¢/ Desalination and Water Treatment
www.deswater.com

() doi: 10.5004/dwt.2020.26372

199 (2020) 451-463
September

Fate of selected emerging contaminants in wastewater treatment systems

Ewa Neczaj

Department of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology,

Brzeznicka 60a, 42-200 Czestochowa, Poland, Tel. +48 34 325 09 17; email: ewa.neczaj@pcz.pl (E. Neczaj)

Received 6 December 2019; Accepted 20 July 2020

ABSTRACT

Currently, the occurrence and fate of emerging contaminants in the environment is one of the most
studied subject mainly due to their not fully understood ecological effect. This review concerns
the occurrence of selected emerging contaminants in raw and treated wastewater and their fate
in wastewater treatment plants. The following classes of emerging contaminants were included
in these studies: antibiotics, antimicrobial agents, anticolvusnats, nonosteroidal anti-inflamma-
tory drugs, artificial sweeteners, lipid regulating drugs, steroidal hormones, X-ray contrast media,
stimulants, insect repellents, plasticizers, and nanoparticles. It was found that the concentration
of ECs in influent and effluent of wastewater treatment plants depends on many factors such as
geographic location, weather, population density, water supply, treatment system, sampling, and
analytical methods. A higher concentrations of most studied contaminants were higher in Asian
countries than in European and North America regions. Because it is not possible to remove
most of emerging contaminants during conventional treatment process, application of additional

treatment method in third treatment step in wastewater treatment plants is required.
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1. Introduction

Currently, one of the most important environmental
problems to be solved is the monitoring of emerging con-
taminants (ECs) in various environmental matrices and
reduction their negative impact on animals and humans
health. ECs is a group of various compounds and sub-
stances such as pharmaceuticals, artificial sweeteners (ASs)
and other food additives, endocrine disrupting chemi-
cals (EDCs), pesticides, industrial by-products, veterinary
products, nanoparticles that occur in the environment in
low concentrations and can cause an undesirable ecologi-
cal effect [1]. Several routes are known through which ECs
get into the environment such as hospitals, direct discharge
of raw municipal wastewater or effluent from wastewater
treatment plants (WWTPs) [2], industrial WWTPs, landfill

leachate [3], server overflow, and surface runoff from agri-
cultural and urban areas [4] (Fig. 1).

Due to low emerging contaminants removal efficiency
in the WWTPs they are still present in the water envi-
ronment. The concentration of ECs in treated wastewater
ranging from ng/L to pg/L and depends on many different
parameters such as the structure of ECs and their concen-
tration in the influent, treatment method, and geographical
regions [5]. It is unchanging that the main source of ECs in
the environment are human living and economic activities.

Although most of these substances occur in the aquatic
environment in very low concentrations, they are dangerous
because they are characterized by resistance to biodegrada-
tion or toxic effects on living organisms. For instance, it is
well-known that pharmaceutical compounds manufactured
in order to produce a biological response in a pathogenic
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estrogens were included in a European Union (EU) Water
Framework Directive (WFD) “watch-list” [9-11]. The aim of
the watch-list mechanism was mainly collection of high qual-
ity monitoring data of ECs concentration. Results obtained
during monitoring period could be used for future substance
prioritization and assessment of environmental risk of ECs
in European countries [12]. The research also contributed to

organism can affect the same way non-target entities [6].
Moreover, presence of antimicrobial agents (e.g., Triclosan
and Triclocarban) and antibiotics may accelerate devel-
opment of antibiotic resistance genes (ARGs) and bacteria
resistant to antibiotics (ARBs) which shade health risks to

humans.
In recent years, more and more publications show that the
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Fig. 1. Potential routes of ECs introduction into the aquatic environment.

the development of ECs detection methods in environmental
matrices. Many authors emphasize the need for optimization
the chromatography methods for detection of ECs repre-
senting extremities of physicochemical composition [13,14].
Another concern is that ECs do not appear individual in the
environment, so it is not possible to predict unwanted syner-

continues discharge of ECs into the environment by waste-
water treatment plants has a negative impact on the envi-
ronment. For example, numerous scientific studies reported
that steroidal estrogens estrone (E1), 17-estradiol (E2), (nat-
ural hormones), and 17-ethinyl estradiol (EE2) (synthetic
hormone) with unchanged form are discharged into surface
water together with effluent from WWTPs. Those hormones  gistic effect of their mixture.

