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a b s t r a c t
It is known that the biochemical oxygen demand (BOD5) is not directly achieved because it takes 
a standard procedure of 5 d, and since simple variations in the biological processes in wastewater 
treatment plants will drastically change the required BOD5 output; the main target in this work is 
to find measurable parameters at the effluent stream to find the effluent BOD5 easily. Multi-linear 
regression is proposed here as a simple mathematic entity to predict the effluent BOD5. In the first 
step, the data of the Irbid wastewater treatment plant was collected for 10 y. From the available 
measured data, it is aimed to find the effluent parameters that are correlated with the effluent 
BOD5. The elected effluent quality parameters are dissolved oxygen (DO), pH, temperature, flow 
rate (Q), total suspended solids (TSS), and chemical oxygen demand (COD). These parameters are 
examined to check their correlation with the BOD5. The worked data is 114 sets for each quality 
parameter; of which, 96 sets are used for training, and 18 sets are used for validation. By using the 
Pearson correlation, it is found that the BOD5 is correlated with the following parameters: Q, TSS, 
DO, and COD. By using a series of multiple linear regression, it is found that the only significant 
correlated parameters are the COD, and the TSS. The evolved BOD5 prediction model is a function 
of COD and TSS, and has the value of Pearson correlation R of (0.97), coefficient of determination 
R2 of (0.94), P-values of (<0.05), and the significance level of (6.95E-59). It can be concluded that the 
obtained model can be applied as an automated system that predicts the effluent BOD5 and tunes 
the parameters together with the required treatment efficiency.

Keywords:  Biochemical oxygen demand; BOD5; Prediction; Correlation; Multi-linear regression; 
MLR; WWTPs

1. Introduction

The treatment of municipal wastewater is of major con-
cern in terms of health safety, environment protection, and 
resource savings. The wastewater treatment processes can 
be categorized as physical, chemical, and biochemical pro-
cesses. The treatment design relies on the understanding of 
the basics governing the treatment processes [1]. The treat-
ment of municipal wastewater entails primary, secondary, 
and tertiary treatment stages, of them, the secondary pro-
cess is the main core of the treatment overall. The secondary 

treatment standards are based on the removal of bulk bio-
degradable organics (proteins, carbohydrates, etc.), total 
suspended solids (TSS), nutrients, and pH [2,3].

The 5 d biochemical oxygen demand (BOD5) is con-
sidered as a conventional index of contaminated water 
that is produced from biodegradable organic materials 
[4]. The main disadvantages of the standard BOD5 test; 
are the time needed for its accomplishment, and the varia-
tions of the results due to the experimental conditions and 
the microbial diversity of the samples used [5,6]. In addi-
tion, the BOD5 differs according to the characterization of 
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wastewater and differs during the time [7]. The wastewater 
characterization is usually based on measuring biochemical 
oxygen demand (BOD5), chemical oxygen demand (COD), 
nitrogen, phosphorous, and TSS [8].

The variety in the equipment used in the wastewater 
treatment plants, and the range of wastewater strength; will 
imply variable operational techniques. Some mathematical 
relationships can be developed to enhance the operation 
and the management of the wastewater treatment plants. 
The relationships between wastewater quality parameters 
and treatment effectiveness may be entailed via monitoring 
and modeling processes such as those found in the litera-
ture [9,10]. Recently, intelligent computations such as neu-
ral networks, genetic algorithms, and fuzzy logic systems 
have been widely used for prediction in many domains 
of environmental engineering and wastewater treatment 
[11–18]. However, the computational modeling needs data 
parameterization, training, and validation processes that 
need experts with money and time-consuming process [19]. 
The prediction models are commonly directed to be simple 
parsimonious models that are plain models of high descrip-
tive forecasting ability with a minimum number of vari-
ables [20]. Of parsimonious models, the regression models 
are simple statistical analyses that formulate an association 
between one dependent variable and other independent 
variables [21]. Multi-linear regression (MLR) is a simple and 
instant approach to evaluate correlated variables in the nat-
ural and environmental systems. Despite other techniques 
that may provide accurate results, the MLR is still able to 
provide simple, fast, and accurate results. Many research-
ers had widely used it for evaluation of quality parameters 
in urban runoff, reservoirs, surface water, and wastewater 
treatment plants [22–27].

