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a b s t r a c t
A surface water quality assessment was carried out to explore the spatial variations between lakes 
and ex-mining ponds in Malacca with the aid of chemometrics tools. The physio-chemical data 
included pH, dissolved oxygen, total dissolved solids, electrical conductivity, biological oxygen 
demand, and ammoniacal nitrogen, which were measured in situ. Meanwhile, the elemental con-
centrations were determined by inductively coupled plasma mass spectrometry. Hierarchical cluster 
analysis of the water quality dataset revealed a clustering pattern that was strongly associated with 
their underlying geochemical variations. A similar trend was also demonstrated in the principal 
component analysis which suggested that the variability in the water quality depended mainly on 
the nature of ponds/lakes, whereby the dominance of Ca, Mg, electrical conductivity, and total dis-
solved solid could plausibly be linked with the dissolution of rocks; and part of the variation was 
originated from their current uses. Based on the linear discriminant analysis model, the ex-mining 
ponds were characterized with As, Ca, Mg, and Mn concentrations whereas Na, Fe, pH, and ammo-
niacal nitrogen levels were associated with the lakes. Despite the inherent variability characteristics 
between both water sources, the corresponding metal index revealed no significant As a threat. 
But, in most cases, Fe exceeded the reference limit, which was attributed to its natural abundance. 
Therefore, these surface water sources could be considered as potential reservoirs for potable supply 
after conventional treatment.
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1. Introduction

The need for adequate and safe drinking water is 
increasing globally due to urban expansion and an increase 
in human population [1]. The quality of water is a major 
factor of consideration to maintaining a healthy ecosystem 
due to the reported effects of water pollutants to humans, 
animals, and plants [2,3]. Many countries depend on surface 
water such as lakes and rivers, canals, and underground 
sources for daily human consumption and other domestic 
needs [4–6]. Rainfall is also used to support drinking water 
supplies and agricultural activities; this expanded the idea 
and need for rainwater harvesting [7,8]. Many other sources 
of water can be explored for daily water supply, and to meet 
up with the public demand.

Malacca experiences seasonal water shortages, and thus 
this causes limited water availability and potential issues of 
water quality. Therefore, there is an urgent need to search 
for other supporting sources. Malacca experienced the worst 
water crisis in 1991 due to a very low water level from its 
major reservoirs; the Durian Tunggal Lake (LDT) and Jus 
Dam (JD). These water sources are not enough to cater for 
the three districts of Jasin, Alor Gajah, and Malacca Tengah, 
and thus larger portion of the daily water supply in Malacca 
is imported from Muar River in Johor [9]. Furthermore, the 
authorities in Malacca have identified additional potable 
water sources to complement the public needs [10].

Surface water quality is greatly influenced by a myr-
iad of factors among which is mineral exploration such as 
mining [11]. In most developing countries, mining is asso-
ciated with lack of proper environmental laws and moni-
toring [12,13], thereby resulting in surface and underground 
water pollution [14–16]. The pollutants of concern are toxic 
metals which are not easily removed from the environment, 
and increase in organic matter usually associated with 
crushing and other mining operational processes [17,18]. 
The acidic medium generated is due to oxidation of metal 
ores which increases the metal levels in ex-mining water by 
liberating more metals into the solution [19–21]. However, a 
basic medium is observed when the basement or host rocks 
neutralize the acidity produced due to buffering processes, 
resulting in low metal levels [22,23]. Therefore, a detailed 
understanding of the geology and geochemical charac-
teristics is pertinent in evaluating the levels of hazardous 
metals in the catchments [15].

In this study, chemometric techniques which included 
hierarchical cluster analysis (HCA), principal component 
analysis (PCA), and linear discriminant analysis (LDA) 
were applied to evaluate the water quality dataset collected 
from selected ex-mining ponds and lakes in Malacca, in 
addition to the conventional metal index approach. The 
multivariate models were aimed to unveil the underlying 
variations in metal concentrations and physico-chemical 
parameters with respect to the geological influences and to 
characterize the water samples from both sources.

