
* Corresponding author.

1944-3994/1944-3986 © 2020 Desalination Publications. All rights reserved.

Desalination and Water Treatment 
www.deswater.com

doi: 10.5004/dwt.2020.26416

205 (2020) 91–102
November

Factors affecting the formation of DBPs by chlorine disinfection in water 
distribution system

Kejia Zhanga, Chungen Qiub, Anhong Caib, Jing Dengb,*, Xueyan Lic

aCollege of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China,  
email: zhangkj@zju.edu.cn (K. Zhang) 
bCollege of Civil Engineering, Zhejiang University of Technology, 288 Liuhe Road, Xihu District, Hangzhou 310023, China,  
emails: zjut_djing@163.com (J. Deng), 18094712936@163.com (C. Qiu), 17816069583@163.com (A. Cai) 
cSchool of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China,  
email: lxyhit@sina.com (X. Li)

Received 30 December 2019; Accepted 2 August 2020

a b s t r a c t
Chlorine is the most commonly used disinfectant in drinking water treatment plants in China. 
It reacts with natural and anthropogenic organic pollutants in the water distribution system, result-
ing in the formation of carcinogenic disinfection by-products (DBPs). In this study, the influences of 
residence time, pH, chlorine dosage, water temperature, bromide concentration, and pipe material on 
the formation of DBPs in the water distribution system were investigated. Studies and observations 
showed that the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) was positively 
correlated with residence time, chlorine dosage, water temperature, and bromide concentration 
during the chlorine disinfection, and the main generated DBPs were determined to be dichloro-
acetic acid, trichloroacetic acid, and trichloromethane. With the increase of bromide concentration, 
the generation of Br-DBPs substantially increased. Elevating solution pH posed a promoting effect 
on THMs production, while exerted an inhibitory effect on HAAs formation. The generation of 
THMs and HAAs in the water supply network was also affected by pipe material, and the produc-
tion level followed the order of plastic steel pipe > ductile iron pipe > PE pipe. Through exploring 
different influencing factors, it provides a reference for the control strategy of DBPs in the water 
supply network and achieves the purpose of realizing the residents’ drinking water safety.
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1. Introduction

In order to maintain the stability of microorganisms 
in the water distribution system, chlorine disinfection is 
often an indispensable procedure of drinking water treat-
ment. However, the disinfectants (chlorine, chloramine, 
etc.) react with natural organic matter (NOM) and anthro-
pogenic contaminants in water to generate unexpected dis-
infection by-products (DBPs) during killing the pathogenic 

microorganism [1–3]. Previous studies have demonstrated 
that these DBPs in drinking water have carcinogenicity, tera-
togenicity, mutagenicity, and long-term exposure may pose 
adverse effects on human health [4–7]. The disinfectant/
DBP regulations issued by the US Environmental Protection 
Agency stipulate that the limits of haloacetic acid (HAAs) 
and trihalomethane (THMs) are 60 and 80 μg/L, respectively 
[8]. In China, the regulations of drinking water standard for 
dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), 
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trichloromethane (TCM), bromodichloromethane (BDCM), 
dibromochloromethane (DBCM), and tribromomethane 
(TBM) were 50, 100, 60, 60, 100, and 100 μg/L, respectively. 
For THMs, the summed ratio of the measured concentration 
of each DBP to their respective limit should not exceed 1 [9].

During the chlorine disinfection, hypochlorous acid 
(HOCl) is its main form for disinfection reaction. Being 
an electrophilic reagent, HOCl easily reacts with the elec-
tron-rich moieties of NOM. HOCl interacts with NOM 
through a series of reactions such as the electrophilic substi-
tution, addition, and then generate DBPs via further hydro-
lysis [10]. According to the kinetic analysis, chlorine can 
selectively react with certain chemical functional groups, 
and the second-order rate constant of the reaction between 
chlorine and organic pollutants varies widely, from 0.1 to 
109/M/s. The reactivity of different reaction sites follows the 
order of reduced sulfur groups > primary and secondary 
amines > phenols, tertiary amines >> double bonds >> other 
aromatic hydrocarbons, carbonyls, amides [11]. NOM con-
tains various functional groups such as carboxylic, aromatic, 
amino, and hydroxyl group, which easily react with an 
oxidizing disinfectant. It is worth noting that chlorine also 
reacts with a bromine compound or an iodine compound in 
water to undergo the substitution or addition [12].