have very high biological activity and cause reproductive Huge variety and amount of substances called emerging
toxicity at the population level [7]. It was found that that EE2  contaminants in wastewater and their still not fully known
can modulate the activity of enzymes responsible for neu-  toxicity requires a better understanding of their fate in waste-
rotransmission and detoxification [8]. Due to documented  water treatment systems and ecological impact. Therefore,
adverse effects on sensitive aquatic species those steroidal  the objective of this review is summarize current knowledge
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about occurrence and fate of selected ECs in WWTPs. The
occurrence of studied emerging contaminants in influ-
ents and effluents of WWTPs is categorized according to
each geographical region, that is, Asia, Europe, and North
America. The article presents the transformation paths of
ECs into wastewater treatment plant and their removal effi-
ciency. Several knowledge gaps and recommendations for
further research were also presented in this article.

2. Occurrence of ECs in raw and treated wastewater

Many compounds included to emerging contaminants
are not new, but their detection in raw and treated waste-
water was possible only in the last 20 y with the develop-
ment of analytical techniques. The environmental risk of
many ECs is not yet know because monitoring technique are
still in development [15]. Most of the monitoring data come
from WWTPs in Europe, North America, and Asia, mainly
from Japan, China, and South Korea, while very limited data
was available for other continents [5].

2.1. Occurrence of antibiotics and antimicrobials in WWTPs

Numerous studies indicate that WWTPs are important
reservoir of resistance genes due to the presence of bacte-
ria resistant to antibiotics, including human and animal
pathogens, as well as antibiotics in the wastewater [16]. The
sources of antibiotics are municipal, hospital and indus-
trial wastewater from pharmaceutical industry or from the
slaughterhouse. The biological reactor has favorable con-
ditions for bacterial reproduction, therefore the number
of bacteria is very large, which promotes the exchange of
genetic material through the horizontal gene transfer (HGT)
route [17]. Most antibiotics are not degraded in this condi-
tion and maintain their activity for a long time. Resistant
and multi-drug resistant bacteria, as well as the antibiotics
themselves, together with treated wastewater get into the
river or soil, and from there they can spread further, posing
a real threat to human and animal health [18]. It was found
that approximately 50%-90% of antibiotics are excreted
with urine and feces, and carried to wastewater treatment
plants. Some of antibiotics or their metabolic forms are par-
tially degraded during treatment processes but part of them
pass the process unchanged [5,18].

Figs. 2A and B, 3A and B show the concentration of
selected antibiotics in influent and effluent of WWTPs located
in different geographical regions. Those antibiotics belong
to nine classes commonly used by humans and animals,
and include: -lactams, linocosamides, fluoroquinolones,
sulfonamides, macrolides, tetracycycline group, reductase
inhibitors, amphenicols, and glycopeptides. Interpretation
of the data presented on figures is difficult because they are
achieved from different treatment systems, and are based on
different type of wastewater samples and detection meth-
ods. Nevertheless, some trends are noticeable, for example
macrolides, trimethoprim, fluoroquinolones, and sulfon-
amides were detected in raw wastewater as well in effluent
of WWTPs worldwide. Many authors reported that the main
factors affecting the concentration of antibiotics in wastewa-
ter are [5]: usage patterns in each country, water consump-
tion, sewer system, and degradation efficiency in WWTPs.

For example, although p-lactam antibiotics are very
widely used, their concentration in effluent is on a very low
level because their degradation in wastewater treatment sys-
tem is high [19]. Taking into account geographical regions it
could be assumed that in most Asian countries the concen-
tration of antibiotics in treated wastewater tend to be higher
than in North America and Europe [5,20].

Antifungal and antimicrobial agents (thiabendazole,
miconazole, triclosan, and triclocarban) have the same influ-
ence on development of ARGs in aquatic systems as antibi-
otics. Those agents are widely used in household products
such dermal creams, shampoos, shower gels, toothpaste,
soaps, and therapeutic products for elimination fungal
infection. The concentration of selected antifungal and anti-
microbial agents in influent and effluent of WTTP in differ-
ent geographic regions is shown in Figs. 2B and 3B. It can
be observed that concentration of triclosan and triclocarban
are very often higher than considered as predicted no effect
concentration (PNECs) for aquatic organisms and is gen-
erally higher in Asian region than in North Americans and
European countries.

