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a b s t r a c t
In this study, the removal percentage was estimated using machine learning methods, such as 
artificial neural network, radial basis function neural network, support vector regressor, and ran-
dom forest regressors, for data obtained during Malachite green adsorption on kaolinite as an adsor-
bent in an aqueous solution. Important process parameters, including initial dye concentration, 
sonication time and temperature, were investigated. Statistical evaluation metrics such as R2, mean 
squared error, and root mean square error were used to evaluate the performance of the models. 
Among these models, the artificial neural network was more successful compared to other models 
with 0.98 R2 values for three temperatures. Radial basis function neural network and random for-
est regressors were observed to achieve successful results. In this study, the results obtained from 
the machine learning methods are given comparatively. The initial dye concentrations increased 
from 10 to 60 mg L–1, the removal percentage of Malachite green on kaolinite increased from 
68.71% to 79.61% for 298 K, 72.26% to 82.58% for 308 K and 78.75% to 85.91% for 318 K, respec-
tively. Isotherm, kinetic and thermodynamic calculations for Malachite green removal by kaolinite 
were completed. The equilibrium of Malachite green adsorption onto kaolinite was best described 
by the Langmuir isotherm and the kinetics of the process followed the pseudo-second-order 
model, which had the highest correlation values. Thermodynamic analysis of experimental data 
suggests that the adsorption process is spontaneous and endothermic in nature.
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1. Introduction

Water resources are limited and they are decreas-
ing with the increase in world population. Wastewater, 
in which the most important pollutants are dyes and 
heavy metals, is increasing with the growth of indus-
try [1,2]. In recent years, treatment of dyes in wastewater 
has become important for the solution of environmental 

problems caused by high toxicity. Dyes are used in vari-
ous industries and even very low concentrations of dyes in 
wastewater discharged from these industries is undesirable 
because of the negative effect on life [3,4]. Dyes have com-
plex aromatic molecular structures that make them stable 
and resistant to biodegradation, light and oxidizing agents. 
The dyes in wastewater consume soluble oxygen under 
chemical and biological conditions and endanger the life of 
aquatic animals due to their toxicity [5–7]. The prolonged 
accumulation of dyes in the human body causes several 
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diseases and disorders such as allergies, fever, dermatitis, 
rashes and cancer. So, dye removal from wastewater before 
it pollutes non-contaminated water is important [8,9]. 
Different methods have been proposed for removal of dyes 
from wastewater. Coagulation, flocculation, photocatalytic 
degradation, membrane filtration, microbiological decom-
position, electrochemical oxidation and adsorption are the 
most commonly-used methods [10–12]. The advantages 
of adsorption which make it suitable for water pollution 
control include: less investment in terms of initial costs, 
simple design, easy operation, less energy requirements 
and lack of hazardous by-products [13,14].

Using an efficient adsorbent plays a key role in the 
adsorption process. During the past decades, many adsor-
bents have been prepared for dye removal from waste-
water [15–17]. Among these adsorbents, clays contain 
exchangeable ions on their surface, which can adsorb cat-
ions and/or anions. Furthermore, they are cheap, abundant 
in nature and have high surface area [18]. It is well known 
that kaolinite is composed of silicate sheets and gibbsite 
layers with heterogeneous surface charge. It is believed 
that its surface has a structural charge and adsorption can 
occur on flat exposed planes of silica and alumina sheets. 
Kaolinite has no side effects and no health problems if 
fine dust particles are controlled, so it is environmentally 
safe Apart from industrial applications, kaolinite may 
be used for environmental remediation and wastewa-
ter treatment alongside other clays [19]. Malachite green 
(MG) dye was chosen as the adsorbate in this study due 
to its industrial applications and also use as an antipara-
sitic agent in aquaculture to prevent parasitic worm infec-
tions in fish gills and eggs [20,21]. Besides its industrial use, 
MG has toxic properties as it can bioaccumulate in organs 
such as liver, kidney, muscle and skin. MG was also verified 
to possess mutagenic and carcinogenic properties [22].  
Therefore, it is necessary to treat wastewater containing MG.