The formed concentration of DBPs in the water distri-
bution system is related to the raw water quality and water 
treatment process. In general, the main influencing factors 
include the structures and properties of NOM, disinfec-
tant dose, solution pH, water temperature, bromide con-
centration, and residence time [13–18]. Most of the studies 
on DBPs focus on the removal efficiency by the processes 
in water plants, the formation mechanism, the genera-
tion of predictive models, and analytical methods [19–21]. 
However, the influence of various factors on the generation 
of DBPs in the water supply network is still at the explor-
ing stage, and the associated studies are relatively fewer [22]. 
Consequently, the main purpose of this study is to examine 
the factors affecting the formation of DBPs by chlorine disin-
fection in water supply networks. Understanding the roles 
of these factors and their influences on the fate of DBPs will 
benefit utilities to minimize DBPs in the water distribution 
system by adopting preventive strategies for their control.

2. Material and methods

2.1. Reagents and materials

The chemicals used in this study were analytical reagent 
grade or higher. HPLC grade methanol, HPLC grade meth-
yl-tert-butyl ether (MTBE), 1,2-dibromopropane, THMs 
mixture standards, and HAAs mixture standards were 
all obtained from Anpel Laboratory Technologies Inc., 
(Shanghai, China). Anhydrous sodium sulfate (AR, 99%) was 
taken from Yonghua Chemical Co., Ltd., (Jiangsu, China). 
The other chemical reagents were obtained from Sinopharm 
Chemical Reagent Co., Ltd., (Shanghai, China). Ultrapure 
water produced by reverse osmosis equipment was used to 
prepare all experimental water.

The used pipes with different materials were cut from 
Jiaxing water supply network, namely PE pipe, ductile 
iron pipe, and plastic steel pipe and their pipe diameters 

were found to be 20, 15, and 10 cm, respectively. The pipe 
wall images were presented in Fig. 1.

2.2. Experimental procedures

Several important affecting factors such as chlorine 
dosage, residence time, solution pH, water temperature, 
coexisting bromine concentration, and pipe materials were 
considered to examine their effects on the formation of 
THMs and HAAs during chlorination of unchlorinated 
post- filtration water. Unless otherwise specified, chlo-
rination was carried out in a ductile cast iron pipe reac-
tor (Fig. 2). A temperature stick was used to maintain the 
required experimental temperature and a magnetic stirrer 
was used to simulate the flow of water in a pipe. Before 
the chlorination, phosphate buffer solution (200 mM) was 
used to maintain the pH stability in the reaction system. 
The chlorine stock solution (1,116 mg/L as Cl2) was added 
to the bottle at the required dose, and the ductile cast iron 
pipe reactor were sealed separately until the required reac-
tion time (0.5, 1, 2, 4, 8, 12, and 24 h) was reached. After 
the reaction, the residual chlorine was quenched with an 
ascorbic acid solution (0.5 M) and extracted with MTBE 
immediately for subsequent analysis of DBPs by GC-ECD. 
All experiments were replicated independently at least two 
times, and the error bars presented in the figures represent 
the standard deviation among the replicates.

The single factor static experiments were employed to 
examine the affecting factors including chlorine dosage, 
residence time, solution pH, water temperature, bromide 
concentration, and pipe materials through varying one 
parameter at a time from the baseline condition: chlorine 
dosage (0.5, 2, and 3 mg/L as Cl2), residence time (0.5, 1, 2, 
4, 8, 12, and 24 h), solution pH (6, 7, and 8), water tempera-
ture (10°C, 20°C, and 30°C), bromide concentration (0.2, 0.5, 
and 1 mg/L), pipe materials (PE, ductile cast iron and plastic 
steel).

2.3. Analytical methods

Unchlorinated post-filtration water was collected from 
Shijiuyang Water Plant in Jiaxing, Zhejiang Province, and 
then the water sample was shipped to the laboratory through 
a polyethylene drum. The water quality parameters were 
determined using Standard Methods (2005) [23]. Total 
organic carbon (TOC) of the water sample was measured 
by TOC analyzer (multi N/C®3100, Analytikjena, Germany). 
The UV254 was measured by ultraviolet spectrophotome-
ter (TU-1901, Persee, China). The pH of water sample was 
measured by a pH meter (PHS-3G, Leici, China). Anion 
concentration was determined by ion chromatography (ICS-
900, Dionex, USA). The turbidity of the water sample was 
measured using a portable turbidimeter (2100AN, Hach, 
USA). The main water quality parameters were listed in 
Table 1. The DBPs detected in this study included four THMs 
(TCM, TBM, DBCM, and CDBM) and five HAAs (DCAA, 
TCAA, monochloroacetic acid (MCAA), monobromoacetic 
acid (MBAA), and dibromoacetic acid (DBAA)). According 
to U.S. EPA Method 551.1, THMs were analyzed by liquid/
liquid extraction with methyl-tertiary-butyl-ether (MTBE) 
and analysis by GC/ECD (Shimadzu, GC-2014, Japan) 
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(a) (b)

(c)

Fig. 1. Pipe wall images (a) PE pipe, (b) plastic steel pipe, and (c) ductile cast iron.

