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a b s t r a c t
Monitoring of flashflood consequences in arid environments can be realized by using either active or 
passive remote sensing data based mostly on the acquisition circumstances and the tackled objectives. 
Mapping of sediment in shorelines is a practical example where both remote sensing data can be 
combined to obtain robust results. The study area located on the west coast for Saudi Arabia where 
the shoreline of Umluj city was under investigation after a significant flash flood took place. Remote 
sensing images comprise of synthetic aperture radar were utilized to map the sedimentation extent 
with the study area process that took place after a flash flood within the designated study area. Both 
images were analyzed and processed using change detection techniques to quantify the sedimen-
tation process. The late image was registered in August 2018 while the recent image was registered 
in March 2019 following an unusual flash flood event that occurred within the vicinity of the study 
area. Sediment deposits along the shoreline of the study area increased by nearly 171% and cover sea 
surface area closely to 4,500 km2. Consequently, the temporal monitoring of shorelines to map the 
sedimentation process thematically should be nature conservation priorities specifically in fragile 
ecosystems.
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1. Introduction

The implementations of Remote Sensing data in monitor-
ing of natural resources began along with conducted images 
from Landsat-MSS (multi scanner system) mission launched 
in the 1970 s. Primarily, remote sensing data sources were 
limited in spatial configurations and in time, where it was 
viewed and analyzed as passive remote sensing data type 
[1,2]. The uninterrupted improvement of the empirical and 
semi-empirical algorithms has been comprehensively testi-
fied in the last 40 years to overcome the mismanagement of 
the existing natural resources [3,4]. The conventional Remote 
Sensing data in terms of optical images weren’t always suc-
cessful to achieve the expected results in natural resources 

management due to the weather limitations signified as the 
atmospheric interferences [5,6].

The rule of remote sensing data in the estimation of soil 
erosion in addition to the assessment of sediment transport 
was fairly practiced after the conspicuous improvements of 
the empirical equations of soil lose knowns as the revised 
universal soil loss equation (RUSLE) and the erosion poten-
tial method (EPM). Both of those empirical equations can 
be only achieved if the soil physical parameters, digital ele-
vation model (DEM) derivatives, land use, and land cover 
classes, as well as the organic content of the soils, were tak-
ing into consideration [7,8]. Meanwhile, neither RUSLE nor 
EPM is applicable to estimate sediment transport over water 
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surfaces attributable to the lack of the crucial input param-
eters [9,10].

Thus, the demand for unconventional methods to esti-
mate sediment transport over water surfaces is a challenge 
to pursue. Radio detection and ranging images are able to 
overcome the limitations of implemented soil erosion algo-
rithms disregarding the atmospheric inferences [11–13]. 
Lately, free access to the European Space Agency (ESA) 
archives conveniences the natural resources management 
comprehensively [14,15].

One of the most used products in radar imaging of ESA 
is the Sentinel-1 instrument. The sensor produces a syn-
thetic aperture radar (SAR) images fashioned in C-band with 
high spatiotemporal resolutions regardless of the weather 
variability [14,15]. There are several applications of SAR 
images in natural resources management and disaster 
monitoring falling essentially between land and ocean nat-
ural resources management to efficiently mitigate the crisis 
management of natural resources [16,17].

SAR images were used to delineate sediment depos-
its based on the backscattering coefficient estimation in the 
intertidal area of the southwest Netherlands by Van Der Wal 
et al. [18]. Basically, surface roughness and moisture content 
vertical backscattering represent the synoptic feature of sed-
iment mapping using SAR data. Seabed roughness deter-
mined as a ripple structure correlated to the sediment mud 
content [19,20].