2. Materials and methods

2.1. Study area

Malacca is a state situated in the southwestern part of 
Malaysia which borders Negeri Sembilan to the north and 

west, and Johor to the south. The estimated population 
of Malacca is 913,210, with major land use as agricultural 
activities. Its small size and annual volume of rainfall result 
in limited water resources as compared to other Malaysian 
states [24]. Mining operation started in the 1820 s and 
expanded widely into the 1870 s until now. Tin mining 
is dominantly practiced with the resulting tailing which 
contains sand (80%), slime (20%), and sandy slime [12]. 
The geology of Malacca is mostly influenced by phyllite. 
However, there is sufficient quantity of limestone in Jasin 
district with substantial alluvium and schist sand extended 
up to Johor state [25]. Similar earlier findings by Schwartz 
and Askury [26] reported a sequence of limestone and pel-
itic deposits in Malacca with granite abundance, which is 
less evolved in terms of chemical composition. The largest 
surface of ex-mining land (356 ha) is found in Jasin District, 
where most ex-mining ponds in this study are located 
(Fig. 1). The ex-mining ponds in Malacca are mostly uti-
lized for recreational activities, such as picnics, surfing, and 
fishing; while the lakes are used for agricultural purposes 
and water supply as listed in Table 1. Agricultural activi-
ties around the studied sites are mostly rubber and palm oil 
cultivations with the largest rubber plantation industry in 
Malaysia, covering over 1,200 ha [27,28].

2.2. Materials

All reagents used were of analytical grade or better. 
Deionized water was obtained by using ELGA® PURELAB® 
UHQ II system (UK); HNO3 Suprapur® grade from Merck 
(Germany); multi-elemental calibration standard solution 
was from Agilent Technologies (Newcastle); certified refer-
ence material for trace elements in freshwater (SRM1643f) 
from National Institute of Science and Technology (USA). 
The plasticware involved were soaked in 15% HNO3 (v/v) 
and rinsed at least twice with UPW.

2.3. Sampling

By using Wildco water sampler, nine sub-samples were 
collected per site from a depth of 25 cm in October 2016 
which usually records low rainfall [17,31]. The samples 
drawn were immediately preserved to determine the total 
metals by the addition of concentrated HNO3 (Suprapur®, 
Merck) to pH < 2 before being transported to the laboratory 
in acid pre-clean polyethylene bottles conserved at 4°C [32].

2.4. On-site measurement

The physico-chemical parameters, that is, pH, electrical 
conductivity (EC), dissolved oxygen (DO), ammoniacal nitro-
gen (AN), and total dissolved solids (TDS) were analyzed by 
using YSI Pro multi-parameter portable water quality meter 
(professional series); and the biological oxygen demand 
(BOD) was determined via portable water meter (s/no 005) 
to minimize temporal changes due to bacterial concentration.

2.5. Elemental analysis

The preserved water samples obtained from the study 
sites were filtered via 0.45 µm polytetrafluoroethylene 
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(PTFE) membrane filters prior to the analysis of metals and 
metalloids by using an Agilent 7500ce (USA) inductively 
coupled plasma-mass spectrometer (ICP-MS). The concen-
trations of dissolved As, Ca, Cd, Fe, Mg, Mn, Na, and Pb 
were determined under the operating conditions as listed 
in Table 2, which was verified via SRM1643f [15]. For qual-
ity assurance, the validity of the process was inspected 
for every 10 samples by using quality control samples 
prepared from appropriate dilution of the reference solution.