2.2. Concentration of nonsteroidal anti-inflammatory drugs
(NSAIDs) in raw and treated wastewater

NSAIDs are one of the most investigated class of emerg-
ing contaminant, including among others diclofenac,
codeine, fenoprofen, naproxen, acetaminophen, ibuprofen,
ketoprofen, salicylic acid, and indomethacin. They are very
commonly used pharmaceuticals as painkillers and anti-
inflammatory drugs and their concentration in raw waste-
water can reach several 100 pg/L [21,22]. Figs. 2C and 3C
show significant fluctuations in concentration of NSAIDs
in influent and effluent of WWTPs depending on the geo-
graphical region. It can be associated with difference in use
patterns in individual countries, size of population, climate
condition, and sampling procedure. It was found that con-
centration of NSAIDs in raw wastewater is high mostly in
a highly urbanized region [23]. Analyzing the data in the
figures, it can be seen that the concentration of some ECs
in raw and treated wastewater was higher than PNECs for
aquatic systems, therefore potential long-term risk on this
environment can be expected.

2.3. Occurrence of anticonvulsants/antipsychotic drugs and
artificial sweeteners in WWTPs

In the years 2005-2008 antidepressant drugs were the
most frequently drugs used by person age 18—44 y, and third
most popular drug taken by American of all ages [24]. Drugs
from this group such as gapapentin, sulpride, and carba-
mazepine are most often detected in WWTPs [25-28]. The
concentration of those ECs varied from below detection limit
to 1,000’s of ng/L (Figs. 2D and 3D). Very often their concen-
trations detected in effluent were upper PNECs to aquatic
organisms.

Wastewater treatment plants are also the main recourses
of artificial sweeteners used in food additives and personal
care products [29,30]. As shown in Figs. 2D and 3D the
concentration of artificial sweeteners varied from several
to several thousand ng/L. Due to a good biodegradation,
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Fig. 2. Concentration range of selected ECs in WWTP influent in Europe, North America, and Asia: (A) Antibiotics, (B) Antibiotics and
Antimicrobials, (C) NSAIDs, (D) Anticolvulsants, artificial sweeteners and lipid regulators, and (E) X-ray contrast media, UV-filters,
hormones, and other pharmaceuticals and personal care products (adopted from Tran et al. [5]).

cyclamate, and saccharine are practically no detected in efflu-
ent, while acesulfame and sucralose are presence in treated
wastewater because those compound are resistant to degra-
dation in the wastewater treatment system.

2.4. Occurrence of selected hormones, X-ray contrast media, UV
filters, stimulant, anti-iching, insect repellent, and plasticizer in
WWTPs

Figs. 2E and 3E show concentration of selected ECs in
raw and treated wastewater taking into account geograph-
ical regions. One of the most frequently detected ECs in
raw wastewater are X-ray contrast media (ICM), which are
excreted by human mainly in unchanged forms [31-33].
Large fluctuations in concentrations of ICM in WWTPs

are observed, depending on different factors such as land
use patterns, sampling procedure, size of population etc.
Generally, those factors have influence on the concentration
of all ECs in wastewater. Because most of ICM are bio-trans-
formed with high efficiency their concentration in effluent
is rather low.

In addition, seasons are an additional factor influencing
the presence of UV filters in wastewater. For example, it was
found that concentration of octocrylene and oxybenzone in
WWTPs is higher in hot weather, which is logical because
they are more widely used then in cold weather. Other
classes of ECs shown in the above figures, such as bisfenol A,
caffeine, and DEET are occurrence both in raw and treated
wastewater, and very often the concentration were higher
than their PNECs to aquatic organisms [34-36].
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Fig. 3. Concentration range of selected ECs in WWTP effluent in Europe, North America, and Asia: (A) Antibiotics, (B) antibiotics and
antimicrobials, (C) NSAIDs, (D) anticonvulsants, artificial sweeteners, and lipid regulators, and (E) X-ray contrast media, UV-filters,
hormones, and other pharmaceuticals and personal care products (adopted from Tran et al. [5]).