Negative correlation can be significantly drawn between 
sediment mud content and intertidal backscattering, while 
a positive correlation can be drawn between the grain size 
of sediments and the intertidal backscattering. Therefore, 
moisture contents backscatter is inefficient to differentiate 
intertidal zones [21,22]. The estimation of mud content and 
the detection of surface roughness were developed using the 
integral equation model on SAR images [23,24]

The shorelines of the Mediterranean region are sup-
plementary climate change susceptible specifically the rise 
of sea level [25,26]. Sea level rise intensity in the Medi-
terranean basin puts at risk the coastal habitats in the region 
through the destruction of natural wetlands and seawater 
intrusions [25,27].

The shallow shoreline and the island’s system of the 
western side of Saudi Arabia are considered to be fragile eco-
systems due to the lack of tolerance to the human activities 
inside the designated study area including the influences 
of the climate change which hasten the seawater intrusion 
and accordingly the loss of the shorelines [28,29]. The urban 
expansion because of the flourishing tourism taking place 
along Saudi Arabia western shoreline jeopardizes the bird 
migration, mangrove habitats and shallow water fishing 
[30]. Such development essentials to be observed and delim-
ited to preserve these natural habitats [31].

The goals of the contemporary investigation are to 
map and to quantify the sedimentation movements that 
occurred over water surfaces after a destructive flash flood 
took along with the shoreline of the coastal city of Umluj. 
These goals will be realized by analyzing temporal passive 
remote sensing data conducted from the Sentinel-1 instru-
ments that thematically map the delignated changes in the 
shallow shoreline of the study area. Sedimentation mapping 
and anomaly detection practices were implemented to the 

temporal SAR images to deliver consistent outcomes based 
on the transdisciplinary method of histogram processing, 
coherent image classification method.

2. Study area and research methodology

2.1. Study area description

The city of Umluj is located at the longitude of 
25°37′17.30′′N and the latitude of 37° 5′56.71′′E on the coast 
of the Red Sea fallen between Alwajh city to the north 
and Yanbu city to the south (Fig. 1). Lately, the city has 
thrived and extended tourism activities, industrial and 
urban expansion along the city coast shoreline [32]. The 
city includes several islands located 60 kilometers west of 
the city shoreline. These islands are Mount Hassan Island, 
Umm Sahar Island and Fuwaideh Island. The designated 
study area is characterized by natural habitats diversity. 
The natural habitats of the city shoreline are salt marshes, 
lagoons, and mangrove patches. These natural habitats are 
nesting the juveniles of the surrounding marine ecosystem 
as they are imperiled in such a fragile environment [33,34]. 
The study area is categorized as arid environments due to its 
low rainfall (16 mm/y) and its imbalanced temperature that 
reaches 46°C in summer, sea surface temperatures range 
from 21°C to 29°C throughout the year. Also, the study area 
is highly susceptible to flash floods as it the sink of the sur-
rounding catchments where rainfall may reach 120 mm. 
The northeasterly monsoon (October and November) and 
the southwesterly monsoon (April and May) are the most 
idiosyncratic phenomena that control the climatic features 
of the study area along with shoreline tidal action [25].

2.2. Remote sensing data

The SAR data were obtained from the Sentinel-1 sensor. 
Temporal data collection was assimilated in October 2018 
known as the archived image and in March 2019 known as 
the crisis image. The SAR images implemented in the cur-
rent research belong to the S1-A satellite, with the acquisition 
mode of Interferometric Wide (IW) and spatial resolution of 
10 × 10 m (pixel spacing). The product type of the obtained 
images is ground range detected with dual-polarization of 
VV and VH. According to De Zan, and Guarnieri [35] and 
Berger et al. [36], Sentinel-1A delivers C-band backscat-
tered imaging within the range from 4.0 to 8.0 GHz of the 
microwave part of the electromagnetic spectrum.

2.3. SAR images processing

Primarily, SAR images necessitate pre-processing pro-
cedures to ensure noise reduction and calibration to be 
related directly the pixel values to the radar backscatter 
intensities of the reflecting objects. Image pre-processing 
is a multitask that needs to be considered before data pro-
cessing. Orbit identification is a necessary task to identify 
the accurate position of the sensor and its velocity which is 
needed for orbit state vector correction.

