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a b s t r a c t
In this study, a Box–Behnken design was carried out to investigate the effects of radiation intensity, 
environment temperature, relative humidity, brine temperature, wind speed and brine concentration 
on the brine evaporation rate. The predictive abilities of response surface methodology and artificial 
neural networks were compared. The results showed that root mean square error for new data by 
the response surface method and artificial neural network models is 0.265 and 0.125, respectively; 
whereas the coefficient of determination is 0.773 and 0.940, respectively; and the standard error of 
prediction is 29.26% and 13.77%, respectively. It indicating that the artificial neural network model 
has much higher modeling abilities and generalization abilities than the response surface method-
ology model. Thus, the artificial neural network model is much more stable and accurate to be used 
in predicting brine evaporation rate in comparison to the response surface methodology model.
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1. Introduction

Salt Lake is a natural treasure house of inorganic salts. 
It contains not only common salts such as halite, mirabi-
lite and trona but also precious metal resources such as 
sylvite, borax, lithium salt, rubidium and cesium that are 
urgently needed for the development of the national econ-
omy, which has excellent development prospects and uti-
lization values [1,2]. The Salt Lake brine resources are 
abundant in the Qinghai–Tibet Plateau of China. Since the 
climate characteristics of the plateau lake area are sufficient 
sunshine, windy and dry, it is suitable to develop and uti-
lize comprehensively Salt Lake brine resources by natural 
evaporation [3]. However, the brine evaporation rate is an 

essential technical parameter for the design, construction 
and management of salt pans.

As we have known that many factors can affect brine 
evaporation rate, including external meteorological fac-
tors such as radiation intensity, environment tempera-
ture, relative humidity and wind speed [4,5] and internal 
factors such as brine temperature and brine concentration 
[6]. Generally, the calculation formula of brine evapora-
tion rate is usually expressed by the product of freshwater 
evaporation rate and conversion coefficient under the same 
conditions, which are often assumed to be a function of 
meteorological factors such as environment temperature, 
wind speed, and relative humidity [7,8]. Unfortunately, 
these calculation formulas are often subject to geographical 
restrictions and do not have universal applicability.
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Currently, there are two common modeling methods 
for the processes affected by multiple factors, namely 
response surface methodology (RSM) and artificial neural 
network (ANN). RSM is an efficient modeling tool provid-
ing quadratic functions to fit responses in linear or smooth 
nonlinear processes [9], which is widely used in chemis-
try, biology and other fields. Compared with a one-factor 
experimental design, RSM is a time-saving method and also 
can describe the interactive effect among variables [10–13]. 
ANN is a modeling method to solve nonlinear and tricky 
problems by simulating the way that biological brain neu-
rons process information [14]. Compared with RSM, ANN 
can fit almost all nonlinear processes, but its fitting process 
is a black-box, and cannot draw specific model expressions 
to describe the interactive effect among variables [15–17].

Up to now, there are some studies on the freshwater 
evaporation rate, but less studies on the brine evaporation 
rate. The purpose of this study is to develop an empirical 
model, which can accurately predict brine evaporation rate. 
The influence of main factors on brine evaporation rate was 
comprehensively considered, the RSM and ANN method-
ologies were applied for predicting the brine evaporation 
process, and then modeling abilities and generalization 
abilities of RSM and ANN models were compared.

2. Experimental

2.1. Experimental material

The raw brine was taken from Qarhan Salt Lake. The 
raw brine was diluted with distilled water or condensed 
by evaporation to different concentrations, and the main 
chemical composition of brine is shown in Table 1.

2.2. Experimental design and procedures

Fig. 1 shows the experimental apparatus for brine 
evaporation. In this study, a six-factor Box–Behnken 
design (BBD) was used to design the experiment for con-
structing models. Brine evaporation rate was chosen as 
the response variable, while radiation intensity (X1), envi-
ronment temperature (X2), relative humidity (X3), brine 
temperature (X4), wind speed (X5) and brine concentration 
(X6) were chosen as independent variables, respectively. 
Table 2 summarizes the experimental design levels for 
BBD, and the experimental design is shown in Table 3.

According to the experimental design in Table 3, 
different concentrations of brine were prepared first 
(Table 1), and then put brine into standard evaporating dishes 

(Φ  =  20  cm). The different experimental conditions including 
radiation lights, air thermostat, air blower, constant humidity 
machine and brine thermostat were changed every 5 h.