2.5. Occurrence of nanoparticles in WWTPs

Nanomaterials are specific compounds which are char-
acterized by their regular structure at a molecular level.
It is well-known that these are materials which in at least
one external dimension are expressed in nanometer, that
is, not more than 100 nm, but this varies depending on
the material characterization and exhibit some special fea-
tures often unavailable to traditional materials. Therefore,
nanomaterials have been used in many fields of science

and industry, and their spectrum usage are very wide and
diverse. Particles in the nano-sized range have been pres-
ent on earth for millions of years. However, recent decades
have seen the emergence of manufactured nanoparticles,
and the substantial advantages of NPs are now widely rec-
ognized. Nanoparticles are used in various fields such as
medicine, computers, electronics, the automotive industry,
pharmacy, cosmetics, chemical industry, and more than
1,800 consumers products [37]. Commercially important
nanoparticles include mainly metal oxide nanopowders
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or iron oxides. Nanosilver materials are the most widely
used NPs while copper NPs seems to be most promising
during their low price. With increasing production and
application of NPs, their concentration increase in influent
and effluent of WWTPs is observed. WWTPs are import-
ant for preventing NPs from entering the natural environ-
ment. Wastewater treatment process have been observed to
remove the majority of NPs in aqueous effluents [38-40].
There is not much information on the concentration of
NPs in wastewater treatment plants. For example, it was
found that the concentration of TiO,-NPs in effluents of 10
municipal WWTPs in the USA varied from 52 to 20 mg/L
[41]. Other studies have found that in USA and Europe the
concentrations of nano-TiO,, nano-ZnO, nano-Ag in treated
wastewater were 1.75-4.28, 0.3-0.441, and 21.0-42.5 ng/L,
respectively [42].

3. Fate of ECs in WWTPs

During wastewater treatment process a different effi-
ciency of ECs removal in aqueous effluents have been
observed. The fate of a large part of emerging contaminants
in WWTPs is still unknown and has been identified as one of
the major knowledge gaps for accurate environmental risk
assessment. Although ECs may undergo transformation,
the primary process of ECs removal from wastewater will
be associated with biosolids (biosorption), and the removal
by sedimentation and/or filtration [5,43]. Thus, the released
part of ECs mainly ended in sewage sludge, which might
affect anaerobic digestion of sludge, and then its disposal
and reuse. An examples of the fate of NPs in a wastewater
treatment plant are shown in Fig. 4. However, reports on the
fate of NPs during wastewater treatment process has been
scarce in the literature. Most of the studies have focused on
the effect of NPs on the microbial growth activity, change
in the bacterial community structure, and decrease in the

WASTEWATER TREATMENT PLANT (WWTP)

PRIMARY TREATMENT

Collection System

! Bar Screen  Grit Separation

Table 1
Elementol analysis in municipal sludge

Metallic element  mg/kg

Primary Sludge (PS)

Ag 856
Al 57 300
Ca 98 900
Cu 1720
Fe 51000
Mg 13 500
Mn 1070 + Aggregation
Na 6080 * Adhesion to sludge (microbal cell surfaces)
P 57 200 % Entrapment
Ti 4510 % Complexation

In 1530 < Maybe degradation?

Sewoge sludge
polymeric substances
> 80% NPs are associated with the solid phase of sewage sludge

Fig. 4. Fate of selected NPs in WWTP.

I Primary Clarifier

4 Adsorption and interaction with extracellular

chemical oxygen demand and nitrogen removal. For exam-
ple, as NPs enter wastewater streams and end up at the
treatment plants, they inhibit some bacterial species in the
activated sludge and result in a reduction in the efficiency
in biological wastewater treatment [44]. During wastewater
treatment process and anaerobic digestion of sewage sludge
NPs are transformed. The way of transformation depends
on NPs properties and place of conversion [45]. For exam-
ple, AgNPs can be transformed into Ag ion, Ag,O, or Ag,S.
Several author showed that nanoparticles associate quickly
with the particles present in wastewater and then trans-
formed, in the case of AgO, via oxidation and sulfidation.
As shown in Fig. 4 more than 80% of NPs are associated
with the solid phase of sewage sludge.

