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ABSTRACT

Forecasting the rainfall is one of the most important issues in the hydrological cycle. It is very
challenging because is still unable to get an ideal model given its uncertain and unexpected vari-
ation. Therefore, the study reviewed previous scientific studied from 2000 to 2020 associated with
predicting the rainfall in Northern Cyprus and worldwide using machine learning models or mathe-
matical regressions. According to this review, it is evident that the response surface regression (RSR)
model has not yet been considered in other studies about monthly rainfall prediction. Consequently,
this paper is examined the performance of the RSR for monthly rainfall prediction and compared
with the most prominent rainfall artificial model (feed-forward neural network) and multiple linear
regression (MLR). In this work, geographical coordinates (latitude (L), longitude (Lo), and altitude
(AL) of the location) and meteorological parameters (average temperature (AT), maximum tempera-
ture (MaxT), minimum temperature (MinT), and relative humidity (Rh)) are considered as input
variables for the models. Rainfall (R) is considered as an output variable for all models. The meteo-
rological data were collected from seven meteorological stations distributed over Northern Cyprus
for a short-term period (2011-2017). The coefficient of determination (R?), root mean squared error
(RMSE), Nash-Sutcliffe efficiency (NSE), and Willmott’s index of agreement (d) were used to select
the best predictive model. The results demonstrate that the developed ANN model is superior in
predicting the value of monthly rainfall with reported values of 0.631, 33.404, 0.625, and 0.880 for
the parameters of R?, RMSE, NSE, and d, respectively. Additionally, the results indicate that the RSR
model gave better represent the relationship between the geographical coordinates, meteorological
parameters, and rainfall and produce a better prediction of the monthly rainfall compared to MLR.

Keywords: ANN; Northern Cyprus; MLR; Monthly rainfall; RSR

1. Introduction affected by both changes in land use and farming intensity

Water availability and use depend on several fac-
tors including increased population, energy demand,
and related environmental problems [1,2]. Water use is

* Corresponding author.

in already cultivated lands. Moreover, according to Dercon
and Christiaensen [3], Falco and Chavas [4], and Amare et al.
[5], rainfall is considered a direct input for the production of
crops, and rainfall variability can affect agricultural produc-
tivity, that is, rainfall could lead to a change in crops, which
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could move production away from the planned production
[6]. Therefore, sustainable agricultural production and cli-
mate change are interrelated processes [7]. Also, extreme
weather events like warmer and drier conditions are asso-
ciated with negative impacts on agricultural production [8].
Moreover, the growth of population, energy demand, and
related environmental problems are the main factors affect-
ing the availability of water [9,10]. Additionally, air tem-
perature and rainfall are the essential factors that influence
human activities such as urban water resources and agri-
cultural production [11,12]. Also, rainfall is one of the most
important variables of hydro-climate because of its signifi-
cance for sustainable water management [13]. Thus, the accu-
rate prediction of rainfall availability is beneficial for making
management and can assist with the sustainable operation of
water resource systems.

Northern Cyprus is likely to suffer increasing levels of
climate change impacts because of its geographical location
and weak human, economic, technological, and financial
capacity to cope with the multiple impacts of these disrup-
tions. Vulnerability to climate change is compounded by
the over-dependence on climate-sensitive sectors. The land
distribution of the northern part of Cyprus constitutes
56.7% of agricultural, 19.5% of forestry, 5.0% of the grass-
ing area, 10.7% is covered by towns, villages, rivers, and
reservoirs and nearly 8.2% is bare land with 87 km? of irr-
igable land [14]. Northern Cyprus has very limited water
resources [15]. Rainfall is considered the main source of
water in the Northern part of Cyprus. Generally, in Cyprus,
more than two-thirds of the rainfall occurs between October
and April [16].

1.1. Literature survey

In recent years, empirical approaches like artificial neu-
ral networks (ANN) and multiple linear regressions (MLR)
have been used as powerful modeling tools in the estima-
tion of rainfall data. ANNs have emerged as a powerful
technique for modeling complex functional relationships.
Moreover, the MLR is used to describe the relationship
between two or more independent variables and one
dependent variable. Many studies have utilized different
techniques used for the prediction of hourly/daily/weakly/
monthly rainfall in Northern Cyprus and worldwide.
The key features of previous scientific studies are summa-
rized in Table 1.

According to Table 1, it can be concluded that:

* Researchers have recently focused on modeling hourly/
daily/weekly/monthly rainfall using artificial intelligence
models.

* Researchers have utilized meteorological parameters
such as minimum and maximum temperatures, wind
speed, pressure, and relative humidity

* TFew studies have used climatological parameters like
sunshine duration and solar radiation as input data for
the empirical model to estimate the hourly/daily/weekly/
monthly rainfall.