In this study, the MLR will be used to predict BOD5 from 
correlated variables. As the correlated variables are easily 
measurable, the BOD5 prediction will be readily achieved by 
regression modeling using a data analysis tool available in 
the Excel program.

2. Materials and methods

The wastewater treatment plant that is being targeted 
in this study is the central Irbid WWTP. It is intended to 
check indicators at the effluent stream to tell the inspector 
about the level of the BOD5 discharged. At the beginning, 
the candidate parameters are specified and then tested to 
find their correlation to the BOD5. In the second stage, the 
correlated parameters to the BOD5 are tested by means of 
MLR rounds to specify their significance. Finally, the sig-
nificant correlated parameters will formulate the BOD5 
prediction model.

2.1. Study area

The wastewater data is taken from central Irbid waste-
water treatment plant. It is located on the northern side 
of Jordan at 32°34′37.52″N latitude and 35°50′14.49″E lon-
gitude (Fig. 1). The area exhibits dry weather as the aver-
age temperature and rainfall pertain semi-arid conditions. 
The climate in Irbid is classified as warm and moderate in 
summer, cool, and wet in winter. The climate is classified 

as Csa by the Köppen–Geiger system. The average annual 
rainfall volume is 428 mm. The temperature and rainfall 
variations throughout the year are detailed in Table 1.

Central Irbid wastewater treatment plant has been in 
process since 1986. The design hydraulic loading rate was 
initially 11,000 m3/d. The plant is based on a hybrid trick-
ling filtration and activated sludge process treatment. The 
flow is apportioned into two aerated grit chambers continu-
ing to two rectangular primary clarifiers, then it proceeds to 
the first biological stage consisting of two trickling filters. 
The second biological stage consists of two aeration tanks. 
After the aeration, the wastewater undergoes clarification 
in two final circular sedimentation tanks, and finally, the 
chlorination is achieved.

There was a chronological increase in hydraulic load-
ing rate after 2009. In 2016, the design loading rate had 
been raised to become 13,000 m3/d, and the tertiary pro-
cesses had been upgraded with final sand filtration and UV 
disinfection to utilize the treated effluent in irrigation.

2.2. Data sets

Irbid wastewater treatment plant holds over data 
records for main quality parameters as all other wastewater 
treatment plants. The main aim here is to find the correlated 
quality parameters that are easily measurable and can be 
used as indicators to predict the BOD5 in the effluent.

In this work, the effluent quality parameters that can 
be used as indicators are: dissolved oxygen (DO), pH, tem-
perature, flow rate (Q), TSS, and COD. The ranges of values 
and details of these parameters are illustrated in Table 2. 
The data used in this work is based on monthly records for 
10 y (2007–2016). The data of the year 2010 and 2016 were 
excluded from the analyses, in order to use them later for 
the validation of the model.

Since the BOD5 needs 5 d to be estimated; it is proposed 
here to find specific parameters to estimate effluent BOD5 
rapidly. These quality parameter indicators are examined 
to check their correlation with the BOD5. Each quality 

Fig. 1. Position of the central Irbid WWTP [28].
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parameter has data records of 114 sets; 96 sets are used for 
training, and 18 sets are used for validation. The training 
data sets of the quality parameters are presented in Figs. 2–4. 
The validation sets will be discussed later after the building 
of the model.

2.3. Correlation and MLR modeling

Correlation is statistically defined as a criterion that 
specifies the degree to which two or more variables are 
associated together. The most common measure of correla-
tion is Pearson’s correlation, which is commonly referred 
to simply as the correlation coefficient (r), and is expressed 
in the following equation [30]:

r
x x y y

x x y y

i i
i

n

i i
i

n

i

n
=

−( ) −( )

−( ) −( )
=

−=

∑

∑∑
1

2

11

 (1)

where xi is the real observed values; yi is the predicted val-
ues, n is the number of values; x� is the average of observed 
values, and y� is the average of predicted values.

In other terms, the multiple linear regression determines 
the fitness of a linear relationship between one dependent 
variable denoted by (Y) and other independent variables 
denoted by (Xi). The evolved MLR model can be represented 
as the following equation [31]:

Y = β0 + β1X1 + β2X2 +… + βnXn (2)

where β0 is the intercept of the regression line, βi is the 
regression coefficient (slope), the Y is the dependent variable 
to be predicted, and the Xi is the independent variable.

