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a b s t r a c t
Soil moisture is an important factor affecting crop growth. In our work, the aim of this paper is to 
retrieve volumetric soil moisture in wheat fields using Sentinel-1 synthetic aperture radar (SAR) 
data. In order to eliminate the effect of wheat cover, we used a first-order vegetation model and 
improved the model. Then the support vector regression technique was used to retrieve soil mois-
ture and validate the performance using experimental data. Three experimental campaigns were 
conducted in the Hebi, Northeastern Henan in different periods of wheat growth in 2019, with 
simultaneous satellite overpass. Compared with the water cloud model, the retrieved soil mois-
ture given by the modified first-order vegetation model agreed better with field measurements, the 
R2 and root mean square error value of this modified first-order vegetation model was (0.847, 0.015), 
(0.901, 0.016) and (0.936, 0.014) for the three experiments respectively. The results show that the 
modified first-order vegetation model based on the Sentinel-1 SAR data satisfied the requirement of 
soil moisture retrieval in the study region.
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1. Introduction

Soil moisture (SM) is a key variable that couples the land 
and the atmosphere, and the energy and water cycles. It 
plays an essential role in hydrology, climatology, meteorol-
ogy, ecology, and agronomy [1]. SM is especially important 
in arid or semi-arid agricultural regions, where its spatio-
temporal distribution affects crop growth and development 
[2]. Despite its importance, it is difficult to accurately 
retrieve SM over large scales, due to the complexity of nat-
ural surfaces (i.e., terrain roughness, large spatial heteroge-
neity, and the presence of vegetation) [3].

In recent decades, several quantitative studies have 
proven that microwave remote sensing, especially synthetic 
aperture radar (SAR), can effectively retrieve soil moisture 

[4,5]. As active instruments, SAR sensors provide soil mois-
ture observations over large areas in all weather conditions 
during both the day and night [6,7]. Important SAR satel-
lites include the European Space Agency (ESA)’s ERS-1/2, 
ENVISAT-1, and Sentinel-1; the Canadian Space Agency 
(CSA)’s Radarsat-1/2; the German Aerospace Center (DLR)’s 
TerraSAR-X, China’s GF3, and Japan’s ALOS-2. Sentinel-1 
is an earth observation satellite that is part of global mon-
itoring for the environment and security. It provides more 
channels for observing soil moisture at a high spatial res-
olution (10 m). Furthermore, it has a regular temporal 
coverage (6 d), and its data is freely available [8,9].

Retrieving SM with microwave remote sensing has been 
explored for more than 30 y, and has been established many 
theoretical models [10–13]. In addition, there are experience 
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and semi-empirical models [14,15]. However, these models 
are generally applicable only for monitoring or retrieving SM 
in bare soil and sparsely vegetated areas, and in vegetated 
areas, the accuracy of these models is significantly reduced [16].

In order to solve the problem, numerous methods 
have been proposed [17–27]. Taking crops as the research 
object, Attema and Ulaby [17] proposed the water cloud 
model (WCM). In this model, the total backscattering can 
be simply described as the scattering reflected from veg-
etation canopy and the backscattering from the ground. 
Xun et al. [18] estimated SM from C-band Radarsat-2 SAR 
data by using the WCM to fit the Dubois model [19] to 
study the grassland vegetation area of the Northeastern 
Tibetan Plateau. Lin et al. [20] developed the WCM by 
using a Microwave Polarization Difference Index (MPDI) 
to express vegetation water content; they concluded that 
VV polarization is based on Sentinel-1A data, when com-
bined with MPDI, could achieve the high retrieval accu-
racy for soil moisture. For ignoring the multiple scatter-
ing between the vegetation and the ground, the WCM is 
not applicable to some crops covered (e.g., with a certain 
height of corn, wheat, etc.). According to the character-
istics of microwave scattering, the Michigan Microwave 
Canopy Scattering (MIMICS) describes the vegetation 
structure in detail [21]. Jiang et al. [22] combined the 
MIMICS and Advanced Integral Equation Model (AIEM) 
model to simulate the backscattering coefficient. Roo et al. 
[23] simplified the MIMICS model by removing the scat-
tering layer between the vegetation stem and the ground 
surface. However, the parameters of the Roo Model were 
still complex. Aiming at retrieving SM conveniently and 
accurately, a first-order vegetation model was proposed 
by Shi et al. [24], which could accurately describe vari-
ous backscattering mechanisms of crop-covered fields. 
Liu et al. [25], retrieved SM based on a first- order vegeta-
tion model. With two repeat pass SAR data, the vegetation 
effects were eliminated from the first-order vegetation 
model by the decomposition technology. However, the 
decomposition technology was based on the full polar-
ization data. Once the radar data is single-polarization or 
multi-polarization data, it is not applicable.