* According to the authors’ review, most works used
machine learning models and mathematical regressions
including least-squares support vector regression, linear

regression, classical linear regression, cluster wise linear
regression, and MLR for monthly/daily/hourly rainfall
prediction.

1.2. Objective of the present work

Regarding the literature review, it reveals a clear lack
of monthly rainfall prediction models in Northern Cyprus.
According to the authors’ review, most of the previous
studies used machine learning models and mathematical
regressions for monthly/daily/hourly rainfall prediction,
but no studies have utilized the response surface regres-
sion model (RSR) for predicting the rainfall. To the best of
our knowledge, there are no detailed studies in Northern
Cyprus about estimating the monthly rainfall as a function
of latitude, longitude, and altitude of its location and the
number of the months at any point near the selected sta-
tions where there are no measurements. Therefore, the main
aim of the present work is to predict the monthly rainfall
for a short-term period as a function of geographical coordi-
nates (latitude, longitude, and altitude of the location) and
meteorological parameters (mean temperature, maximum
temperature, minimum temperature, and relative humid-
ity). These meteorological parameters are used as input
variables for the proposed models based on the previous
scientific studies in practically [63]. Gokgekus et al. [63] con-
cluded that temperature and relative humidity are consid-
ered important parameters that have a greater impact on the
estimated rainfall. Also, they found that wind speed has a
minimum effect on rainfall prediction. In this study, three
empirical models, namely, feed-forward neural network,
MLRs, and RSR model are developed to predict the monthly
rainfall in Northern Cyprus. It is expected to investigate the
interaction of geographical coordinates and selected mete-
orological parameters to monthly rainfall. Thus, contours
are plotted to investigate interactive effects and optimize
the parameters affecting the rainfall.

2. Materials and methods
2.1. Measurement data and description of climate data

The average monthly climate data for the 7 y period
(2011-2017) are wused. The data are recorded by the
Meteorological Department located in at Lefkosa in Northern
Cyprus. The location and specific information of the
selected stations are listed in Table 2 and illustrated in Fig. 1.

Moreover, the descriptive statistics of each station
including mean, standard deviation (o), variance coefficient
(C,), minimum (Min.), maximum (Max.), median (Med.),
skewness (S), and kurtosis (K) are presented in Table 3. It is
observed that the highest and lowest averaged temperatures
are recorded in Girne and Bogaz with a value of 20.89°C and
13.34°C, respectively. In addition, for all stations, the aver-
aged maximum temperature values are varied from 19.77,
which obtained in Gazimagusa and 31.95, which recorded
in Ercan during the investigation period (2001-2016).
Additionally, it is found that the lowest minimum tempera-
ture value is recorded in Giizelyurt with a value of 7.58°C.
The coefficients of variation of temperature are moderately
high, ranging from 21.96 to 93.32 (Table 3). During the
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Table 2
Details of each location used in this study

Y. Kassem et al. / Desalination and Water Treatment 215 (2021) 328-346

Location Coordinates Altitude (m) Characteristics of the Location
Latitude (°N) Longitude (°E)

Lefkosa 35°10'12.9" 33°21'31.32" 146 Surrounded by building
Ercan 35°10' 25.86" 33° 32" 52.08" 105 Airport

Girne 35°20'0.6" 33°18' 51.156" 7 Coastal

Glizelyurt 35°12'3.528" 32°59' 26.808" 49 Coastal

Gazimagusa 35°7'15.9924" 33°56'15.1116" 7 Coastal

Bogaz 35°18' 58.428" 33°57'12.636" 388 Coastal

Alevkaya 35° 16’ 59.52" 33°32' 0.6252" 623 Coastal

""" @ . .ﬁtaﬂaz
Sy Alevkaya
®

’ Ercan .
. "

Fig. 1. Representative meteorological stations (squared: stations used in testing; circle: stations used in training).

investigation period, the Skewness values of all stations are
varying, which depends on the station, that is, a positive
value indicates that all distributions are right-skewed, while
the negative value of skewness indicates that all distribu-
tions are left-skewed.

Moreover, for all stations, the mean rainfall values are
varied from 21.68 to 45.5 mm as shown in Table 3, and
mean rainfall over Northern Cyprus is about 225 mm.
The coefficients of variation are moderately high, ranging
from 77.79 to 106.98. In addition, the skewness values of
all stations are positive indicating that all distributions
are right-skewed.