(a) (b) (c)

Fig. 2. Simulated pipeline reactor ((a) plastic steel, (b) ductile 
iron, and (c) PE).

Table 1
Main water quality parameters of unchlorinated post-filtration 
water (Shijiuyang Water Plant)

Parameter Value

pH 7.31
TOC (mg/L) 3.15
Total hardness (as CaCO3, mg/L) 137
Total dissolved solids (mg/L) 365
Oxygen consumption (CODMn, as O2, mg/L) 1.32
Turbidity (NTU) 0.21
Bromide (μg/L) 84.42
Bromate (mg/L) <0.005
Nitrate (mg/L) 1.48
Chloride (mg/L) 57.2
UV254 (cm–1) 0.03
Chroma <5
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[24]. HAAs were analyzed by liquid/liquid extraction with 
MTBE, then derivated by acidic methanol, and analyzed by 
GC/ECD according to USEPA method 552.3 [25].

3. Results and discussion

3.1. Effect of chlorine dosage on THMs and HAAs formation

Chlorine is the most commonly used disinfectant in 
drinking water treatment, and the relationship between 
the chlorine dose and the organic concentration in treated 
water is the decisive factor for the formation of DBPs. With 
the change of chlorine dosage, the concentration and spe-
cies composition of DBPs constantly change. Fig. 3 showed 
the formation levels of THMs and HAAs within 24 h under 
different chlorine dosage. As expected, the production 
levels of THMs and HAAs increased with the increase of 
chlorine dosage [26,27]. The level of HAAs formation is 
significantly higher than that of THMs, which may be 
related to the precursor of DBPs in treated water. It has been 
reported that the relative distribution of THMs and HAAs 
is affected by the hydrophobic/hydrophilic distribution 
of NOM in chlorinated water [10,28]. Many studies have 
shown that hydrophobic organic precursors are important 
precursors of TCAA and THM, which can produce high 
yields of THM and TCAA during the chlorination process 
[29–31]. As for DCAA, several studies have reported that 
hydrophilic organic matter is as important or sometimes 
more important than hydrophobic organic matter, and that 
DCAA precursors are generally more hydrophilic than 
TCAA precursors [30,32,33].

Fig. 4 illustrated the relationship between the morphol-
ogy of THMs or HAAs and chlorine dosage. During the 
chlorination process, the proportion of Cl-THMs increased 
with the increase of chlorine dosage, especially the pro-
duction of TCM, accounting for up to 50% of total THMs. 
At the same time, DCAA and TCAA were found to be the 
main HAAs produced through chlorination of water sam-
ples. The production levels of DCAA and TCAA greatly 

increased with the prolongation of reaction time, while 
MCAA slightly increased with the increase of chlorine dos-
age. The enhancement of DCAA and TCAA yields might 
be due to the presence of more hydrophobic NOM in 
raw water. According to the report by Sun et al. [34], the 
hydrophobic NOM was the dominant precursor for DCAA 
and TCAA, the hydrophobicity of these precursors might 
follow the order of TCAA > DCAA.

It is interesting to note that the yields of Br-HAAs and 
Br-THMs (DBAA, BDCM, and CDBM) increased with 
increasing chlorine dosage. During the chlorination, as the 
chlorine dosage increased from 0.5 to 3 mg/L, and the max-
imum yields of DBAA, CDBM, and BDCM increased from 
1.8, 1.0, and 1.0 μg/L to 7.4, 4.3, and 4.3 μg/L, respectively. 
It is clear that increasing the chlorine dosage can substan-
tially improve the yields of Br-HAAs and Br-THMs. This 
can be explained by the chlorination of bromide to HOBr, 
which exhibits stronger halogenation activity than HOCl, 
causing the increase in the yield of Br-DBPs [17,35,36].