Initially, the specified parameters are examined with 
Pearson correlation to check their connection to the BOD5. 
The weakly correlated parameters will be excluded from 
the process. The correlated parameters will be used in 
MLR process to find a model of independent variables to 
predict the BOD5. Excel program is being used here to find 
the Pearson correlation (R). In addition, the multiple lin-
ear regression model is being accomplished by using data 
analysis tool in Excel. The coefficient of determination (R2), 

Pearson (R), and standard error are the governing factors for 
indicating the strength of the model. However, the P-value 
will rule the decision by choosing variables that have signif-
icant values (P < 0.05), and hence eliminating unnecessary 
variables. Finally, the significant correlated indicators will 
be used as a model for the BOD5 prediction.

3. Results and discussion

3.1. Determination of the correlated parameters

There are many parameters that affect the biochemical 
degradation process, however, in this work, the aim is to 
find parameters that are correlated with the effluent BOD5. 
In the first stage, the Pearson correlation (r) is determined 
between the quality parameters and the effluent BOD5 
(Table 3).

Not all dedicated parameters are correlated with the 
effluent BOD5; by inspecting Pearson correlation coefficient 
(r), it can be realized that the pH and the temperature have 
a very weak correlation with the effluent BOD5. On the other 
hand, COD, TSS, and Q have a strong correlation with the 
BOD5, whereas the DO has an inverse correlation. Based on 
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the values of (r) illustrated in Table 3; only COD, TSS, Q, and 
DO will be taken to the next step of MLR.

3.2. Building MLR model

After choosing the parameters that have considerable 
correlation with the effluent BOD5, here in this step, the 
only significant parameters will be retained, while the other 
parameters will be dismissed.

By using MLR between the effluent COD, TSS, Q, and 
DO as independent variables with the effluent BOD5 as 
dependent variable; the obtained model has the follow-
ing values: the multiple R is 0.97, R2 is 0.94, and the sig-
nificance level is as low as 5.17E-56 (Table 4). Though, 
the P-value for the DO and Q is larger than 0.05 show-
ing insignificant role of these variables in the regression 
process. Thus, the DO will be omitted from the second 
round of regression, but the Q will still be kept for evalu-
ation considering that it endured high Pearson correlation 
coefficient with BOD5.

In the second round of regression, the parameters Q, 
TSS, and COD are analyzed as independent variables and 
the BOD5 as dependent variable. The regression statistics of 
this round is shown in Table 5. It can be noticed that the 
multiple R is 0.97, R2 is 0.94, and the significance level is 
low down to 2.09E-57 showing correlated and very accurate 

analysis. However, still the Q has high P-value, showing 
its insignificant role in regression.

In the third round of regression, MLR is held between 
the effluent parameters (COD and TSS) as the indepen-
dent variables with the effluent BOD5 as the dependent 
variable. The regression statistics of this round is shown 
in Table 6. It can be observed that the multiple R is 0.97, 
R2 is 0.94, and that the significance level is down to 6.95E-
59 showing very accurate analysis, and the P-value of all 
the components are below 0.05 pertaining significant role 
in regression analysis.

By summing up the previous analyses, the only sig-
nificant independent variables are COD and TSS. The 
components of the prediction model and their statistical 
measures are illustrated in Table 7.

Based on the findings of the MLR analysis shown 
in Table 7, the prediction model can be written into the 
following equation:

BOD TSS COD5 0 498992 0 052154 10 13197= + +( ) ( ). . .  (3)

The evolved model will be involved in the monitoring 
system in the wastewater treatment plant by which the 
investigator can easily apply the TSS and the COD measured 

Table 3
Effluent quality parameters for treated wastewater in central 
Irbid WWTPs and their Pearson correlation with the effluent 
BOD5

Quality parameter (r) Pearson correlation 
coefficient with BOD5

Elected  
parameters

pH 0.095827 –
DO –0.33938 DO (r = –0.34)
Temperature 0.015841 –
Q 0.8399 Q (r = 0.84)
TSS 0.96971 TSS (r = 0.97)
COD 0.951297 COD (r = 0.95)