Additionally, the variations of the monthly mean rain-
fall at each station for the years from 2011 to 2017 are
illustrated in Fig. 2. It is observed that the monthly mean

rainfall is varied from 606.7 to 2.03 mm and the general
trend is that the mean rainfall decreases from May to
September and then starts to increase afterward for the rest
of the year. Furthermore, it is noticed that the maximum
and minimum rainfall is recorded in winter and summer
seasons at all studied stations, respectively. In compari-
son, it is found that Bogaz and Lefkosa have the highest
and lowest annual mean rainfall with a value of 50.38 and
23.95 mm, respectively.

Furthermore, the mean relative humidity in Northern
Cyprus is approximately 63%. Based on the result, it is
noticed that Bogaz has the lowest mean relative humid-
ity and Giizelyurt has the highest mean relative humid-
ity as shown in Table 3. In general, the mean climate data
and standard deviation values suggest that there is good
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Table 3
Statistical parameters of mean monthly climate data
Parameter Station Mean o C, Min. Med. Max. S K
Girne 37 38.7 104.67 0.1 24.2 105.7 0.86 -0.77
Gazimagusa 28.24 24.76 87.67 0 29.64 71.84 0.63 -0.51
Giizelyurt 24.47 19.03 77.79 1.5 23.24 57.27 0.57 -0.43
. Ercan 24.83 19.98 80.49 0.04 26.11 65.64 0.62 0.04
Rainfall (mm)
Lefkosa 21.68 19.21 88.59 0.09 22.01 52.89 0.45 -1.1
Bogaz 455 48.6 106.98 0 28.8 133.2 0.88 -0.67
Alevkaya 43.7 38.5 88.16 0.1 41.3 127.7 0.79 0.49
Northern Cyprus 2254 201.3 89.3 2 199.2 606.7 0.69 -0.43
Girne 20.89 6.05 28.96 13.1 20.19 29.57 0.18 -1.56
Gazimagusa 14.64 4.09 27.92 9.17 14.38 20.44 0.12 -1.55
Glizelyurt 18.77 6.45 34.38 10.47 18.53 27.8 0.13 -1.59
Average Ercan 19.65 7.16 36.46 10.2 19.55 29.59 0.09 -1.6
temperature (°C) Lefkosa 19.34 7.35 38.01 9.69 19.24 29.49 0.11 -1.58
Bogaz 13.34 4.57 34.22 7.07 13.28 19.57 0.05 -1.59
Alevkaya 16.8 6.64 39.54 7.99 16.61 26.19 0.13 -1.53
Northern Cyprus 19.17 6.61 34.5 10.51 18.85 28.39 0.12 -1.58
Girne 28.53 6.44 22.55 19.77 28.07 37.61 0.09 -1.51
Gazimagusa 19.77 4.34 21.96 13.6 20.52 24.99 -0.19 -1.73
Glizelyurt 31.95 7.42 23.21 20.13 33.73 41.39 -0.27 -14
Maximum Ercan 31.47 7.9 25.12 19.16 33.21 40.57 -0.3 -1.55
temperature (°C) Lefkosa 31.87 8.03 25.19 19.36 33.49 41.69 -0.25 -1.51
Bogaz 20.11 5.12 25.47 12.34 20.7 26.3 -0.16 -1.58
Alevkaya 27.47 7.62 27.75 15.79 28.89 36.9 -0.21 -1.55
Northern Cyprus 29.74 7.32 24.63 18.62 30.95 38.86 -0.19 -1.54
Girne 14.59 5.62 38.5 5.69 15.02 22.63 -0.12 -1.21
Gazimagusa 9.2 4.95 53.75 2.39 9.07 16.66 0.15 -1.35
Giizelyurt 7.58 6.74 88.93 -0.8 7.19 17.51 0.19 -1.52
Minimum Ercan 9.09 7.31 80.4 -0.11 8.44 19.7 0.18 -1.55
temperature (°C) Lefkosa 7.8 7.28 93.32 -1.36 7.39 18.47 0.21 -1.53
Bogaz 7.62 4.66 61.1 0.87 7.15 14.63 0.07 -1.36
Alevkaya 8.25 6.42 77.84 -0.5 7.48 17.66 0.11 -1.45
Northern Cyprus  9.89 6.6 66.79 0.99 9.03 19.46 0.19 -1.52
Girne 60.885 3 493 56.371 61.25 64.757 -0.19 -1.71
Gazimagusa 46.851 1.279 2.73 44.614 46.95 48.914 -0.25 -0.59
Glizelyurt 67.75 4.75 7.01 63.09 66.65 76.11 0.79 -0.93
Relative humidity =~ Ercan 60.26 7.82 12.98 50.67 57.97 73.23 0.51 -1.11
(%) Lefkosa 58.76 8.86 15.07 47.93 56.86 73.16 0.38 -1.24
Bogaz 44.67 4.64 104 38.44 42.79 52.4 0.42 -0.95
Alevkaya 66.9 8.69 12.99 53.69 65.53 80.27 0.15 -0.97
Northern Cyprus 63.25 5.83 9.22 55.7 62.52 72.81 0.44 -1.08

o, standard deviation; C , variance coefficient; Min., Minimum value of rainfall climate data; Max., Maximum value of rainfall climate data,