2.6. Metal index

Metal index (MI) conveys the overall water quality 
by taking in to account the potential health effects related 
to the presence of metals and metalloids [33]. The basis 

of evaluation entails comparison between the measured 
concentrations against reference values, which can be 
expressed as below [34]:

MI
MAC

= ( )∑ Ci
i

 (1)

where Ci and (MAC)i are, respectively, the mean con-
centration for ith element and its maximum permissible 
level derived from the Malaysian Interim National Water 
Quality Standards (INWQS) of 50, 100, and 1,000 µg/L 
for As, Mn, and Fe, respectively [35]. The higher the ratio 
of Ci with respect to (MAC)i, the more deteriorated the 
quality of the water is. Therefore, MI > 1 is a threshold of 
warning which signifies a potential threat [33,36,37].

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Map of sampling sites.

Table 1
Details of sampling sites

Type Coordinate Sites Code Uses Estimated size (Km2) Reference

Ex-mining

2.5168°N 101.9633°E Lake Rantau LR Agriculture 1.98 [17]
2.2705°N 102.4881°E Lake Biru Chinchin 1 LBC1 Recreation 1.96 [29]
2.2711°N 102.4939°E Lake Biru Chinchin 2 LBC2 Recreation 0.89 [29]
2.2743°N 102.4931°E Lake Biru Chinchin 3 LBC3 Recreation 1.26 [29]

Lake

2.4440°N 102.4000°E Jus Dam JD Reservoir 5.5 [24]
2.3532°N 102.2989°E Lake Durian Tunggal LDT Recreational and Reservoir 0.91 [30]
2.2772°N 102.4850°E Lake Tebat LT Agriculture 0.68 [30]
2.2752°N 102.3022°E Lake Bukit Katil LBK Agriculture 0.59 [30]
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2.7. Multivariate analyses

The water quality dataset was preprocessed with 
Microsoft® Excel 2010, and the respective method detection 
limits were adopted for those non-detected cases. Pattern 
recognition techniques, that is, HCA, PCA, and LDA, were 
applied by using SAS® JMP Pro 12.

2.8. Hierarchical cluster analysis

HCA was performed on the standardized dataset to 
illustrate the spatial relation between the water samples 
by a dendrogram. The hierarchical linkages were con-
structed according to Ward’s method, whereby dissimilar-
ities were expressed in terms of Euclidean distance [16,38]. 
The hierarchical sequence of the selected water quality 
variables was further expanded via two-way clustering [39].

2.9. Principal component analysis

PCA was applied to the correlation matrix to explore 
the inherent pattern in the water quality dataset based on 
orthogonal transformation. This was achieved by summa-
rizing the original variation through a manageable num-
ber of uncorrelated principal components [40]. The score, 
zij, corresponding to ith PC of jth sample is given by linear 
combinations of m number of original water quality vari-
ables, Xmj, which be written as:

z a X a X a X a Xij im mji j i j i j= + + +…+1 1 2 2 3 3  (2)

where aim reflects the loadings where the number of extracted 
PCs was depended on those with eigenvalue > 1.

2.10. Linear discriminant analysis

LDA was applied to infer the spatial classification of 
water samples (i.e., ex-mining pond and lakes) based on the 
relative similarities of the between-group and within-group 
[15]. The canonical score, zjk, corresponding to jth discrimi-
nant function for kth water sample is expressed as:

z w w X w X w X w Xjk nkk k k n= + + + +…+0 1 1 2 2 3 3  (3)

where w0 is an intercept, w is the discriminant weight, and 
X is the water quality variable.

3. Results and discussion

3.1. Quality assessment and quality control

The accuracy of ICP-MS measurement was checked 
as shown in Table 3 with mean recoveries that ranged 
between 90% and 107% (whereby coefficients of determi-
nant R2 > 0.999, in all cases; which demonstrated the fitness 
in the determination of those elements in freshwater with 
a certain degree of confidence [41,42]. The detection limits 
of the metals under consideration are 0.0002, 0.0001, and 
0.6 mg/L, respectively, for As, Mn, and Fe.