2.3. Analytical methods

The ion concentration of brine was analyzed by using 
Inductively Coupled Plasma Optical Emission Spectrometer 
(ICP-OES) (iCAP 6500 DUO, Thermo Fisher Scientific, 
Waltham, USA) and Ion Chromatography (IC) (ICS-5000+, 
Thermo Fisher Scientific, Waltham, USA). As shown in Fig. 1, 

Fig. 1. Schematic diagram of brine evaporator: (a) irradi-
ation light; (b) air thermostat; (c) air blower; (d) constant 
humidity machine; (e) evaporating dish; (f) brine thermostat; 
(g) humidity sensor; (h) environment temperature sensor; 
(i) reference radiometer; (j) anemograph; (k) brine temperature 
sensor; (l) evaporation sensor; (m) multichannel data collector.

Table 1
Main chemical composition of brine

Chemical component (mol/kg) Total content 
of main ions

Density

Na+ K+ Mg2+ Cl– SO4
2– (mol/kg) (g/cm3)

Raw brine 0.408 0.340 2.604 5.766 0.096 9.214 1.264

Experimental brine
0.204 0.169 1.447 3.108 0.064 4.992 1.147
0.121 0.041 3.259 6.488 0.072 9.981 1.302

Table 2
Independent variables and experimental design levels for BBD

Independent variable Level

Code –1 0 1

Radiation intensity (kW/m2) X1 0 0.5 1
Environment temperature (°C) X2 15 20 25
Relative humidity (%) X3 30 40 50
Brine temperature (°C) X4 20 25 30
Wind speed (m/s) X5 0 4 8
Brine concentration (mol/kg) X6 0 5 10
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experimental data of radiation intensity, environment tem-
perature, relative humidity, brine temperature, wind speed 
and brine evaporation were collected by various sensors 
and multichannel data collectors. Eq. (1) can be used to 
calculate the brine evaporation rate.

Y h
t

= � 	 (1)

where Y (mm/h) is brine evaporation rate, h (mm) is 
cumulative brine evaporation at evaporation time t (h).

2.4. Response surface methodology

Eq. (2) was used to fit experimental data of brine 
evaporation rate to construct the RSM model [11,13].
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where Y is the corresponding response variable, xi and xj 
are actual values of independent variables, b0 is constant, 

bi is linear coefficients, bij is interactive coefficients and bii is 
quadratic coefficients.

2.5. Artificial neural network

A feedforward neural network with a backpropagation 
(BP) algorithm was applied for modeling the brine evapo-
ration process. In this training process of the BP neural net-
work, the mean square error between the predicted value 
and experimental value was calculated, and then the error 
propagated backward through the network as the basis for 
modifying the weight and bias of each layer. Signal prop-
agated forward, error propagated backward, and weight 
matrix modified of each layer was repeated until error 
reaches the expected value [14,15].

The root mean square error (RMSE), coefficient of 
determination (R2) and standard error of prediction (SEP) 
were calculated by Eqs. (3)–(5) respectively to evaluate the 
modeling abilities of RSM and ANN models.
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Table 3
Box–Behnken design for brine evaporation experimental