Med., Median; S, Skewness, K, Kurtosis.

consistency in climate data behavior. In addition, Fig. 2
illustrates the mean monthly air temperature including
maximum temperature, average temperature, and mini-
mum temperature, respectively at selected stations. It is
noticed that Gazimagusa and Lefkosa have the lowest and
highest mean maximum temperature as shown in Fig. 2.
Also, it is noticed that Bogaz has the minimum average

temperature compared to other stations. Moreover, it is
found that the lowest and highest mean minimum tempera-
ture was recorded in January (*1°C) and August (*19.5°C).
Besides, Fig. 2 highlights the monthly variation of mean
relative humidity at seven stations and shows the monthly
relative humidity of Northern Cyprus. For Girne, the
monthly averaged relative humidity is varied from 68.50%
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Fig. 2. Mean monthly of climate data.
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to 44.30% with the minimum mean relative humidity
recorded in October 2013. For Ercan, the monthly relative
humidity falls gradually from January to June and begins
to increase afterward. A similar trend is also observed at
Glizelyurt, Lefkosa, Bogaz, and Alevkaya. The minimum
mean monthly relative humidity is occurred in October
2013 for all stations expected Lefkosa and Alevkaya. As can
be seen from Fig. 2, the lowest monthly relative humidity
at Lefkosa and Alevkaya is obtained in September 2014 and
August 2013, respectively. In general, the annual relative
humidity values are ranged between 58.828% and 67.90%
with an average value of 63.20%.

2.2. Artificial neural network

The ANN is a powerful mathematical modeling tool,
especially for complex systems. ANNs have long been used
as an alternative methodology in different areas such as
function approximation and so on. Many types of ANNs
have been developed by scientific researchers such as which
the feed-forward neural network is one of the most popu-
lar ANNSs [67]. The node numbers in the input and output
layers are estimated by the nature of the problem. Generally,
the multilayer feed-forward neural network is widely
used in solving engineering problems. It consists three
layers, namely: input layer(s), hidden layer(s), and output
layer(s). In addition, the number of these layers depends
on the nature of the problem.

In this study, ANN method uses the altitude (AL),
latitude (L), longitude (Lo), month number (Mn), aver-
age temperature (AT), minimum temperature (MinT),
maximum temperature (MaxT), and relative humidity (Rh)
as input. In this work, TRAINLM is used as a training func-
tion that updates the weight and bias values of the neu-
ron connections according to Levenberg-Marquardt (LM)
optimization. The backpropagation algorithm is used as a
learning algorithm and it is a gradient descent algorithm.
The logistic-sigmoid (logsig) and tangent-sigmoid (tansig)
are used as activation functions whose outputs lie between
0 and 1 and are defined as:

logsig = 1

gig=1—— M

tansig = ex — eix 2
e +e

The key step for developing an ANN is the training
procedure, where the weights and biases are adjusted to min-
imize the difference between the output of the ANN and the
actual value. In order to find the best performance for the
ANN trained model, the mean squared error (MSE) is used.
Fig. 3 presents the prediction processes used in the proposed
MFFNN method. By trial and error, the optimum number
of the nodes in the hidden layers, the most suitable trans-
fer function, and the number of neurons are determined.
In order to obtain the best performance results, various ANN
models are designed. Fig. 4 shows the structure of the ANN
model used in this study. Moreover, the logsig function and
the tansig functions were used as the activation functions
in the hidden layer and the output layer, respectively.
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Fig. 3. Flowchart of the ANN-based method prediction procedure.

2.3. Multiple linear regressions

MLR is described as the relationship dependent (y) and
independent variables (x). It can be expressed as:
y, =B, +Bx, +..+Bx, i=12,..,n (©)]
where y, denotes the dependent variable (rainfall) and x,
where i = 1,2,...,n denotes the explanatory or independent
variables and 3 is called the intercept. In order to evalu-
ate the relationship between the dependent and indepen-
dent variables, the Pearson correlation test is examined.
SPSS was used for the regression and testing of the data.