3.2. Surface water quality

3.2.1. Physico-chemical characteristics

The physical-chemical measurements of the water 
catchments (Table 4) were found to be within the Drinking 
Water Quality Standard for raw water and Malaysia’s 
INWQS [35,43]. The pH of all sampling sites ranged 
between 6.5 and 8.5, except LR (10.3 ± 0.1) which was 
located in Negeri Sembilan state near Malacca with a more 
basic rock basement [44]. Similarly, LR that surrounded 
by much greenly vegetation has recorded the highest DO 
of about 9.16 mg/L, whereas less than 5 mg/L (the recom-
mended level) were observed in both LT and LBK. The low 
dissolved oxygen levels might be associated with the low 
water level at LT, whereby the imbalance between oxygen 
supply from the surface waters and removal of oxygen from 
bottom water, as well as the organic matter corresponding 
to residential discharges into LBK [45,46].

3.3. Metal index

The water quality status of the ex-mining ponds and 
lakes are listed in Table 5, which revealed a notable varia-
tion. According to literature reports, high metal concen-
trations including As are commonly related to ex-mining 
ponds [16,17,47–50]. For instance, elevated metal levels were 
reported in ex-mining ponds located in Pahang, Malaysia. 
However, such a trend was not apparent, whereby As was 
the only toxic element that was detected in all sampling 
sites [20]. The low metal concentrations observed could 
plausibly be explained by the buffering of waterbody due 
to dissolution of limestone host rocks. The acidic solution 
produced due to oxidation of metal ores liberated more 
metals in the solution, but the acidity is neutralized by 
the influence of limestone basement in the study area [51], 
thereby lowering the metal levels [21,52–54].

Among the metals only As, Mn, and Fe are considered in 
the MI computation so as to minimize the possible additive 
effects from other essential elements [34,55,56]. Moreover, 
the reference value for Ca is not even specified under 
the Malaysian drinking water standards INWQS [35,43]. 
As shown in Table 5, LT is a popular fishing lake with an 
overall MI of 2.71. Such value gives a negative impres-
sion on the corresponding water quality as it exceeded the 
reference limit of 1, which suggests potential health risks 
associated with its use [57]. The noticeable contributions 
could be linked with the arsenical pesticides used to pre-
serve wooden boats [58,59], in addition to the natural 

Table 2
ICP-MS operating conditions

Parameter Setting

Plasma RF powers, W 1,600
Reflected powers, W <15
Plasma gas flow, L/min 12
Carrier gas flow, L/min 0.9
Makeup gas flow, L/min 0.25
Collision gas Helium
Collision gas flow, L/min 3–5



323I.B. Koki et al. / Desalination and Water Treatment 197 (2020) 319–327

abundance of Fe and Mn in the soils and earth’s crust [60]. 
In this context, both Fe and Mn have considerably lower 
toxicity [61,62]; they can be significantly removed during 
the aeration stage of water treatment process [63–65]. 
Therefore, the impacts of Fe and Mn in LBC3, LR, JD, LT, 
and LB (MI > 1) should not be of health concern.

The MAC of the metals under consideration especially 
As (50 µg/L) is similar to that in Georgia, but much higher 
than European union and World Health Organization val-
ues of 10 µg/L [66]. Similarly, MAC for Mn is 400 µg/L [56], 
which is higher than INWQS of Malaysia. The differences 
in MACs result in variations in MI values, whereby larger 
MAC accommodates higher metal concentrations [57]. 
The MAC for Fe is 1,000 µg/L in all reference standards. 
Unless introduced in extreme quantities, iron does not cause 
any human health or other ecotoxicological risks [43,55,56].

The study findings on low metal concentrations in 
ex- mining ponds agreed with literature reports on the 

geological analysis of Malacca ex-mining lands which 
showed little or no influence of metallic elements [29]. The 
variations in metal concentrations could be due to the nat-
ural percentage abundance and geological background. 
Therefore, it is imperative to analyze and monitor the 
presence and levels of metals in water so as to identify the 
possible risk associated with its usage [67].