Considering the above facts, the main aim of this study 
was to evaluate the use of Sentinel-1 SAR data to retrieve 
SM over wheat-covered areas, with a focus on the meth-
odology for eliminating the influence of vegetation from 
the radar backscattering. To this end, a first-order vegeta-
tion model was used and modified. The vegetation index 
obtained from Sentinel-2 was used to express the vegetation 
fraction, which was an important parameter of the modified 
first-order vegetation model. Moreover, the support vector 
regression (SVR) technique [26,27], which has good robust-
ness to the limited availability of reference results in various 
application domains, was applied to retrieve soil moisture 
information.

2. Study area and data

2.1. Study area

The study site chosen for this study was Hebi 
(113°59′E–114°45′E, 35°26′N–36°02′N), which is located in 
the North of Henan Province, China (Fig. 1). The agricultural 

fields analyzed in this study area mainly lie on the Huang-
Huai-Hai Plain, which has a homogeneous soil texture. 
Dry spells occur between November and March, so the 
climate’s seasonal characteristics are favorable for crop 
farming. The cropping systems in this area usually involve 
wheat, corn, cotton, and canola, and wheat cycles occur 
between late September (emergence) and middle June 
(harvest) of the following year. A total of 28 sampling sites 
were selected, on slopes between 0% and 5% (Fig. 1c).

2.2. Data

Three C-band Sentinel-1 SAR images of Hebi, Henan 
Province, China, acquired from March to May 2019, were 
used in this study. The spatial resolution of these inter-
ferometric wide (IW) images was 5 m × 20 m, with inci-
dence angles between 29 and 46. For the purpose of 
retrieval, image preprocessing were based on the Sentinel 
Application Platform (SNAP) software. The process mainly 
involved radiometric calibration, image mosaics, geomet-
ric correction, and speckle noise removal. Fig. 2a shows 
the preprocessing results of Sentinel-1 SAR data of the 
study area on 9 April, 2019.

Three optical images, which had either no or few clouds, 
were acquired by Sentinel-2A over the study sites with the 
SAR data contemporaneous. These acquired optical images 
were level-2A data, which bottom-of-atmosphere reflectance 
had been corrected in cartographic geometry. We just need 
to resample to 10 m. Fig. 2b shows the Sentinel-2 data of 
the study area on 3 April, 2019.

Simultaneously with the Sentinel-1A acquisitions, 
four in situ measurements of soil moisture and vegetation 
were conducted. A total of 84 soil moisture samples were 
obtained over depths of 0–10 cm. For each sampling site, 
three sampling points were selected; the distance between 
each sampling point was approximately 10 m. The loca-
tions were recorded by the global positioning system (GPS) 
device. These gravimetric measurements were converted 
into volumetric moisture based on bulk density [28–32].

3. Math

Here, a proper SM retrieval method is proposed for 
wheat-covered fields. A flowchart of the processing steps 
for SM estimation is illustrated in Fig. 3. The SM retrieval 
method used here comprised three main phases. The first 
phase was obtaining parameters of the model from remote 
sensing. The second phase was the central part of the pro-
cessing chain. The first-order vegetation model and SVR 
were implemented for SM retrieval in this region. Finally, 
the coefficient of determination (R2) and root mean square 
error (RMSE) were calculated to evaluate the accuracy of the 
SM estimations, and the SM values were mapped across the 
study area. More details on each part of the soil moisture 
retrieval algorithm are given in Fig. 3.