2.4. RST model

The RSR model is a mathematical model that represents
a simple description of a physical, chemical, or biological
process. RSR has the advantage of reducing the number of

measurements, which is sufficient to provide statistically
acceptable results [68]. The RSR model of monthly rainfall
is developed using a response surface methodology (RSM).
This model is used to investigate the influence of interactive
effects of the meteorological parameters and geographical
coordinates on monthly rainfall, In the RSM method, the
quantitative form of the relationship between the indepen-
dent input variables and the desired output is expressed as
follows:

R = f(AL,L,Lo,Mn,AT,MinT,MaxT and Rh) (4)

On the basis of the actual data, regression analysis was
carried out by the following quadratic polynomial model:

n-1 n

n n
R=B,+ Zﬁixi + Zﬁﬁxf + z Z Bixx;
i=1 i=1 j

i =i+l

©)
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Fig. 4. Meteorological data used to estimate the structure of ANN.

where (3, is the offset term; {3, is the linear coefficient; the
second-order coefficient and {3, is the interaction coeffi-
cient; x, and x, are the independent variables. The least-
squares method was employed to ascertain the values of the
model parameters and analysis of variance (ANOVA) was
applied to establish their statistical significance at a confi-
dence level of 95%. The Minitab statistical software 17 was
used for the regression and graphical analysis of the data.

2.5. Model performance criteria

In general, the performance measures are utilized to
select the “better” predictive model. The following sta-
tistical indicators are widely used to assess the predictive
power of ANN and mathematical models [69,70].

Coefficient of determination (R?):

Z(au,i _up,i)z

RR=1--1 " (6)
n 2
z(ap,[ - aa,ave)
i=1
Mean squared error (MSE):
MSE—lz":(a ~a, ) @)
n pot a,i pi
Root mean squared error (RMSE):
1¢ 2
RMSE = *Z(”a,f - ap/,.) ®)

i=1

A et =
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Hidden

layer

Output
layer

Nash—Sutcliffe efficiency (NSE):

Z(aa,i - ap,i)z

NSE=1--+-1— ©)
Z(“a,i T ave )2
i-1
Willmott’s index of agreement (d):
Z(am Ay )2
d=1-— = S (10)
Z(‘aw —a, .| *|a,;—a )

a,i a,ave

i-1

where n is the number of data, a s the predicted values,
a, is the actual values, a,.. is the average actual values,
and i is the number of input variables.

3. Results

3.1. ANN model

As mentioned previously, a feed-forward neural net-
work was employed to predict the monthly rainfall for
Northern Cyprus. In this study, the number of months, geo-
graphical coordinates (AL, L, and Lo), and meteorological
variable parameters (AT, MinT, MaxT, and Rh) were col-
lected and used as input parameters and monthly rainfall
as output parameters in the models. From the given data,
the data of five selected station (Lefkosa, Ercan, Girne,
Giizelyurt, and Gazimagusa) were used for training and the
rest of the data of two stations (Bogaz and Alevkaya) were
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utilized to test the model. A series of models are examined
to estimate the optimum number of hidden layers (HL), the
number of neurons (NN), and transfer function (TF) for the
ANN model. It should be noted that the number of HLs
and NNs in the ANN model was determined by utilizing
trial and error approaches. Based on the value of MSE, it is
found that 50 hidden layers and 15 neurons are selected as
the best for ANN modeling (8:50:1) have the minimum MSE
with a value of 0.0003512 compared to other models. Fig. 5
illustrates the R-squared for training data of rainfall data in
Northern Cyprus. R-squared is used to evaluate the perfor-
mance of artificial models. R-squared means the degree of
the linear relationship between the observed and modeled
values. The line is almost straight with a 45° angle and this
proves the accuracy of the provided model. For the train-
ing phase, the R? value was found to be 0.9074 as shown
in Fig. 5. The results obtained from the ANN models show
that the use of ANN is enough to predict monthly rainfall.

3.2. MLR model

In this study, MLR method was developed to estimate
the monthly rainfall (R) as a function of altitude (AL), lati-
tude (L), longitude (Lo), month number (Mn), averaged tem-
perature (AT), maximum temperature (MaxT), minimum
temperature (MinT), and relative humidity (Rh) with the
climate data of 540 data for all stations in Northern Cyprus
as shown in Eq. (11):

R =-1,543.670-0.296 - Mn + 0.039 - AL + 44.073- L +1.127 - Lo
—0.273- AT -0.996 -MinT —1.377 -MaxT +0.709-Rh (11)