Table 4
Model summary for the first round evaluation

ValueItem

0.971555Multiple R
0.94392R2

0.941454Adjusted R2

3.549468Standard error
96Observations
5.17E-56Significance
P-valueVariable
0.231717Intercept
0.753746Q
1.03E-10TSS
0.020304COD
0.987441DO

Table 5
Model summary for the second round evaluation

ValueItem

0.971555Multiple R
0.943919R2

0.942091Adjusted R2

3.530129Standard error
96Observations
2.09E-57Significance
P-valueVariable
0.148521Intercept
0.75225Q
7.73E-11TSS
0.019504COD

Table 6
Model summary for the third round evaluation

ValueItem

0.971524Multiple R
0.943858R2

0.942651Adjusted R2

3.513011Standard error
96Observations
6.95E-59Significance
P-valueVariable
2.12E-09Intercept
2.98E-12TSS
0.017689COD
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values into the model, and then the effluent biochemi-
cal oxygen demand will be estimated without the need of 
the 5 d period in the laboratory. Figs. 5–10 show how the 
observed values of the BOD5 are fitting the output of the 
prediction model. The multi linearity of the independent 

Table 7
Prediction equation coefficients and its statistical and sensitivity 
measures

Variable Coefficients Standard error t statistics P-value

Intercept 10.132 1.527 6.635 0.000
TSS 0.499 0.062 8.026 0.000
COD 0.052 0.022 2.415 0.017

R² = 0.943
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variables with the predictable dependent variable and the 
minor residuals can be observed throughout the plots. Figs. 
5 and 6 show the goodness of the fit (R2 = 0.94) between 
observed and predicted values of the BOD5.

The obtained multiple regression model is based on 
a linear relationship between the dependent variable and 
independent variables. Fig. 7 shows the linear relationship 
between TSS and BOD5 with a high coefficient of determina-
tion (R2 = 0.99) for the TSS line fit plot. Fig. 8 shows a linear 
relationship between COD and BOD5 with a high coefficient 
of determination (R2 = 0.96) for COD line fit plot. However, 
the model still has errors to appear in the deviated outputs. 
The standard error, as shown in Table 7, is 1.527 for the inter-
cept, 0.062 for TSS, and 0.022 for COD. These errors lead to 
the residual values on the predicted outputs.

The residual is the deviation of the measured value from 
the predicted value by the model. In Figs. 9 and 10, the resid-
ual values are equally and randomly spaced around the hor-
izontal axis with minor residual values.

3.3. Model validation

The evolved model is being validated in this section 
with different data than those used in training. An 18 data 
sets for each quality parameter are used for validation. 
The 18 data sets of each quality parameters are taken from 
the year 2010 and 2016. The data sets of the effluent qual-
ity parameters in the Irbid wastewater treatment plant are 
shown in Table 8. Fig. 11 shows that the measured BOD5 
is highly correlated with the predicted BOD5 (R = 0.9), and 
that the output of the prediction model fits the observed 
measured data (R2 = 0.8).

As per these findings, the inspector can rely on the two 
parameters, COD and TSS, as independent variables to pre-
dict the BOD5. The unique association between BOD5, COD, 
and TSS was also adapted by other researchers in their pre-
diction models [32–35]. This approach enables engineers 
and technicians to measure the COD and TSS easily and 
consequently to find the expected BOD5 from the prediction 
model. The WWTPs need such an approach to monitor, con-
trol, and automate the treatment processes into the required 
outputs and efficiencies.

4. Conclusion

BOD5 is a major parameter that is used to indicate 
wastewater quality and treatment efficiency in wastewater 
treatment plants. However, it needs 5 d for the standard 
test to be accomplished. In this study, an MLR method is 

used to find a predictive model by easily regressing mea-
surable independent variables (quality parameters) with the 
targeted dependent variable (BOD5). It is obtained that the 
significant correlated independent variables are mainly; the 
effluent COD and the effluent TSS, and by simply measur-
ing these parameters; the BOD5 can be predicted from the 
evolved regression model. MLR model, in this research, 
shows high levels of correlation, fitness, and confidence. 
Therefore, the developed model can enhance the control and 
the automation of the investigated type of biological treat-
ment, namely the hybrid trickling filters-activated sludge 
system. Similar approach is underway to examine this mod-
eling technique in predicting BOD5 from easily measured 
parameters in other types of treatment technologies.
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