Image calibration is a task needed to directly relate pixel 
value with the corresponding backscatter intensity of the 
scene. Image calibration can be achieved as follows [37]:
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where DN is the Digital Number, which one of the four 
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Terrain correction was practiced according to Small and 
Schubert [38] method of orthorectification using WGS-84 as 
a geographic coordinate reference system. Range-Doppler 
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where vs(t) = sensor velocity at “t” time; vp = Earth position 
velocity; P = (Px, Py, Pz), at any giving location; S(t) = Sx(t), Sy(t), 
Sz(t), sensor position at “t” time

Consequently, the backscattered radar intensities were 
transformed into “sigma-nought” image according to Lee et 
al. [39]. Furtherly, SAR data were stacked. Consistent with 
Osmanoğlu et al. [40], image stacking shall be achieved as 
follows:
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where B = the perpendicular baseline; m and k = the center 
of the image, T = the temporal baseline, fdc = the Doppler 
baseline; c = the critical baseline.

To examine each pixel value temporally by the mean of 
collocating two spatially overlapping products, the coregis-
tration task was conducted to ensure that the pixel value of 
the archive image is resampled into the geographical raster 
of the crisis image.

The adopted methodology involves temporal SAR data 
assessment; therefore, the image stacking is a prerequisite 
to conducting the assessment. In image stacking, tempo-
ral sigma-nought bands will be combined into one single 
image file following Osmanoğlu et al. [40] equation:
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where B = the perpendicular baseline; m and k = the center 
of the image, T = the temporal baseline, fdc = the Doppler 
baseline; c = the critical baseline.

Fig. 1. Location of the study area.
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2.3. Post classification comparison

The variance in pixel values amid the early acquired 
image (archive image) and the lately acquired image (crisis 
image) can be mapped using the pixel info tool that screens 
the whole scene looking for the utmost variances. The fore-
most used techniques in anomaly detection utilizing SAR 
images are the ratio change and the difference change [41]. 
The current research adopted the difference change detection 
technique for easier data interpretations

Change detection Difference = crises image
archive image

( ) −

 (5)

2.4. Accuracy assessment

The sedimentation mapping accuracy is based on anom-
aly detection of SAR images of Auclair et al. [42] and Wang et 
al. [43]. Practically, direct ground truth accuracy assessment 
is not feasible because it wasn’t known in advance the time of 
the flash flood will take place to collect corresponding sam-
ples. Therefore anomaly detection technique and its accuracy 
assessment come in handy to overcome ground truth sam-
pling as simply the only anomaly feature found over water 
surfaces at the time of the flash flood is only the sediment[44].

The accuracy assessment was conducted to estimate 
omission, commission, and overall accuracy. The Khat statis-
tics is a second measure accuracy agreement. This measure 
of agreement is based on Congalton and Mead [45] findings. 
Khat was calculated using the following equation:
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where r — number of rows in the error matrix; xii — number 
of observations in row i and column i (the diagonal cells), 

xi+ — total observations of row i; x+I — total observations of 
column I, N — a total of observations in the matrix.

2.5. GIS analysis

The quest of using GIS analysis is essential as the research 
study involves multiple data inputs that need to be stored, 
analyzed and produced as thematic results. The multiple lay-
ers of input data were conducted from different algorithms 
and exported to GIS to be probably configured. Consequently, 
the outcomes of the temporal SAR images processing were 
assigned into GIS environments for thematic interpretation 
of the detected shoreline changes.

SAR data were classified using an unsupervised classi-
fication algorithm due to the fact it contains only one band. 
Therefore the usually supervised classification algorithms 
won’t be successful. [46]. Unsupervised classification is a 
deterministic decision rule [47]. Based on the calculation of 
the optimum index factor (OIF), the used algorithm followed 
Chavez [48]:
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where sk = is the standard deviation from channel k; rj = is the 
absolute value of the correlation coefficient between any of 
the two channels being evaluated. The schematic flowchart of 
the adopted methodology is illustrated in Fig. 2.