In the current study, the performances of the MLR were
tested by Pearson product-moment correlation, which is
used to investigate the relationship between the rainfall (R),
geographical coordinates (AL, L, and Lo), and meteorolog-
ical parameters (AT, MinT, MaxT, and Rh) followed by a
parametric method for normal distribution. According to
Table 3, there are strong significant correlation coefficients
between the temperatures and rainfall for all periods. Also,
it is observed that there is a significant positive relationship
between relative humidity and rainfall. The same results have
been found by Gokgekus et al. [63]. The authors concluded
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Fig. 5. Correlations between actual values and predicted value
by optimum ANN model.

that temperature is considered as the most important param-
eter that has a greater impact on the estimated rainfall. It is
found that wind speed has a minimum effect on rainfall pre-
diction. According to Table 4, the P-value of Mn and Lo was
0.129 and 0.421, respectively, these values were greater than
the pre-significant value of 0.05 thus, and they are not signif-
icant. Moreover, Fig. 6 illustrates the R-squared for training
data of monthly rainfall data using MLR.

3.3. RSR models

The RSR model was used to study the response pattern
and to determine the optimum combination of variables.
The Minitab statistical software 17 was used for the regres-
sion and graphical analysis of the data. The time-series data
were analyzed by the RSR using Eqs. (12)—(14) as shown
below. The performances of the RSRs were tested by calcu-
lating the R-squared value. The high R-squared value indi-
cates over-fit in the model. The R-squared value for rainfall
datais shownin Fig. 7. It is found that the value of R-squared
was 0.4074 for Eq. (12), 0.4459 for Eq. (13), and 0.4568 for Eq.
(14). Also, it is observed that the full quadratic model has
the highest value of R-squared compared to other models.

R=3,726,658+0.232-Mn +0.118- AL — 212,882 L +1,398 Lo
~2.03-AT +2.67 -MinT —8.21-MaxT —2.89-Rh
~0.0039-Mn? —0.000141- AL? + 3,022 - I> —21.3- Lo?
+0.042- AT? —0.1636 - MinT? +0.1188 - MaxT>
+0.0333-Rh? (12)

R=-693,818-12.2-Mn+17.7- AL +19,676- L +20,043- Lo
~299. AT +122-MinT + 838 -MaxT + 57 -Rh
~0.000647 -Mn - AL —0.07 -Mn - L +0.438 - Mn - Lo
~0.0722-Mn - AT +0.0327 - Mn - MinT +0.0356 - Mn - MaxT
~0.0001-Mn-Rh—0.85-AL- L+0.360- AL - Lo
+0.00426 - AL - AT —0.00833- AL - MinT +0.00664 - AL - MaxT
+0.00147 - AL-Rh =569 -L-Lo+11.0-L- AT 4.8 L-MinT
-232-L-MaxT -1.10-L-Rh-1.92-Lo- AT +0.99-Lo-MinT
~0.69-Lo-MaxT —0.40-Lo-Rh —0.287 - AT -MinT
~0.193- AT -MaxT —0.255- AT -Rh +0.352 - MinT - MaxT
+0.119-MinT -Rh —0.017 - MaxT - Rh (13)

R=-3,832,459 +1.4-Mn —0.127- AL - 218,019 - L — 224 - Lo
+455. AT — 443 -MinT + 614 -MinT + 614 - MaxT +42-Rh
~0.00268-Mn? —0.000152AL? + 3.6 - Lo® + 0.967 - AT?
~0.009-MinT? +0.327 -MaxT? +0.0237 - Rh?
~0.000572-Mn- AL -0.35-Mn- L +0.341-Mn Lo
~0.0859-Mn - AT +0.0428 - Mn - MinT + 0.0381- Mn - MaxT
~0.0027 -Mn-Rh+0.0114- Al- AT —0.01282- AL -MinT
+0.00395- AL -MaxT +0.0136- AL-Rh—-52-L- AT
+8.1-L-MinT+19.1-L-MaxT —0.98-L-Rh —7.18 - Lo- AT
+4.32-Lo-MinT +1.58-Lo-MaxT - 0.22-Lo-Rh
~0.849- AT-MinT —1.339- AT -MaxT - 0.158 - AT -Rh
+0.822-MinT - MaxT +0.093 - MinT - Rh + 0.006 - MaxT - Rh

(14)
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Fig. 6. Comparison between predicted data with actual data of
rainfall using MLR.

Three-dimensional response surfaces were plot-
ted based on the predicted model equation to investigate
the interaction among the variables. The effect of climate
variables on the rainfall is presented in Fig. 8. The contour
plots of the rainfall indicate the interaction effects of param-
eters. In each contour graph, the interaction effect of the
parameters was plotted. The contour areas help to explain
how the viscosity and density vary with a change in the
experimental conditions. The number written on each con-
tour area indicates the rainfall in the specified conditions.
These contour plots were demonstrated that the interaction
effects of all parameters were considerable. In addition, the
main effects plot for rainfall is presented in Fig. 9.

