–392.


	bau0530
	bau0531
	bau0532
	bau0533
	bau1
	bau2
	bau3
	bau4
	bau5
	bau6
	bau7