3. Results and discussion

The implemented practices on the processed SAR 
designed to compare the quantification of sediments using 
in one hand the backscattered histogram slicing to visual the 
range of the tackled phenomena. The sedimentation process 
is the key feature to be consistently assessed.

The backscattered intensities were converted into decibel 
(dB) sigma-nought images to be accurately envisaged [49,50]. 

Fig. 2. Illustrates the framework methodologies adopted in the current research.
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The histogram of the archive and the crisis SAR images is 
illustrated in Figs. 3 and 4 correspondingly. The left side of 
the following histograms shows the absence of data har-
monization due to the numerous discrete peaks along with 
sigma-nought intensities of the image. Speckle filtration by 
means of Lee 3 × 3 windows [51] explains the targeted sig-
ma-nought range that essentials to be measured in order to 
compute the sedimented pixels. The red circle displays the 
anomaly of backscatter intensities over water surfaces mea-
sured in dB.

Based on anomaly change detection technique over 
shallow water developed by Matgen et al. [52], a Boolean 
operator to excerpt solitary the sedimented pixels was 
accomplished as follows: 255*(sigma-nought crisis <–25)

The applied Boolean condition transformed the SAR 
images into 0 and 1 image where is 1 signifies the sedimented 
pixels. Assessment of the sedimented pixels was a compara-
tively straightforward consistent procedure since there was 
a notable variance to discriminate the pixels relayed on the 
sea surface in the archive image (Fig. 5) and the overlapped 
sedimented pixels obtained from the crisis image in Fig. 6 
[22,50,53]. The total sedimentation area in the archive image 
was calculated to be 1,706 km2 while in the crisis image the 
sedimentation area over of the sea surface was calculated to 
be 4,500 km2.

Based on the fact that the SAR images are composed of 
only a single band (C-band) where most of the supervised 
classification algorithms will fail to classify these images 
[49,54]. Therefore, the use of the expectation–maximization 
(EM) classifier and based on OIF [55], unsupervised classifi-
cation promoted five different land cover categories founded 
by the SAR temporal images analysis. Arithmetical and 

graphical analysis of the corresponded images under EM 
classification is shown in Figs. 7 and 8 for the archive and the 
crisis images respectively.

The sediment class is represented by yellow in color in 
Figs. 7 and 8. It is very clear that sediment movements took 
place after the flash flood event and dispersed over the sea 
surface. The quantification of the sediment movements can 
be accordingly estimated using a simple structured query 
language (SQL) method of image subtraction.

Detection of sediments according to spectral signature 
variabilities over water bodies is limited due to data hin-
dering of the optical images as well as the influences of the 
atmospheric interaction within arid environments [56,57]. 
Consequently, radar images are used to improve environ-
mental monitoring though several applications developed 
recently such as SAR-stacking and classification enhance-
ments of optical/radar data fusion [58,59].

The Sentinal-1 data contributed mainly to water colo-
rimetry classification through the sea surface measurements. 
The classifications were improved because of the range-Dop-
pler terrain correction to detect sea level anomaly analysis 
in addition to the dynamic topography improvements of 
coastal environments [60–62].

Sediment movement quantification is a less complex pro-
duces to be undertaking in terrestrial ecosystems rather than 
aquatic ecosystems. In one hand, terrestrial ecosystems use 
empirical algorithms to calculate volumetrically the deposit 
of the sediment (ton/hectare/year) based on the utilization 
of the DEM derivatives to estimate the erosivity factor along 
with the organic content of the soils and different distribu-
tion of land use land cover classes [7,8]. On the other hand, in 
aquatic ecosystems, there are no topographic variables, and 

Fig. 3. Speckle filtration of the archived SAR sigma-0 intensity image in db.