3.2. Effect of retention time on THMs and HAAs formation

Fig. 5 showed the level of THMs and HAAs as a function 
of residence time after chlorination of post-filtration water. 
It can be seen that THMs and HAAs increased with the 
extension of chlorination time. The generation of DBPs can 
be regarded as the continuous chemical reaction between 
disinfectant and organic matter, thus the reaction time also 
affects the final yield of DBPs. A similar conclusion can be 
found everywhere [15,37–39]. In addition, the generated 
HAAs were mainly composed of DCAA and TCAA, and 
the former was significantly increased with the extension of 
reaction time, from 5.3 to 22 μg/L after 24 h chlorination. 
The formed THMs were mainly composed of TCM and 
BDCM. After 24 h chlorination, TCM and BDCM increased 
from the initial 7.5 and 1.6 μg/L to 12.4 and 8.9 μg/L, respec-
tively. Furthermore, the generation level of THMs is signifi-
cantly lower than that of HAAs, which may be related to the 

(a) (b)

Fig. 3. Formation of THMs and HAAs as a function of chlorine dose in chlorination of unchlorinated post-filtration water. 
Experiment condition: [Cl2] = 0.5–3 mg/L, temperature = 20°C ± 1°C, and pH = 7 (a) total HAAs and (b) total THMs.
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properties of precursor, especially the hydrophilicity and 
hydrophobicity in treated water.

3.3. Effect of pH on THMs and HAAs formation

Fig. 6 showed the effect of pH on the production levels 
of THMs and HAAs during chlorination. Previous studies 
have shown that the stability of disinfectants was highly 
dependent on pH, and pH also affected the decay rate of 

disinfectants and the morphology of precursors [40–42]. 
As can be seen from Fig. 6, the effect of pH on the formation 
of HAAs was different from that of THMs during chlorina-
tion. As consistent with earlier studies, THMs concentration 
increased with increasing pH and reaction time [43]. After 
24 h chlorination, the production levels of THMs at pH 6, 
7, and 8 were determined to be 14.5, 28.2, and 30.4 μg/L, 
respectively. When pH rose from 6 to 8, the concentration 
of THMs increased more than twice after 24 h chlorination. 

(a) (b) (c)

(a) (b) (c)

Fig. 4. Morphology of THMs and HAAs as a function of chlorine dose in chlorination of unchlorinated post-filtration water. 
Experiment condition: [Cl2] = 0.5–3 mg/L, temperature = 20°C ± 1°C, and pH = 7 (a) 0.5 mg/L, (b) 2 mg/L, and (c) 3 mg/L.

(a) (b)

Fig. 5. Formation of THMs and HAAs as a function of retention time in chlorination of unchlorinated post-filtration water. 
Experiment condition: [Cl2] = 3 mg/L, temperature = 20°C ± 1°C, and pH = 7 (a) HAAs and (b) THMs.
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Base catalyzed reaction is generally considered to play an 
important role in the formation of THMs [44,45]. Contrary 
to THMs, the generation of HAAs was inhibited with ele-
vating pH from 6 to 8, which might be caused by the dif-
ference between the precursors of THMs and HAAs. Early 
studies also found that some significant differences existed 
between the precursors of THMs and HAAs [18,46].

Fig. 7 presented the effect of pH on THMs and 
HAAs species during the chlorination of unchlorinated 

post-filtration water. The HAAs species formed during the 
chlorination were found to be mainly DCAA, followed by 
TCAA and DBAA. The main species of THMs was identi-
fied to be TCM, followed by BDCM and CDBM. The exper-
imental results showed that the production level of DCAA 
at pH 8 was significantly lower than other pH values, while 
the production levels of MCAA and MBAA were almost 
unaffected by pH. For THMs, the production levels of TCM 
and BDCM under alkaline conditions were significantly 

(a) (b)

Fig. 6. Formation of THMs and HAAs as a function of pH in chlorination of unchlorinated post-filtration water. Experiment 
condition: [Cl2] = 3 mg/L, temperature = 20°C ± 1°C, and pH = 6–8 (a) total HAAs and (b) total THMs.