No. X1 X2 X3 X4 X5 X6 No. X1 X2 X3 X4 X5 X6

1 0.0 20 40 20 0 5 28 1.0 20 40 30 8 5
2 0.5 20 40 25 4 5 29 1.0 15 40 30 4 5
3 0.0 20 40 30 8 5 30 1.0 20 40 20 0 5
4 0.5 20 40 25 4 5 31 1.0 20 40 20 8 5
5 0.5 20 50 20 4 10 32 0.0 20 30 25 4 10
6 0.5 20 30 30 4 10 33 0.5 25 40 25 8 10
7 0.5 15 40 25 8 10 34 0.5 15 30 25 0 5
8 0.5 15 40 25 8 0 35 1.0 20 40 30 0 5
9 0.0 15 40 30 4 5 36 0.5 20 30 20 4 0
10 0.5 25 40 25 0 10 37 0.0 25 40 20 4 5
11 0.5 25 30 25 0 5 38 0.5 15 30 25 8 5
12 0.5 20 50 30 4 0 39 1.0 15 40 20 4 5
13 0.5 25 40 25 8 0 40 0.5 20 40 25 4 5
14 0.5 25 50 25 8 5 41 0.0 20 40 30 0 5
15 0.5 20 40 25 4 5 42 0.5 20 40 25 4 5
16 0.5 20 50 20 4 0 43 0.5 20 30 30 4 0
17 1.0 25 40 20 4 5 44 0.0 20 40 20 8 5
18 0.5 25 50 25 0 5 45 0.5 20 30 20 4 10
19 0.0 15 40 20 4 5 46 0.0 25 40 30 4 5
20 1.0 20 30 25 4 0 47 1.0 25 40 30 4 5
21 0.5 15 40 25 0 10 48 1.0 20 50 25 4 0
22 1.0 20 50 25 4 10 49 0.5 15 40 25 0 0
23 0.0 20 50 25 4 0 50 0.5 15 50 25 0 5
24 0.5 20 40 25 4 5 51 0.5 20 50 30 4 10
25 0.5 25 30 25 8 5 52 0.0 20 30 25 4 0
26 0.5 25 40 25 0 0 53 0.0 20 50 25 4 10
27 1.0 20 30 25 4 10 54 0.5 15 50 25 8 5
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where yi,t is experimental data, yi,p is predicted data, yt is 
the mean value of experimental data and n is the number 
of the experimental data. The smaller RMSE, SEP and the 
higher R2, the more excellent the modeling ability a given 
model has.

2.6. Model validation

The new data which were not used for modeling could 
be used to evaluating the generalization abilities of RSM 
and ANN models. Therefore, six additional experiments 
were carried out based on the numerical range given in 
Table 1. Table 4 illustrates the experimental data used to 
validate models.

3. Results

3.1. Response surface methodology modeling

The data of brine evaporation experimental in 
Table 5 were used to construct the RSM model. The RSM 
model [Eq. (6)] was obtained by using Eq. (2) to fit experi-
mental data of brine evaporation rate.
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where Y is brine evaporation rate (mm/h), X1 is radiation 
intensity (kW/m2), X2 is environment temperature (°C), 
X3 is relative humidity (%), X4 is brine temperature (°C), 
X5 is wind speed (m/s) and X6 is brine concentration (mol/kg).

Analysis of variance on the RSM model showed that it 
was significant (P < 0.0001) and lack of fit was insignificant 
(P  >  0.01), which indicated that it could describe the effect 
of radiation intensity, environment temperature, rela-
tive humidity, brine temperature, wind speed and brine 
concentration on the brine evaporation rate very well. 
Accordingly, the data of brine evaporation rate predicted by 
the RSM model are listed in Table 5.

Eq. (6) shows that brine evaporation rate had a compli-
cated relationship with independent variables, which con-
tained first and second-order polynomial. The effect of two 
variables on the objective function was analyzed by Eq. (6), 
while another variable was kept constant [18]. The interac-
tive effects of radiation intensity, environment temperature, 

relative humidity, brine temperature, wind speed and 
brine concentration on brine evaporation rate are given 
in Fig. 2 when radiation intensity, environment tempera-
ture, relative humidity, brine temperature, wind speed and 
brine concentration were kept constant at 0.5 kW/m2, 20°C, 
40%, 25°C, 4 m/s and 5 mol/kg, respectively.

Brine evaporation was a multi-factor process, and 
there was an interaction among the factors. It can be seen 
directly from Fig. 2 that the interaction among factors was 
significant except for environment temperature and rela-
tive humidity (Fig. 2f). The interaction between radiation 
intensity and environment temperature (Fig. 2a), radia-
tion intensity and relative humidity (Fig. 2b), radiation 
intensity and brine temperature (Fig. 2c), radiation inten-
sity and wind speed (Fig. 2d), environment temperature 
and brine temperature(Fig. 2g), environment temperature 
and wind speed (Fig. 2h), relative humidity and brine 
temperature (Fig. 2j), brine temperature and wind speed 
(Fig. 2m), relative humidity and wind speed (Fig. 2k) were 
positive, which promoted brine evaporation. On the con-
trary, the interaction between radiation intensity and brine 
concentration (Fig. 2e), environment temperature and 
brine concentration (Fig. 2i), relative humidity and brine 
concentration (Fig. 2l), brine temperature and brine con-
centration (Fig. 2n), wind speed and brine concentration 
(Fig. 2o) were negative, which inhibited brine evaporation.

3.2. Artificial neural network modeling

The first step in training a neural network is to design 
the topology of the ANN model. The number of neurons 
in the input layer and output layer was determined by the 
number of inputs and outputs. The most important thing 
was to determine the number of neurons in the hidden 
layer. Thus, the RMSE in a different number of neurons were 
compared to obtain the optimal number of neurons in the 
hidden layer of the ANN model.