It should be emphasized that wastewater treatment
plants have been designed primarily to remove organic pol-
lutants and nutrients and not to eliminate ECs. Generally,
most of the NCs pass through primary step of treatment
process (primary treatment on Fig. 4) without effective
elimination from wastewater. Only hydrophobic ECs can
be adsorbed onto primary sludge and partially eliminated
from wastewater [46-48]. During the secondary treatment
ECs are biology degraded (i.e., aerobic or anaerobic) with
different efficiency. This degradation can provide to min-
eralization or incomplete degradation to transformation
products via metabolisms and co-metabolism mechanisms.
Many studies indicate co-metabolism as the main path for
biodegradation of ECs and their resistant or toxic impact
on microorganisms [49-53]. It means that energy obtained
during biodegradation of most of ECs is not sufficient for
microbial growth and generation of enzymes involved
in biodegradation processes. Moreover, degradation effi-
ciency is correlated with process parameters like carbon
and nutrient sources as well as presence of microorganism
which provide co-metabolic degradation. Some of the ECs
can be removed from wastewater also via volatilization
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Return Activated Sludge
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POSSIBLE MECHANISMS REMOVAL AND INTERACTION OF NANOPARTICLES FROM WASTEWATER IN SEWAGE SLUDGE

“ Sorption onto large debris and/or other large particles and further gravitional settling
“ Interaction with other pollutans for example: colloids, organic matters, metals
% Agglomerate/conjugate for example: under the influence of addition of coagulants and flocculants

NPs - 50 nm Agglomerate - 10 um

Aggregate- 1 pm
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where volatile emerging contaminants are transferred to
gaseous phase [54].

4. ECs removal efficiency

As can be seen in Fig. 5 as well as in Table 1, a removal
efficiency of selected ECs varied significantly, from 0% to
100% in full-scale WWTPs and depending mainly on the
type of contaminant and treatment system. In the case
of such tested emerging contaminants as meropenem,
chloretetracycline, amoxicillin, ciprofloxacin, minocycleine,
oxytetracycline, tertracycline, ibuprofen, naproxen, salicylic
acid, estrone, estrriol, DEET, caffeine, saccharin, and bisfe-
nol, a median removal was over 80% [5]. At the same time, in

A)

Vancomycin -
Tylosin®™
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the case of many ECs, the median removal does not exceed
40% and, as in the case of some antibiotics, NSAIDs, lipid
regulators, beta-blokers a negative median can be observed.
As many authors emphasize, the effectiveness of these
processes depends on many factors, including the types of
bioreactors used and process parameters. Membrane biore-
actors (MBRs) are recognized as a treatment systems that
can remove ECs to a high degree, which is due to better
biomass retention efficiency than a conventional activated
sludge (CAS) system, retention of contaminants on the
membrane alone and longer sludge age (significant effect
of nitrifying bacteria) [55,56]. The main process parameters
which have influence on ECs removal efficiency in acti-
vated sludge process are: age sludge, HRT, share of anoxic,
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Table 1

Removal of selected engineering nanomaterials in WWTP (based on [63])

NPs Characteristic of NMs Removal (%) Removal process

Ag S: 68 nm, 34 nm, 41 nm; C:Y 90 Mixed liquor (batch)

Ag S:13 nm; C:N 97 Activated sludge (batch)

Ag S:3nm; C:Y 39 Activated sludge (batch)

Ag S: 5 nm/30 nm; C:Y 88 Sequencing batch reactors

Ag S:NA; CY 99 Sequencing batch reactors

Ag S: 21 nm; 29 nm; C:Y 60-90 Mixed liquor (batch)

Au S: 7 nm (TA), 11 nm (PVP); C:Y 90 (TA); 55 (PVP) Activated sludge (fresh) (batch)

C, S: 88 nm; C:NA 88 Activated sludge (batch)

C, S:40/90 nm; C:NA 95 Sequencing batch reactors

C, S: 35, C:NA 90 Activated sludge (fresh) (batch)

CeO, S: 50 nm; C:NA 97 Activated sludge (batch)

SiO, S:56 + 12 nm; 110 + 17 nm; 65 nm; C:Y 71 Simulated primary (settling) wastewater treatment
SiO, S:56 + 12 nm; 110 £ 17 nm; 65 nm; C: N 0 Simulated primary (settling) wastewater treatment
SiO, S: 50 nm; C:NA 23 Activated sludge (batch)

TiO, S:40 nm; C:Y 91 WWTP

TiO, S:20/1,700 nm; C: NA 91 Sequencing batch reactors

S — size; C — coating; Y — coated; N — uncoated; NA — not available (lack of information); TA — tannic acid; PVP — polyvinylpyrrolidone.

and oxygen zones, and additional chemical reagents used
during mechanical treatment processes [57].