(a) (b) (c)

(a) (b) (c)

Fig. 7. Morphology of THMs and HAAs as a function of pH in chlorination of unchlorinated post-filtration water. Experiment 
condition: [Cl2] = 3 mg/L, temperature = 20°C ± 1°C, and pH = 6–8 (a) pH = 6, (b) pH = 7, and (c) pH = 8.
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higher than under acidic or neutral conditions. Uyak et al. 
[47] believed that the speciation and reactivity of chlorine 
was highly pH dependent. Therefore, the demand for chlo-
rine in alkaline solution is lower than that in acidic solution, 
while the formation of TCM increased in alkaline solution 
[48]. Since the formation and hydrolysis rate of each indi-
vidual HAAs species are different, the effect of pH on the 
formation of HAAs is more complicated. As described by 
Hua et al. [44], the oxidation rate of different types of organ-
ics varies with increasing pH. Therefore, pH control may 
be an effective method to reduce the formation of DBPs in 
water distribution system.

3.4. Effect of water temperature on THMs and HAAs formation

Fig. 8 showed the effect of water temperature on the 
production levels of HAAs and THMs during chlorina-
tion. As can be seen, with the increase in water tempera-
ture, the generation of THMs and HAAs presented an 
obvious upward trend. When water temperature was 10°C, 
20°C, and 30°C, after 24 h chlorination reaction, the HAAs 
concentrations were found to be 31.1, 48.5, and 61.1 μg/L, 
respectively, and the THMs concentrations were deter-
mined to be 17.9, 25.9, and 36.2 μg/L, respectively. Since the 
formation of DBPs was endothermic reaction, raising water 
temperature can accelerate the reaction rate between the 
disinfectant and organic matter, thus leading to an increase 
in the formation of THMs and HAAs [27]. Furthermore, 
water temperature exerted more significant impact on the 
formation of HAAs than THMs, which might be related 
to the formation process of two kinds of DBPs. Taking the 
m-hydroxyphenol with a substituent on the benzene ring as 
a precursor, the carbon between the two hydroxyl groups 
is the main attack site of chlorine and HAAs are prone 
to be generated after ring opening. Since the more open 
bonds are needed, the chemical energy required to gener-
ate HAAs is higher than THMs, causing water temperature 
exerts a more significant effect on HAAs formation [49].

Fig. 9 presented the composition of HAAs and THMs 
produced under different water temperature. It was obvi-
ous that the level of Cl-DBPs was much higher than that of 
Br-DBPs, which might be attributed to the low concentra-
tion of bromide in water samples. Under different water 
temperatures, HAAs were dominated by DCAA and TCAA. 
Due to the presence of chlorine in solution, Cl-HAAs tended 
to increase in the whole process. Interestingly, it can be 
found that water temperature exerted relatively obvious 
effect on the generation of DBCM and BDCM. For the com-
position of THMs, the Br-THMs dramatically increased as 
water temperature increased from 10°C to 30°C, which can 
be attributed to the enhancement of Br substitution reaction 
rate. From a kinetic point of view, it can be seen as a manifes-
tation of the higher reactivity of HOBr species that reacted 
with NOM immediately after the chlorination initiated [36].

3.5. Effect of bromide concentration on THMs and HAAs 
formation

Bromide widely exists in natural water source and can 
be oxidized to HOBr by chlorination, which exhibits greater 
halogenation activity than HOCl [36]. Fig. 10 exhibited the 
formation level of THMs and HAAs during chlorination at 
different bromide concentrations. When bromide concen-
tration was set at 0.2, 0.5, and 1 mg/L, after 24 h chlorination 
reaction, the formation level of HAAs was found to be 28.5, 
50.6, and 67.5 μg/L, respectively, and the production level 
of THMs was determined to be 38.3, 57.7, and 73.3 μg/L, 
respectively. A similar trend was also found in earlier 
studies [50]. It is speculated that the bromide in water is 
involved in multiple reaction cycles with NOM and plays 
a catalytic role in the interaction of NOM with halogen 
[51]. Chloride or bromide ions would be simultaneously 
released as DBP precursors are attacked to release the halo-
genated DBPs. While excessive free chlorine will immedi-
ately oxidize bromide ions to HOBr species that react easily 
with NOM and initiate the circular reaction [52–54].

(a) (b)

Fig. 8. Formation of THMs and HAAs as a function of water temperature during the chlorination of unchlorinated post-filtration 
water. Experiment condition: [Cl2] = 3 mg/L, temperature = 10°C–30°C, and pH = 7 (a) total HAAs and (b) total THMs.
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Fig. 11 presented the effect of bromide concentration 
on the composition of THMs and HAAs after chlorination. 
The results showed that with the increase of bromide 
concentration, the formation forms of THMs and HAAs 
gradually were changed to bromide species. When bromide 
concentration was set as 0.2, 0.5, and 1 mg/L, after 24 h chlo-
rination reaction, DBAA was generated at concentration of 