3.4. Hierarchical cluster analysis

The clustering patterns of the sampling sites with respect 
to surface water quality were examined by using HCA. 
The sites could reasonably be grouped into two main clus-
ters, reflecting the variability in water quality characteris-
tics as outlined in the two-way dendrogram (Fig. 2). Due 
to the similarities in underlying geological features and 
water chemistry, the catchments located in Jasin District 
formed a major cluster that partitioned from LR sited at the 

Table 3
Performance of ICP-MS on SRM1643f

Element Certified value (µg/L) Measured value (µg/L) Recovery (%)

As 57.4 ± 0.4 57 ± 2 98 ± 5
Ca (29.4 ± 0.3) × 103 (27.8 ± 0.2) × 103 95 ± 3
Cd 5.9 ± 0.1 6.0 ± 0.6 102 ± 9
Fe 93.4 ± 0.8 101 ± 1 107 ± 2
Mg (7.45 ± 0.06) × 103 (6.77 ± 0.08) × 103 91 ± 11
Mn 37.1 ± 0.6 39.2 ± 0.3 105 ± 1
Pb 18.48 ± 0.08 17 ± 2 90 ± 9

Table 4
Physico-chemical characteristics of water samples from lakes and ex-mining ponds

Type Ex-mining Lake

Site LBC1 LBC2 LBC3 LR JD LDT LT LBK
DO 5.1 ± 0.2 6.1 ± 0.1 5.0 ± 0.2 9.2 ± 0.3 4.9 ± 0.1 6.1 ± 0.5 4.6 ± 0.3 3.7 ± 0.1
BOD 0.90 ± 0.01 1.15 ± 0.02 1.16 ± 0.02 1.96 ± 0.01 1.25 ± 0.03 1.09 ± 0.01 2.12 ± 0.01 1.50 ± 0.01
pH 7.2 ± 0.1 7.3 ± 0.1 7.0 ± 0.1 10.3 ± 0.1 8 ± 1 7.2 ± 0.1 7.1 ± 0.1 6.9 ± 0.1
TDS 47.5 ± 0.1 59.0 ± 0.3 55.9 ± 0.1 77.0 ± 0.9 44.9 ± 0.1 61 ± 1 26.7 ± 0.1 48.0 ± 0.3
AN 0.02 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.22 ± 0.02 0.28 ± 0.04 0.17 ± 0.01 0.03 ± 0.01 0.09 ± 0.01
EC 82.3 ± 0.1 102.3 ± 0.1 97.5 ± 0.1 136.0 ± 0.5 77.4 ± 0.1 107.6 ± 0.1 46.0 ± 0.1 80.0 ± 0.4

Electrical conductivity in µs/cm, pH (no unit), other physico-chemical parameters in mg/L.

Table 5
Metal index corresponding to water samples from lakes and ex-mining ponds

Type Ex-mining Lake

Site LBC1 LBC2 LBC3 LR JD LDT LT LBK

As 0.19 0.13 0.14 0.05 0.01 0.03 0.21 0.09
Mn 0.23 0.51 1.12* 1.32* 1.28* 0.20 1.07* 1.70*
Fe 0.01 0.07 0.31 0.34 0.19 0.11 1.44* 0.86
MI 0.43 0.71 1.57* 1.71* 1.49* 0.33 2.71* 2.65*

The concentration of Cd and Pb were less than the limit of detection, and metal indices were <0.03 and <0.002, respectively.
*Metal and overall MI > 1.
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neighboring state [15,22,68]. Under similar circumstances, 
the Jasin cluster could be further subdivided based upon the 
background and/or uses of the catchment sites where the 
ex-mining ponds (LBC1, LBC2, and LBC3) were clustered 
and distanced from other lakes. Despite the division due to 
background differences, the attributions from similarities in 
the land use helped the agglomeration, for instance, those 
ex-mining ponds that were reclaimed for recreational activ-
ities were linked with a recreational lake (LDT). Such clus-
tering results suggested that the variability in surface water 
quality was strongly associated with the spatial pattern of 
catchment characteristics. In this regard, the variations of As, 
Mn, Fe, and BOD levels in catchments provided a reflection 
of the land use, as shown in Fig. 2.