3.1. First-order vegetation model

Vegetation canopies reduce the sensitivity of radar mea-
surements to SM, thus affecting the accuracy of SM retrieval. 
Tackling this issue was the main aim of this study. According 
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to the first-order vegetation model, the total backscattering 
term over the vegetated fields can be decomposed into three 
parts: volume scattering in the canopy (Fig. 4a), surface 
scattering by the underlying ground surface (Fig. 4b), and 
multiple interactions involving both the canopy volume 
and the ground surface (Fig. 4c). To better describe the back-
scattering coefficients of the soil and vegetation in different 
periods of wheat-covered areas, the vegetation fraction was 

introduced into the model. For a given incidence angle, the 
model is described as follows:

σ σ σ σ σt v v v sv v s v sf f f L f0 0 0 0 2 01= + + + −( )  (1)

where θ is the incident angle, fv is the vegetation fraction, 
σt

0 is the total backscattering coefficient, σ0
veg is the back-

scatter contribution of the vegetation canopy, σ0
vs is the 

Fig. 1. General overview of the study area and map showing locations of sampling sites.

Fig. 2. Remote sensing images of the study area. (a) Sentinel-1 SAR image (VV polarization) and (b) Sentinel-2 composite false red 
green blue (RGB) images (Band 8 = red; Band 4 = green; Band 3 = blue).
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cross-polarized scattering coefficients between vegetation 
and soil surface, σ0

soil is the backscatter contribution of the 
soil surface, and L2 is the double attenuation factor.

Based on the MIMICS model, the σ0
veg can be expressed:

σ
σ θ

v
ek

L0 1 2

2
1= −( )cos

 (2)

L2 2= −( )exp secτ θ  (3)

where σ1 is the radar backscatter cross-section of leaves 
and stems in a unit volume of vegetation canopy, ke is the 
canopy.

3.1.1. Extinction coefficient

In order to better reflect the growth characteristics of 
wheat, τ is expressed by the height of wheat (h) and the 
canopy extinction coefficient (ke):

τ = ×k he  (4)

Moreover, fv is an additional parameter of first-order 
vegetation model; it is used to distinguish the propor-
tion of vegetation coverage and bare soil in pixels. fv 
can be calculated using the mixed pixel decomposition  
model [33]:

Fig. 3. Flowchart of the soil moisture retrieval process.

Fig. 4. Backscattering from wheat fields. (a) Volume scattering in the canopy, (b) surface scattering by the underlying ground 
surface, and (c) multiple interactions involving both the canopy volume and the ground surface.
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where NDVImin denotes the bare soil pixel, which is the-
oretically close to zero, and NDVImax denotes the pure 
vegetation pixel, which is theoretically close to one. 
In order to reduce the influence of weather conditions, a 
0.5% confidence level was used to obtain the thresholds 
of NDVImin and NDVImax.

It can be seen from the above analysis, the multiple 
scattering was difficult to solve in soil moisture retrieval. 
To overcome this difficulty, a polarization decomposition 
method based on the relationship between adjacent pix-
els was proposed as the acquisition mode in this study. 
As shown in Fig. 5a, assuming that in the neighborhood 
space of a certain pixel Pi,j in the study area, the cross-scat-
tering coefficient between vegetation and the ground sur-
face (σ0

sv), and the soil scattering coefficient (σ0
soil) in each 

pixel are constant in each pixel. Then in this local space, 
the known parameters are brought into the Eq. (10) accord-
ing to the different vegetation fraction (fv) and the canopy 
extinction coefficient (ke) corresponding to different pixels, 
and it is proposed to generate radar backscatter with dif-
ferent correlation functions σc

0 = f(σ0
sv,σs

0) in the group. In 
this small space, a set of optimal solutions is assigned to 
the central pixel P1 by using the least-squares method, and 
the soil backscattering coefficient of the pixel P1 is obtained. 
Moving the center pixel to Pi,j+1, as shown in Fig. 5b, the 
soil backscattering coefficient of Pixel Pi,j+1 is obtained 
by the above method. By analogy, the backscattering 
coefficient of soil in the entire study area could be obtained.