3.4. Comparison of empirical models for prediction rainfall

As mentioned previously, to compare the performance of
the models, the data of five selected station (Lefkosa, Ercan,
Girne, Giizelyurt, and Gazimagusa) were used for training
and the rest of the data of two stations (Bogaz and Alevkaya).
Furthermore, the R-squared, RMSE, NSE, and Willmott’s
index of agreement (d) are determined in order to select the best
model for predicting monthly rainfall. R-squared is a measure
of how well the regression line represents the data, while RMSE
is a direct method for describing deviations. For high accuracy,
R-squared must be close to 1.0, and the RMSE between the
observed and predicted values must be as small as possible.
Table 5 shows the results of the R-squared and RMSE values
for all models. It is observed that the ANN model gave good
predictions according to the R-squared and RMSE values for
the testing data. Also, it is found that the RSR (Eq. (14)) has
the highest value of R-squared and lowest value of RMSE
for the testing data comparing to MLR, Egs. (12) and (13). By
comparing the computation results, the fitting precision of the
ANN model is higher than those of other models, where the
highest R? and least RMSE are 0.631 and 33.404, respectively.

Moreover, the NSE is generally similar to the R* mea-
sure for goodness-of-fit. A value of NSC = 1 indicates per-
fectly good forecasting accuracy; NSE = 0 when a forecast
is no better than using the mean of the observed data; and
NSE has negative values when a forecast is less accurate
than the reference forecast. Thus, it is found that the NSE
value for the ANN model and RSR models show that the
models are satisfactory but the MLR is not satisfactory.

4009 Eq. (12)

R*=0.4074

o 50 100 150 200 250 300 350 400
Actual data [mm]

400: Eq. (13)

R*=0.4459

o 50 100 150 200 250 300 350 400
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Fig. 7. Comparison between predicted data with actual data
of rainfall using RSR.

Additionally, the NSE value for the ANN model is 0.625,
which indicates that it is acceptable as shown in Table 5.

Furthermore, the performance of the predictive mod-
els is evaluated using Willmott’s index of agreement (d).
Willmott’s index of agreement (d) is a standard measure
to determine the error degree of the model. As shown in
Table 5, it is found that the ANN model is the best and that
the other models of monthly rainfall are also acceptable
with the exception of MLR.

Moreover, Fig. 10 shows the comparison of the esti-
mated and observed values of the mean monthly rainfall for
all models.
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Table 4
Correlations and P-value
Mn AL L Lo AT MinT MaxT Rh R
Mn Pfear.sc?n correlati(?n 1
Significance (2-tailed)
AL Pearson correlation 0.883" 1
Significance (2-tailed) 0
L Pearson correlation 0.083 0.383° 1
Significance (2-tailed) 0.084 0
Lo Pearson correlation 0.257° 0.291% -0.062 1
Significance (2-tailed) 0 0 0.199
AT Pearson correlation -0.155" -0.173% -0.032 0 1
Significance (2-tailed) 0.001 0 0.502 0.999
MinT Pearson correlation -0.195" -0.125% 0.111° 0.126" 0.952° 1
Significance (2-tailed) 0 0.01 0.021 0.009 0
MaxT Pearson correlation -0.018 -0.120° -0.132¢ -0.178" 0.917° 0.794" 1
Significance (2-tailed) 0.706 0.013 0.006 0 0 0
Rh Pearson correlation 0.055 0.151° 0.01 -0.024 —0.668" -0.567" —0.666" 1
Significance (2-tailed) 0.258 0.002 0.841 0.622 0 0 0
Pearson correlation 0.073 0.170° 0.162° 0.039 —0.543¢ -0.475° —0.555" 0.460° 1
R Significance (2-tailed) 0.129 0 0.001 0.421 0 0 0 0

“Correlation is significant at the 0.05 level (2-tailed).
"Correlation is significant at the 0.01 level (2-tailed).