In recent years, various methods have been used to esti-
mate the adsorption process in chemical events. Artificial 
neural network (ANN), radial basis function neural network 
(RBFNN), support vector regressor (SVR), random forest 
regressor (RFR), adaptive neuro-fuzzy inference system 
(ANFIS), and support vector machine (SVM) methods were 
used in these studies for modeling and simulation. The SVR 
method was used to predict the Ni(II) ion removal efficiency 
during adsorption by Parveen et al. [23]. Ahmadi Azqhandi 
et al. [24] used machine learning techniques such as RBFNN 
and RFR for the modeling and optimization of ultrasonic-as-
sisted adsorption of bright green on ZnS-NP-AC. In the study 
conducted by Mahmoodi et al. [25], the least squares support 
vector machines (LSSVM) method was applied to model the 
data. In another study using machine learning methods such 
as RBFNN and multilayer perceptron (MLP), Tayebi et al. 
[26] used these methods to estimate adsorption values for 
reactive orange 16 removal. Yildiz [27] benefited from the 
ANN method in his study about adsorption of Zn(II) ions in 
aqueous solutions onto peanut shells.

In this study, the machine learning methods of ANN, 
RBFNN, SVR, and RFR were trialed to estimate the removal 
percentage value resulting from the use of MG as an adsor-
bate. Initial concentration of dye, interaction time and tem-
perature were considered the input data and the removal 

percentage of MG was calculated as the output data for the 
applied machine learning methods. This study will con-
tribute to the literature as it is the first time that different 
machine learning methods have been compared to esti-
mate the removal percentage for adsorption of MG dye on 
kaolinite. Also, this study aimed to predict the adsorption 
performance of kaolinite for MG dye removal from aque-
ous media in terms of isotherm, kinetic and thermodynamic 
calculations.

2. Materials and methods

2.1. Adsorbent

The kaolinite sample KS 1 (Ukraine) was obtained from 
Eczacıbaşı Co. in Turkey. The chemical constituents of kaolin-
ite were observed as follows; 48.39% SiO2, 35.99% Al2O3, 
0.43% Fe2O3, 0.58% TiO2, 0.24% CaO, 0.09% MgO, 0.03%, 
Na2O, 1.74% K2O and 12.39% loss on ignition. The pore-size 
distributions, X-ray diffractograms and the cation-exchange 
capacities of the kaolinite samples were determined. Details 
of the adsorption events based on characterization results 
were given in previous publications by the authors [28,29].

2.2. Adsorbate

In this study, Malachite green (basic green, aniline green, 
fast green), which is a water-soluble dye belonging to the 
triphenylmethane family, was used in experiments. MG oxa-
late was used as the adsorbate in the current research. The 
formula of MG is C52H54N4O12 (MW 927.01 g mol–1) and it was 
obtained from Merck Chemical Company. A stock solution 
was prepared by dissolving the required quantity of MG in 
distilled water. The solutions with required concentration 
used for the adsorption process were prepared by diluting 
the stock solution of MG with deionized water. Different 
dye concentrations (10, 20, 40, 60 mg L–1) of MG were pre-
pared using the stock dye solution. All other reagents 
used were of analytical grade and used without purification.

2.3. Batch adsorption experiments

In the adsorption experiments, which were carried 
out in a temperature-controlled water bath, 1 g kaolinite 
was treated with 500 mL of dye solution. Temperature was 
kept constant within ±0.2°C. The MG concentration in the 
dye solution was determined over 220 min. The same pro-
cesses were carried out at temperatures of 298 K, 308 K and 
318 K. Each experiment was conducted in triplicate and the 
average of the obtained data was taken as the result.