3.2. SM retrieval

To achieve an efficient and robust SM retrieval algo-
rithm, a machine learning technique, namely SVR was 
used. In detail, an SVR technique was applied that 
allowed for non-linear relationships between a target vari-
able and several input features. The entire procedure was 

divided into two main phases: training and validation. 
For the 28 samples that were acquired in each period, 20 
random samples were used for training and the rest were 
used for validation. Owing to its accurate estimation, good 
intrinsic generalization ability and ability to deal with com-
plex nonlinear problems, the SVR technique can be widely 
applied for soil moisture estimation [34–36].

SVR is a supervised regression technique that transforms 
the nonlinear problem of the soil backscattering coefficient, 
normalized red edge index, vegetation coverage, and soil 
moisture into the linear problem of a higher dimensionality 
space, as follows:

f x a a K x x b
i

n

i i i( ) = −( ) ( ) +
=
∑

1

* ,  (6)

where n is the number of training samples, ai* represents 
the Lagrange multipliers of the optimization problem, k(…) 
is a kernel function, xi and x are the predictor variables, 
and b is the bias.

According to functional theory, kernel function can be 
used to construct a support vector machine. The commonly 
adopted kernel is the Gaussian Radial Basis Function (RBF) 
kernel. The RBF kernel has good anti-interference abil-
ity and less numerical difficulties than other kernel func-
tions [37]. It can deal with samples when the relationship 
between class labels and features is nonlinear:

K x y x y, exp ,( ) = −
−





>
2

22
0

´
δ  (7)

where δ is the reach rate, that is, the rate at which soil 
moisture falls to 0.

4. Results and discussion

4.1. Estimation of backscattering coefficient of soil

In order to evaluate the effect of vegetation scatter-
ing on radar backscattering, different models are used to 

Fig. 5. The polarization decomposition method.
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simulate (Fig. 6). Comparing the simulation results from 
the water cloud model and the modified first-order vege-
tation model, the correlation between the backscattering 
coefficient of soil and the radar backscattering coefficient is 
relatively divergent. A possible reason for this result is that 
the scattering effect of vegetation is further eliminated in 
the modified first-order vegetation model, and the relation-
ship between soil scattering and radar scattering is reduced 
accordingly [38,39].

4.2. Retrieval of soil moisture

In order to evaluate the accuracy of the modified first- 
order vegetation model, three validation experiments 
were conducted for soil moisture retrieval. In each exper-
iment, 20 random in-situ measured soil volumetric mois-
ture was used for training, and another 8 was employed to 
calculate the R2 and RMSE of the estimated SM. The rela-
tionships between the retrieved SM and the in-situ mea-
surements are shown in Fig. 7, and the R2 and RMSE values 
are summarized in Table 1. As seen in Fig. 7, there was a 
good linear relationship between the retrieved SM and the 
in-situ measurements at different growth stages of wheat. 
Moreover, the scattered points of the VV polarization 
were closer to the 1:1 line than that of VH polarization. 
As seen from Fig. 7a and b, the validation volumetric SM 
of the 8 sites were mainly distributed from 0.2 to 0.3 cm3/
cm3, which is consistent with the in-situ measurement 
data. As seen from Fig. 7c–f, it was similar results from 
the in-situ measurement data, which showed the soil 
moisture of 8 sites was mainly from 0.2 to 0.4 cm3/cm3.