Since most xenobiotics are not completely degraded
during biological treatment processes, it is often suggested
to use other methods to remove these substances from
aquatic environment, in particular those based on physi-
co-chemical processes. This group includes coagulation,
adsorption on activated carbon photolysis, ozonolysis and
advanced oxidation processes (AOPs) [58-60]. Many authors
report high efficiency of ECs removal from wastewater using

Method
development

AOQP. For example, a highly removal (up to 97%) of endo-
crine disrupting compounds from WWTP effluent with UV/
chlorine AOP system wastewater was observed [61].
However, many factors such as the social and eco-
nomic parameters, engineering, and environmental impact
should be taken into account when assessing the potential
for using AOP to remove ECs from wastewater. In studies
that took into account all mentioned factors, it was shown
that in the case of the studied AOPs, preozonation (H,0,/
0,) presented the highest average ranking as compared to

Development of ECs detection
techniques for complex matrices
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areas fate of ECs
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Fig. 6. Recommendation for development of ECs detection method, research areas and priorities.
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other analyzed processes (among others UV irradiation,
ozonation, photocatalysis, Fenton reaction, and hybrid pro-
cesses) [62].

5. Research recommendation

Although there are more and more publications con-
sidering the fate of EC in wastewater treatment systems,
knowledge on this subject is still limited. Improvement
understanding of ECs fate in WWTPs is mainly limited
by detection method, lack of knowledge about interaction
of ECs with other contaminants in wastewater, and their
impact on microbial community at bioreactors. Fig. 6 shows
the directions of further research development in this area.

The following actions are recommended to better under-
stand the impact of ECs on wastewater treatment systems
and the environment:

¢ Identification and validation appropriate detection meth-
ods for ECs for complex matrices, such wastewater and
sewage sludge

¢ Identification of potential sources of environmental
release of ECs

* Better understanding of ECs transformation in wastewa-
ter treatment systems including the sewer pre-WWTP
and different staged of WWTP.

* Assessment the interaction between ECs and others inor-
ganic and organic contaminants in wastewater

* Assessment of ECs toxicity including the toxicokinetics
and toxicodynamics

Increasing knowledge in the above-mentioned areas will
allow to develop the technologies for removing ECs from
wastewater. Moreover, it may helps to reduce their negative
impact on the environment.

6. Conclusion

This review concerns the occurrence of selected emerging
contaminants in raw and treated wastewater and their fate
in wastewater treatment systems. The concentration of ECs
in influent and effluent of WWTPs depends on many factors
such as geographic location, weather, population density,
water supply, treatment system, sapling, and analytical meth-
ods. The removal efficiency of selected ECs can vary consid-
erably, from 0% to 100% in full-scale WWTPs and depends
mainly on the type of contaminant and treatment system. For
example, for such emerging contaminants as meropenem,
chloretetracycline, amoxicillin, ciprofloxacin, minocycleine,
oxytetracycline, tertracycline, ibuprofen, naproxen, salicylic
acid, estrone, estrriol, DEET, caffeine, saccharin, and bisfenol,
a median removal could achieve value over 80%. At the same
time, many ECs such as some antibiotics, NSAIDs, lipid reg-
ulators, and beta-blokers are slightly biodegradable.

The most important factors affecting the ECs removal
efficiency in activated sludge process are reactor type, age
sludge, HRT, share of anoxic and oxygen zones, and addi-
tional chemical reagents used during mechanical treatment
processes. The best results were observed for membrane bio-
reactors mainly due to very high biomass retention efficiency
and long sludge age.

Because municipal wastewater treatment plants are
primary designed to remove organic carbonaceous and
nutrients it is obvious that we will not remove all emerg-
ing contaminants from wastewater during primary and sec-
ondary treatment. To achieve this purpose, it is necessary
to introduce a third step of wastewater treatment and use
more sophisticated methods, for example, AOPs. For this
purpose, such methods are most often used as (H,O,/O,),
UV irradiation, ozonation, photocatalysis, Fenton reaction,
and hybrid processes (e.g., UV/chlorine).

It is also very important to monitor concentration of ECs
in biosolids, due to a large group of this micropollutants are
absorbed into sludge during treatment process. Therefore,
there is a risk of negative impact of biosolids on animal and
human health after their land application.

Research priorities and knowledge gaps outlined in this
article may help to steer future research on improvement ECs
treatment efficiency and reduction their negative impact on
environment.
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