As shown in Fig. 3, the RMSE of ANN first decreased 
and then increased as the number of neurons increased, 
which indicated that the ANN model could model brine 
evaporation rate better when the number of neurons in 
the hidden layer was seven. Thus, as shown in Fig. 4, the 
ANN architecture in this study consists of six neurons in 
the input layer, such as radiation intensity, environment 
temperature, relative humidity, brine temperature, wind 
speed and brine concentration, seven neurons in the hid-
den layer, and one neuron (brine evaporation rate) in the 
output layer (topology 6-7-1).

Experimental data were normalized to eliminating the 
difference of values and units among variables [19]. The 
experimental data of brine evaporation in Table 5 used in 
constructing the RSM model were selected for training the 
ANN model. And then, the data of brine evaporation rate 
predicted by the ANN model were also listed in Table 5.

3.3. Comparison of RSM and ANN models

The RMSE, R2 and SEP for RSM and ANN models 
were calculated by Eqs. (3)–(5), respectively. As shown in 
Table 6, RMSE (0.077) and SEP (12.05%) for the RSM model 
both higher than those (0.073% and 11.37%, respectively) for 
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Fig. 2. The 3D response surface plots of interactive effects on brine evaporation rate of: (a) radiation intensity and environment 
temperature, (b) radiation intensity and relative humidity, (c) radiation intensity and brine temperature, (d) radiation intensity and 
wind speed, (e) radiation intensity and brine concentration, (f) environment temperature and relative humidity, (g) environment 
temperature and brine temperature, (h) environment temperature and wind speed, (i) environment temperature and brine 
concentration, (j) relative humidity and brine temperature, (k) relative humidity and wind speed, (l) relative humidity and 
brine concentration, (m) brine temperature and wind speed, (n) brine temperature and brine concentration, and (o) wind speed 
and brine concentration.
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the ANN model and that the R2 (0.947) for the ANN model 
higher than that (0.940) for RSM model. Fig. 5 shows the 
comparison between the corresponding experimental data 
and brine evaporation rate predicted by RSM model and 
ANN model. It was observed that ANN model predictions 
were much closer to the line of perfect prediction than RSM 
model predictions. Therefore, these results indicated that the 
ANN model had a much higher modeling ability than the 
RSM model.

In addition, the other six sets of experiment data 
(Table 4), which were not used for modeling, were car-
ried out to check the generalization abilities of the RSM 
and ANN model. Similarly, RMSE, R2 and SEP for RSM 
and ANN models were calculated by Eqs. (3)–(5), respec-
tively. As shown in Table 6, the RMSE for the new data 
by RSM and ANN models is 0.265 and 0.125, respec-
tively; whereas the R2 is 0.773 and 0.940, respectively; and 
the SEP is 29.26% and 13.77%, respectively. The data of 
brine evaporation rate predicted by RSM and ANN mod-
els were plotted against the corresponding experimental 
data of brine evaporation rate, as shown in Fig. 6. It was 

Fig. 3. Effect of number of neurons in the hidden layer on the 
RMSE.

Fig. 5. Brine evaporation rate by RSM and ANN models in model constructing sets.

Fig. 4. The topology of artificial neural network.
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observed that ANN model predictions were much closer 
to the line of perfect prediction than RSM model predic-
tions. The R2 of the ANN model was higher than that of the 
RSM model, the RMSE and SEP of the ANN model were 
lower than those of the RSM model. The above results 
showed that the generalization ability of the ANN model 
was superior to that of the RSM model. Compared with 
the RSM model, which was only suitable for second-order 

nonlinear function fitting, the ANN model had higher pre-
diction accuracy because of its strong ability to fit nonlinear  
functions.

4. Discussion

Prior to this paper, scholars have studied the relation-
ship between brine evaporation rate and some factors.  