As seen in Table 1, on April 9, 2019, when wheat was 
in the jointing stage, the coefficient of determination R2 and 
RMSE of retrieval volumetric SM based on the improved 
first-order vegetation model for VV polarization were 

0.847 and 0.015 (Fig. 7a), while R2 and RMSE values of the 
VH polarization were 0.688 and 0.015 (Fig. 7b). On May 
3, 2019, when wheat was in the heading stage, the R2 and 
RMSE values of the VV polarization were 0.901 and 0.016 
(Fig. 7c), while the R2 and RMSE values of the VH polar-
ization were 0.768 and 0.019 (Fig. 7d). On May 23, 2019, 
when wheat was in the filling stage, R2 and RMSE values 
of the improved first-order vegetation model for VV polar-
ization were 0.936 and 0.014 (Fig. 7e), while 0.759 and 0.017 
for VH polarization (Fig. 7f). Compared with the WCM, the 
retrieval of volumetric SM based on the improved first-order 
vegetation model agrees better with field measurements.

According to the retrieved results, VV polarization had 
good accuracy and stability for retrieval SM in the study area, 
and improved first-order vegetation model presented satis-
factory results in retrieval SM with Sentinel-1 SAR data [40].

The study area SM maps are illustrated in Fig. 8. Based 
on the supervised classification technology of threshold 
segmentation by the Environment for Visualizing Images 
(ENVI) software, the non-wheat areas, such as towns, rivers 
and other non-agricultural areas in the Sentinel-1 SAR image 
of the study area were removed.

Fig. 8 demonstrates that SM in April, 2019 was relatively 
lower than in May 2019, and in May 2019, the SM was from 
20% to 50% in most of the study area. The frequency distri-
butions of the soil moisture retrieval results of these three 
times were basically consistent with the measured values 
on each period. This modified model therefore had strong 
applicability for the study area.

5. Conclusions

Taking Hebi, a representative area of wheat planting 
in Henan Province, as a study area, here the potential of 
C-band Sentinel-1 SAR data for SM retrieval was investigated 

Fig. 6. Comparing the simulation results from different models. (a) The relationship between the soil backscattering coefficient and 
the total radar backscattering coefficient for the water cloud model (without cross-scattering). (b) The relationship between the soil 
backscattering coefficient and the total radar backscattering coefficient for the modified first-order vegetation model.
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Fig. 7. Comparisons between measured SM values and those retrieved using SVR for different stages of wheat: (a) VV 
polarization on April 9, 2019, (b) VH polarization on April 9, 2019, (c) VV polarization on May 3, 2019, (d) VH polarization 
on May 3, 2019, (e) VV polarization on May 23, 2019, and (f) VH polarization on May 23, 2019.
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regarding wheat fields. To extract the soil backscattering 
coefficient from the radar backscattering coefficient, first 
a first-order vegetation model was selected and modified. 
Then, the SM of wheat-covered fields in different periods 
of growth were retrieved and analyzed under different 
polarization modes (VV, VH) based on the SVR algorithms.  

The main conclusions of this study can be summarized as 
follows:

• With the dual-polarization Sentinel-1 SAR data, the 
improved first-order vegetation model can decomposed 
the backscattering related to vegetation and surface from 

 

(a) 

 

(b) 

  

(c) 

Fig. 8. Spatial distribution of SM retrievals in the study area and frequency diagram of volumetric SM (a) on April 9, 2019; 
(b) on May 3, 2019; (c) on May 23, 2019.
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the radar backscattering signals. The results show that 
this model is better than the water cloud model in remov-
ing the influence of vegetation scattering.

• Compared with the performances of the Sentinel-1 VV 
polarization and VH polarization data in SM estimation, 
VV polarization data obtain a higher estimation accuracy 
regarding the SM retrieval. This result also confirms that 
the VV polarization has more soil backscattering infor-
mation and is more sensitive to the change of SM than 
VH polarization.

• In this study, results show that the retrieval SM based 
on the SAR data are applicable to agricultural environ-
ments for wheat. More different sensors, such as L-band 
ALOS-2 or C-band GF3 may be used to improve the abil-
ity to retrieve SM.
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