4. Discussions

The findings of this study are important for agricultural
production and other socio-economic activities, which are
directly concerned with the rainfed agricultural system.
The rainfed agricultural system is significantly impacted
by rainfall in addition to anthropogenic forces. Based on
the analysis, it is found that the mean values of monthly
rainfall were within the range of 2.0-606.7 mm in Northern
Cyprus during the investigation period. In addition, it is
observed that the amount of rainfall shows a strong pos-
itive correlation with temperatures (mean temperature,
minimum temperature, and maximum temperature) and
relative humidity. Developing an accurate model to cap-
ture the dynamic connection between rainfall and weather
parameters remains a problematic task for engineers. In this
study, the proposed model (RSR) is used to predict monthly
rainfall in northern Cyprus and compared with two popular
models (ANN and MLR) in order to obtain more accurate
results when predicting the monthly rainfall. Based on the
findings, the lowest value RMSE of 33.404 and the highest
R-squared of 0.631 are provided by the ANN model fol-
lowed by RSR (full quadratic model, Eq. (14)) with a value of
RMSE of 41.657 and R-squared of 0.411 (Table 4). Therefore,
the ANN and full quadratic model, Eq. (14), models can bet-
ter represent the relationship between the meteorological
parameters, geographical coordinates, and rainfall and pro-
duce a better prediction of the monthly rainfall. To ensure
the accuracy of the proposed model, the performance results
of the developed models are compared to previous scientific
studies, which used meteorological parameters as input for
the predictive model to predict the monthly rainfall. For
instance, Abbot and Marohasy [30] evaluated the accuracy

of ANN, climatology, and the predictive ocean atmosphere
model with different combinations of input parameters to
estimate the monthly rainfall in Queensland, Australia. The
results found that RSME values were varied between 38.8
and 137.7 and the ANN model can give a better forecast
than climatology even when only using the binary inputs
(MaxT, MinT, southern oscillation index, inter-decadal
pacific oscillation, and dipole mode index). Ewona et al. [36]
estimated the monthly rainfall for three weather measuring
stations spread across using the ANN model. The results
showed that correlation coefficients were within the range
of 0.20-0.80. Bagirov et al. [41] proposed the clusterwise lin-
ear regression technique for the prediction of monthly rain-
fall and compared it with MLR, ANNSs, and the support vec-
tor machines. The results indicated that the proposed algo-
rithm outperformed other methods in most locations based
on RMSE, which ranged from 19.7 to 39.3. Gokgekus et al.
[63] developed 25 ANN models to predict the monthly rain-
fall by varying the meteorological parameters. The results
showed that ANN-17 with the combination of (T, T __,
SD, and GSR) had the maximum R-squared (0.6488) com-
pared to the other models. Additionally, based on RMSE,
they found that ANN-23 with a combination of (T, T,
T , W, and SD) gave the lowest value of RMSE (0.1259) and
was the best fit for predicting the monthly rainfall. Anh et
al. [53] introduced novel hybrid models for monthly rain-
fall prediction, which were combined of two pre-process-
ing methods (seasonal decomposition and discrete wavelet
transform) and two feed-forward neural networks (ANN
and seasonal ANN). The results showed that the model with
the combination of Meyer wavelet and seasonal ANN pro-
vided the lowest RMSE and highest R-squared with values
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Table 5
Performance evaluation of the proposed models
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Performance ANN MLR RSR

criteria Eq. (11) Eq. (12) Eq. (13) Eq. (14)
R-squared 0.631 0.322 0.362 0.403 0411
RMSE 33.404 59.954 43.706 42248 41.957
NSE 0.625 -0.208 0.358 0.400 0.408

d 0.880 0.334 0.685 0.718 0.727

NSE: Nash-Sutcliffe efficiency; d: Willmott’s index of agreement.

of 12.105 and 0.9973, respectively. Also, among the models,
it was found that ARIMA model had the lowest value of
R-squared (0.7628) and the highest value of RMSE (108.07).
Consequently, it was concluded that the proposed models
(ANN and RSR) could satisfactorily simulate non-station-
ary and non-linear time series-related problems such as
rainfall prediction, but ANN provided the most accurate
prediction for monthly rainfall.

5. Conclusions

Rainfall is one of the most important variables affect-
ing the hydraulic behavior. Also, rainfall is considered the
hardest weather variable to predict, and its cause-effect
relationships often cannot be expressed in simple or com-
plex mathematical forms. Therefore, the main objective of
the study was to examine the application RSR model for
monthly rainfall prediction in northern Cyprus. Also, this
study was developed and compared two models namely,
ANNs and MLR models with RSR for the prediction of
monthly rainfall. For this, the number of months, geograph-
ical coordinates (AL, L, and Lo), and meteorological vari-
able parameters (AT, MinT, MaxT, and Rh) were collected
and used as input parameters and monthly rainfall as out-
put parameters in the models. Validation of the developed
models was achieved using various quality assessment
criteria such as coefficient of determination (R?), RMSE,
Nash-Sutcliffe efficiency (NSE), and Willmott’s index of
agreement (d). The results presented in this paper demon-
strated that the ANN model was found to be the best
method for predicting rainfall and was more precise com-
pared to RSR and MLR models. Additionally, it is found that
the RSR model is a good alternative model for predicting
the monthly rainfall compared to the MLR model.
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