3.5. Principal component analysis

The natural variations in the water characteristic bet-
ween the samples from ex-mining ponds and lakes were 
explored with PCA, whereby the first two PCs described 
46.2% and 23.6% of the total variance which mainly orig-
inated from the geological difference and land-use. As 
shown in Fig. 3, the PC1 loading with major components, 
that is, EC, DO, TDS, and Ca was indicative of the disso-
lution of rocks that corresponded to weathering/leaching 
[15]. In a similar context, the strong loadings of Mn, Fe, 
and BOD on PC2 could be attributed to the natural back-
ground concentrations and/or imbalance caused by the low 
water level of the sites. Low water levels could result in 
elevated concentrations of metals, especially with natural 

abundance. This is because, at low water level, there is a 
higher rate of metal exchange between the water column 
and bottom sediments. The extent of metal migration is 
influenced by its occurrence in the sediment, pore solutions 
in the bottom sediments, and the physico-chemical proper-
ties or states which emerge at the water/sediment bound-
ary [69–71]. Similarly, low DO and high BOD are associated 
with the bottom water in the aquatic ecosystem due to the 
imbalance between oxygen supply from surface waters 
and the removal of oxygen from bottom water [45,46].

Period of low water levels was also reported to be 
characterized by high EC [72]. Ex-mining pond LR was 
clearly separated from all other studied sites along PC1 with 
higher component loading, which could be due to dif-
ferences in land use and natural geological background. 
JD that is used as a reservoir is located around the origin; 
however, ex-mining ponds LBC and LDT which are uti-
lized for recreational activities, showed deviation from the 
origin and were loaded with As, Mg, and Na. Similarly, LT 
and LBK utilized for agricultural purposes deviated from 
the origin along PC2 and loaded with Fe, Mn, and BOD.

3.6. Linear discriminant analysis

LDA was successfully applied to examine the discrim-
inating features between the lakes and ex-mining ponds. 
Under such circumstances, ex-mining ponds are com-
monly associated with high metal levels as compared to 
lakes due to the impact of acidic pH [16]. The catchments 
of ex-mining ponds are commonly found in acidic nature 

Fig. 2. Two-way clustering of lakes and ex-mining ponds in Malacca.
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as the oxidation consequence of the parent ore. However, 
geological variations may lead to a basic pH to a certain 
extent. In a similar context, high EC is associated with an 
increased level of dissolved metals from crushed rocks by 
the ex-mining activities [16,73,74]. Therefore, As, Mn, Ca, 
Mg, and EC are the parameters associated with ex-min-
ing ponds, whereas pH and Na are associated with lakes 
(Fig. 4). Such outcomes support that weathering and 
dissolution of rocks are the main sources of metals in 
the ex- mining ponds. For instance, weathering of host 
rocks and mine tailing were found associated with high 
metal levels in mines and adjacent rivers [75,76].

4. Conclusion

This work revealed the spatial variations in quality 
parameters between lakes and ex-mining ponds in Malacca. 
The results demonstrated that the quality of surface water 
could not be judged solely based on the historical iden-
tity of the sites because the impacts of geochemistry and 
current land-use are more crucial. The outcomes of mul-
tivariate analyses suggested the major variations in the 
water quality were derived from the dissolution of under-
lying rocks and current anthropogenic inputs, such as agri-
cultural and recreational activities instead of ex-mining. 

Fig. 3. PCA biplot of metals and physico-chemical parameters in lakes and ex-mining ponds in Malacca.

Fig. 4. Canonical plot for the discrimination of water samples from lakes and ex-mining ponds.
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Since the contribution of As was relatively low, the overall 
MI suggested that those sources could be considered as 
the potential reservoirs for potable supply after conven-
tional treatment processes.
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