The concentration of MG in solution at maximum absor-
bance wavelength of 617 nm was evaluated using an ultra-
violet-visible (UV/VIS) spectrophotometer (PG Instruments 
Ltd., T80 model). A calibration curve was prepared by plot-
ting absorbance and various dye concentrations. Unknown 
MG concentration was determined with the calibration 
curve. The equilibrium adsorbent capacity (qe) for MG 
was found using Eq. (1):

q
C C V

me
e=

−( ) ×0  (1)
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where V is the solution volume (L), C0 is the initial 
concentration of the dye (mg L–1), Ce is the equilibrium con-
centration of the dye (mg L–1) and m is adsorbent mass (g). 
The dye removal percentage was calculated using Eq. (2):

Removal percentage %( ) =
−

×
C C
C

t0

0

100  (2)

The effects of the initial dye concentration, temperature 
and contact time on the adsorption of MG were investigated 
with machine learning methods. The effect of initial dye 
concentration, which is one of the most important param-
eters driving adsorption, was studied by varying initial 
concentrations of dye solution for adsorption by kaolinite 
in the range of 10–60 mg L–1 and the temperature effects 
on the equilibrium of MG adsorption on kaolinite were 
determined at 298 K, 308 K and 318 K.

2.4. Application of machine learning methods

2.4.1. Artificial neural network

ANN is an information processing tool that aims to 
fulfill the functions of learning, associating, classifying, 
generalizing, predicting, and feature determination based 
on the nervous systems in living creatures. ANNs are non-
linear statistical models that use a complex relationship 
between inputs and outputs to find a new model. The 
building blocks of ANN are artificial nerve cells. There are 
five basic parts which consist of inputs, weights, addition 
function, activation function and outputs. The inputs are 
determined by the samples that the network sends to the 
artificial nerve cell, which it is then asked to learn. Weights 
show the importance of the information coming to an 
artificial cell and its effect on the cell. The sum function 
calculates the net input to a cell. The activation function 
processes are the net input to the cell and determine the 
output that the cell will produce in response to this input. 
The output is the output value determined by the activa-
tion function. Artificial nerve cells produce their output 
by evaluating the inputs given to them according to the 
weight of each input. ANN transmits the data it receives 
from the input layer to the output layer by processing it in 
the intermediate layers. The margin of error is calculated 
by comparing the output with the expected output for each 
input in the training set. This margin of error is transmitted 

back in proportion to the weights that connect the neurons 
between the output layer and the input [30,31]. The net-
work structure used for our application consists of three 
layers; input, hidden layer and output. The input values 
are initial dye concentration, contact time, temperature, 
and the output value is the removal percentage. The simple 
ANN structure used for our application is given in Fig. 1.

2.4.2. Radial basis function neural networks

This network structure, which is an alternative to 
artificial neural networks, has three layers. These are the 
input, hidden and output layers. Unlike ANN, activation 
functions called RBF are used between the input layer and 
hidden layers. In addition to being trained in a shorter 
time compared to ANN, they have begun to be used as an 
alternative network to ANN because they are not stuck to 
the local minimum. In these networks, inputs are transmit-
ted directly to the hidden layer without being multiplied 
by their weight values. In the hidden layer, a series of 
radial based functions are applied to the inputs and sent 
to the output layer. Each RBF function has two parame-
ters that define the center of the function and its standard 
deviation [32]. A commonly used radial basis function 
is the Gauss function. The RBFN network architecture, 
whose input is defined as x and output as y(x), using the 
Gauss function is defined with Eq. (3).

y x w
x c

i

M

i
i( ) = −

−( )









=

∑
1

2

22
exp

σ
 (3)

where ci is called center and σ is called standard devia-
tion. There are M basic functions with ci center and wi are 
weights in the functions. Activating the hidden layer is 
determined by the distance between an input vector x and 
the center of the function. In cases where these parameters 
are close to each other, high activation is achieved. Then, by 
calculating the interpolation matrix, weights between the 
input layer and the output layer are found. The purpose of 
training RBFN networks is to find ci centers and wi weights. 
The RBFNN structure is shown in Fig. 2 [33].