15.3, 18.5, and 22.8 μg/L, respectively, and MBAA was pro-
duced at concentration of 3.73, 8.85, and 13.52 μg/L, respec-
tively. THMs also increased with the increase of bromide 
concentration, and the level of Br-THMs production gradu-
ally increased. When bromide concentration increased from 
0.2 to 1 mg/L, the TBM increased from 9.27 to 33.65 μg/L 
after 24 h of chlorination. Early studies on the effects of 

(a) (b) (c)

(c)(b)(a)

Fig. 9. Composition of THMs and HAAs as a function of water temperature during the chlorination of unchlorinated 
post-filtration water. Experiment condition: [Cl2] = 3 mg/L, temperature = 10°C–30°C, and pH = 7 (a) 10°C, (b) 20°C, and (c) 30°C.

(a) (b)

Fig. 10. Formation of THMs and HAAs as a function of bromide concentration during the chlorination of unchlorinated post- 
filtration water. Experiment condition: [Cl2] = 3 mg/L, [Br–] = 0.2–1 mg/L, temperature = 20°C, and pH = 7.0 (a) total HAAs and 
(b) total THMs.
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bromide on the morphology and yield of THMs and HAAs 
also found that the concentration of Br-DBPs increased 
with increasing bromide concentration [55,56]. That is, 
high bromide levels can be transformed into a variety of 
Br-DBPs species [26,57].

3.6. Effect of pipe material on THMs and HAAs formation

Earlier studies reported that the decay of disinfec-
tants occurred not only in water but also on the surface of 
pipelines [58]. The reaction of residual chlorine with pipe 
materials and attached microorganisms will also result 
in attenuation of residual chlorine, which varies with the 
change of pipe materials [58,59]. The pipeline material 
also poses a significant effect on the level of disinfectant 
by-products [60]. Fig. 12 shows the effect of pipe mate-
rial on the production levels of THMs and HAAs. As can 
be seen, the formation of THMs and HAAs is similar, with 
the highest generation of plastic steel pipe, followed by a 
ductile iron pipe, and the lowest generation of PE pipe. 
Since the pipe material is taken from the actual water sup-
ply pipe system, and the ductile iron pipe and plastic steel 
pipe have been seriously corroded, the scale deposits on the 
pipe wall and humus caused by microbial humification may 
be the reasons for the high content of THMs and HAAs in 
the ductile iron pipe and plastic steel pipe. However, the 
THMs and HAAs in PE pipe are significantly lower than the 
other two pipes, which can be explained by the fact that the 
inner wall of the PE pipe is relatively smooth, and it is not 
easy to scale deposits and attach microorganisms.

4. Conclusions

In this study, the influence of several key factors includ-
ing chlorine dosage, residence time, pH, water temperature, 
bromide concentration, and pipe material on the generation 
level and composition of THMs and HAAs in the water dis-
tribution system was studied. The main conclusions were 
listed as follows:

• After chlorination, the generation levels of DBPs in the 
water distribution system increased with the increase of 
chlorine dosage. It was found that the generation level of 
HAAs was substantially higher than that of THMs and 
the main DBPs were identified to be DCAA, TCAA, and 
TCM.

• The formed THMs and HAAs in the pipe network both 
showed an increasing trend with the extension of resi-
dence time, and the produced HAAs were identified to 
be TCAA and DCAA, while the generated THMs were 
identified to be TCM and BDCM.

• As pH increased from 6.0 to 8.0, the generation of THMs 
increased, whereas the production of HAAs decreased. 
Increasing pH posed the most marked effect on the for-
mation of TCM and BDCM, while 

• With the increase of water temperature, the generation of 
THMs and HAAs presented an obvious upward trend, 
and its influence on HAA formation was more remark-
able than that of THMs.

• The presence of bromide in the water distribution system 
promoted the formation of DBPs, especially Br-DBPs.

(a) (b) (c)

(c)(b)(a)

Fig. 11. Composition of THMs and HAAs as a function of bromide concentration during chlorination of unchlorinated post-filtration 
water. Experiment condition: [Cl2] = 3 mg/L, [Br–] = 0.2–1 mg/L, temperature = 20°C, and pH = 7.0 (a) 0.2 mg/L, (b) 0.5 mg/L, and 
(c) 1.0 mg/L.
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• The effect of pipe material on DBPs formation followed 
the order of plastic steel pipe > ductile iron pipe > PE 
pipe, which might be related to the pipe properties and 
the corrosion degree.
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