Fig. 4. Speckle filtration of the crisis SAR sigma-0 intensity image in db.
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the conceivable quantification method to estimate the sedi-
mentation progression will be comprehensibly associated 
with the total water surface area covered by the sediment 
deposits [63,64].

The rapid changes in land use land cover classes took 
place along with the coastal ecosystems which they are frag-
ile and vulnerable to flash floods [7,33]. The recent flash 

floods that took place within the locality of the designated 
study area were the driving forces behind the obliteration 
of the natural habitats affected by the sediment movements. 
Conventionally, sediment deposits moved from the upper 
catchments and moved toward the watershed outlet into 
the sea can be calculated using the developed soil erosion 
empirical equations. Meanwhile, sediment movements 

Fig. 5. Sediment deposits mapping in the SAR archive image.

Fig. 6. Sediment deposits mapping in the SAR crisis image.
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over water surfaces require unconventional estimation 
methods that also consider tidal actions. The tidal actions 
and wind directions are the limiting factors of sediment 
dispersal over water bodies. These factors will limit the 
effectiveness of such a method to be time and spatial config-
uration-specific [65,66].

The role of climate change and its impacts on sea level 
rising is very essential to be considered when the sedimenta-
tion process is addressed in arid ecosystems. The sensitivity 
to the sea level rising of the study area as a part of Saudi 
Arabia western shoreline was previously discussed in several 
scholarly works [67]. Furthermore, human activities within 

Fig. 7. Expectation-maximization classification of the early image.

Fig. 8. Expectation-maximization classification of the late image.
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the study area accelerated the sedimentation movement 
along the shorelines rather than natural incidences of flash 
floods and tidal actions [50,68].

Biodiversity reduction along the shallow shorelines can 
be directly affected by the sea level rise due to the vulnera-
bility of the coastal ecosystems [68]. Several scholarly works 
concerning climate change and its influence on the sea level 
will rise is principally assured [69,70]. Accordingly, the 
uncertainty range of the assumed method in the sea level rise 
management shall reflect the predicted mitigation scenarios 
of climate change [70].

Despite the fact that Saudi Arabia is located in an arid 
semi-arid zone, it receives distrustful flash floods from time 
to time because of the slender range of the mountain belt 
that surrounds the western shorelines of the kingdom [71]. 
Consistent monitoring and routine valuations of the frequent 
flash floods won’t essentially remove the drastic effects of 
these events on the shallow shorelines but it will assist pol-
icymakers to reflect more consistent and more operative 
management plans towards the management of the shallow 
shorelines as well as the aquatic ecosystems [72].

4. Conclusion and Recommendations

The quantification of the sedimentation process was 
effectively realized in the current research using temporal 
SAR. SAR data were consistent in sedimentation mapping 
due to the penetration capabilities of the onboard C-band. 
The sediment deposits alongside the shoreline of the des-
ignated study area detected by SAR were counted to be 
4,500 km2 in the crisis image. Active remote sensing appli-
cations in multi-temporal data analysis provide a cost- 
effective and consistent approach for enhanced examina-
tion of the land use land cover change detection process. 
Lately, the accessibility of SAR data has overcome the lim-
itations of optical remote sensing acquisition under unfa-
vorable climatic conditions and makes the evaluation and 
the observation of the catastrophe’s phenomena applica-
ble. It is significant to inspect, in advance examination, the 
urban expansion within the surrounding areas due to the 
excess of the human activities along with climate change cir-
cumstances of sea level rising. These findings provide the 
standing analysis of the surrounding environments within 
the study area to adjust and to develop additional effectual 
restoration strategies. In conclusion, the outcomes of the 
current study robustly endorse new guidelines to take into 
consideration the adjacent areas that might directly or indi-
rectly interrupt the advancement of the selected study area.
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