2.4.3. Random forest

Random forest (RF), which is a supervised machine 
learning algorithm, tries to obtain estimation values from 

Fig. 1. Artificial neural network structure.
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decision trees selected with the bagging method. It has an 
important place among machine learning algorithms as 
it is used for both classification and regression problems. 
The importance of each feature in the dataset to be used 
in this algorithm can be measured relatively. Considering 
the importance of the feature, the features affecting the 
prediction can be reserved and unnecessary features can 
be reduced. There are some important hyper parameters 
used in this algorithm. The first one is the number of trees 
that will be found in the forest. Another parameter is the 
maximum number of features allowed for a tree called 
max_features. Another parameter that may be important 
is the min_sample_leaf parameter, which determines the 
minimum number of leaves required to separate an inner 
node [34]. The working principle of the RF algorithm 
can be summarized as follows and is shown in Fig. 3.

Step 1: First, random samples are selected from a particular 
dataset.

Step 2: A decision tree is created for each selected sample. 
Each decision tree is taken from the predicted result.

Step 3: Voting is made for each predicted result.
Step 4: The prediction with most votes is selected as 

the final prediction.

2.4.4. Support vector regressor

SVR is one of the best-known algorithms for regres-
sion problems. Unlike SVM, its output is used to find the 
most suitable hyper plane for problems consisting of real 
numbers. SVR has good generalizing capacity. Therefore, 
high prediction accuracy is achieved. The computational 
complexity of SVR is independent of the size of the input 
space which gives SVR an important advantage [35,36]. 
The following equation is used for the mathematical 
formulation of SVR. The SVR structure is shown in Fig. 4.

minimize 1
2

2

1
w C

i

n

i i+ +( )=∑ ξ ξ*

Fig. 2. Radial basis function neural network structure.

Fig. 3. Random forest structure.
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where w is weight vector, xi is i-th input value, yi is train-
ing data label, and ξi is the distance between the estimated 
value outside the limit and the limit. C is a parameter used to 
keep the values out of bounds.

A series of mathematical functions are used in SVR 
to convert the data it receives as input, called the kernel, 
into the required form. Nonlinear predictions can be made 
in the model created by these kernel functions. In our 
study, linear, polynomial and RBF were used from these 
mathematical functions. Eq. (5) is used for the normaliza-
tion process and Eqs. (6)–(8) are used for calculation of 
polynomial, RBF and linear kernel functions, respectively.

y
x x
x x

i=
−
−

min

max min

 (5)

where y is the normalized value of xi, xmax is the maximum 
value of xi, and xmin is the minimum value of xi.

Polynomial kernel: k x x x xi j i j

d
,( ) = +( )1  (6)

RBF kernel: k x x x xi j i j,( ) = − −



exp γ

2

γ
σ

γ= >
1
2

02 for  (7)

Linear kernel: k x x x xi j i
T

j,( ) =  (8)

2.5. Isotherm, kinetic, and thermodynamic studies of Malachite 
green adsorption onto kaolinite

2.5.1. Adsorption isotherm studies

Many isotherm models are used to identify the interac-
tion between adsorbate and adsorbent molecules. Dubinin–
Radushkevich (D-R), Freundlich, and Langmuir isotherms 
were chosen to explain the interaction of MG molecules 

and the kaolinite surface in this study. These three mod-
els were applied to the experimental results which were 
obtained at three different temperatures. There are assump-
tions about adsorption occurrence on a homogenous sur-
face and no interaction between adsorbates in the plane of 
the surface in the Langmuir isotherm model, with equation 
given by Eq. (9):

q
q K C
K Ce

m L e

L e

=
( )