Table 4
Experimental data for checking the RSM and ANN models

No. X1 X2 X3 X4 X5 X6

Brine evaporation rate (mm/h)

Actual RSM predicted ANN predicted

1 0.25 10 30 15 2 2.5 0.3820 0.4547 0.2887
2 0.25 20 30 25 4 7.5 0.4625 0.4423 0.4770
3 0.25 30 35 35 4 2.5 1.5343 1.9322 1.4553
4 0.75 10 35 15 8 2.5 0.7229 1.0489 0.6536
5 0.75 25 45 30 6 7.5 0.6532 0.8727 0.8564
6 0.75 30 45 35 6 2.5 1.6800 2.0008 1.5008

Table 5
Experimental data for constructing RSM and ANN models

No. Brine evaporation rate (mm/h) No. Brine evaporation rate (mm/h)

Actual RSM predicted ANN predicted Actual RSM predicted ANN predicted

1 0.0729 0.0381 0.0832 28 1.1988 1.2053 1.1529
2 0.5475 0.5865 0.6033 29 0.9374 0.9934 0.9575
3 1.1905 1.1099 1.1139 30 0.6094 0.6050 0.6118
4 0.5897 0.9554 0.6039 31 1.0972 1.0073 0.8983
5 0.1913 0.1992 0.2170 32 0.2472 0.2588 0.3037
6 0.3294 0.4407 0.6259 33 0.3062 0.3386 0.3097
7 0.2269 0.2152 0.3029 34 0.4368 0.3982 0.4923
8 1.0532 1.0917 1.0434 35 0.8575 0.8572 0.8529
9 0.8400 0.8668 0.9854 36 0.6882 0.7408 0.6819
10 0.2232 0.2374 0.2352 37 0.2558 0.2849 0.2805
11 0.4543 0.4567 0.4492 38 0.7604 0.6572 0.7220
12 1.1236 1.1667 1.0567 39 0.8626 0.8141 0.8682
13 1.1518 1.1921 1.1223 40 0.6112 0.6050 0.6118
14 0.6544 0.6195 0.6590 41 0.4326 0.6091 0.4289
15 0.5605 0.7761 0.5694 42 0.6294 0.6140 0.6045
16 0.6100 0.5212 0.6294 43 1.2503 1.2807 1.1766
17 1.0279 0.9821 1.0305 44 0.3639 0.3789 0.3383
18 0.4154 0.3957 0.3136 45 0.3352 0.3172 0.3613
19 0.2182 0.2862 0.2512 46 1.1365 1.0159 1.0206
20 1.1719 1.1915 1.1555 47 1.1616 1.1801 1.0820
21 0.1833 0.1524 0.1895 48 1.1182 1.1405 1.3141
22 0.6085 0.6050 0.6118 49 0.4868 0.4609 0.4866
23 0.6136 0.6050 0.6118 50 0.3549 0.3072 0.2490
24 0.6109 0.6050 0.6118 51 0.2795 0.3447 0.3972
25 0.7864 0.7850 0.7705 52 0.8232 0.8819 0.8223
26 0.4613 0.5229 0.4637 53 0.0751 0.0778 0.0906
27 0.6387 0.6678 0.6190 54 0.6115 0.6050 0.6118
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Li et al. [20] studied the influence of irradiation intensity 
and wind speed on the natural evaporation rate, she also 
found that the evaporation rate increases with the intensity 
of irradiation and wind speed. Al-Shammiri [21] took into 
account the effect of salinity on the evaporation rate of brine 
solutions and established a correlation between various 
factors and brine evaporation rate. After that, some people 
used different methods to establish the prediction model of 
brine evaporation rates such as Salman and Al-Shammiri 
[6], they built a model to describe the relationship between 
brine concentration, wind speed, air temperature and evap-
oration rate. However, by contrast, the advantage of our 
study is that more factors had been considered to create a 
predicted model for brine evaporation rate, such as ANN 
models.

5. Conclusion

A Box–Behnken design was carried out to investigate 
the effects of radiation intensity, environment temperature, 
relative humidity, brine temperature, wind speed and brine 
concentration on the brine evaporation process and then 
modeling abilities and generalization abilities of the RSM 
model and ANN model were compared. The following con-
clusions could be drawn.

According to the RSM model, the interaction among fac-
tors was significant except for environment temperature and 

brine temperature. Either for the prediction of experimental 
data or new data, the RSME and SEP for the RSM model both 
higher than those for the ANN model and that the R2 for 
ANN model higher than that for the RSM model, indicating 
that the ANN model had a higher modeling ability and gen-
eralization ability than RSM model. Thus, the ANN model 
is much more stable and accurate to be used in predicting 
brine evaporation rate in comparison to the RSM model.

The results presented here are of importance to the 
development and utilization of Salt Lake brine resources, 
especially the construction and production management of 
salt pans.
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