+( )1
 (9)

where qm denotes the maximum capacity of adsorption 
(mg g–1), Ce represents equilibrium concentration of solu-
tion (mg L–1), and KL is a Langmuir constant associated 
with affinity of the binding sites and energy of adsorption 
(L g–1). A linear form of Eq. (9) is obtained when 1/Ce vs. 1/qe 
is plotted, and qm and KL can be determined from the slope 
and intercept. The Freundlich isotherm is an empirical 
model based on adsorption occurring on a heterogeneous 
surface and its equation is given in Eq. (10):

q K Ce F e
n= 1/  (10)

where KF is the Freundlich constant (L g–1), and n is an empir-
ical coefficient. A straight line is obtained for the plot of the 
natural logarithm of qe vs. Ce. The slope and intercept of the 
line gives the n and KF values, respectively. The D-R iso-
therm model is used to explain heterogeneous adsorption 
with Gaussian energy distribution. This model is generally 
applied to distinguish the physical and chemical adsorption 
of ions by their average free energy (E), which is determined 
per molecule of adsorbate for this relationship. This isotherm 
equation is given by Eq. (11):

ln lnq q Ke m D( ) = ( ) − × ε2  (11)

where qm is the saturation capacity (mg g−1), KD is a D-R 
constant (mol2 kJ−2) and ε is the D-R isotherm constant 
which is also known as the Polanyi potential. The slope and 
intercept of ln(qe) vs. ε2 plot give the KD and ln(qm) values, 
respectively. The D-R isotherm constant, ε, is expressed  
with Eq. (12):

Fig. 4. Support vector regressor structure.
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where R is the gas constant (8.314 × 10−3 kJ mol−1 K−1) and 
T is temperature (K). The mean free energy, E (kJ mol−1), of 
the sorption per molecule of adsorbate is obtained from KD, 
and the equation is given by Eq. (13):

E
KD

=
1
2

 (13)

2.5.2. Adsorption kinetic studies

Kinetic models were applied to check the experimental 
results of MG adsorption onto kaolinite. The adsorption 
kinetics are important to choose the best test circumstances 
for the adsorption process with the batch technique. 
The kinetic parameters for estimation of adsorption rate 
provide vital knowledge for designing and modelling 
adsorption processes. Kinetic models are widely used in 
adsorption operations to investigate the mechanisms that 
control the removal process, such as the adsorption sur-
face, chemical reaction and/or diffusion mechanisms. In 
this study, MG adsorption kinetics were calculated using 
pseudo-first- order, pseudo-second-order and intraparticle 
diffusion kinetic models. The best fit model was chosen 
depending on the correlation coefficient (R2) values. These 
models were investigated according to experimental data at 
various temperatures and initial TB concentrations.

Lagergren’s equation, which is called the pseudo-first- 
order kinetic model, separates the equation depending on 
the concentration of solution and solid adsorption capacity. 
The pseudo-first-order linear model is given by Eq. (14):

ln q q q k te t e−( ) = −ln 1  (14)

where k1 (min–1) is the rate constant for the pseudo-first- 
order model. To obtain the constants for this model, plots 
of ln(qe – qt) against t are drawn.

The pseudo-second-order kinetic model explains chem-
ical bond formation between adsorbent and adsorbate 
molecules based on adsorption capacity. The linear form 
of the pseudo-second-order model based on adsorption 
capacity is given with Eq. (15):

t
q k q

t
qt e e

= ( ) +
1

2
2

 (15)

where k2 represents rate of adsorption (g mg–1 min–1) and 
the values of k2 and qe are identified from intercept and 
slope of the plot of t/qt vs. t, respectively.

Adsorption of dyes is more gradual when intraparticle 
diffusion is the rate controlling step. The intraparticle dif-
fusion model assumes that the chemical or physical bond 
formed between solute and solid in interspatial sites on the 
solid control the overall speed of adsorption. The possibil-
ity of intraparticle diffusion as the rate-limiting step was 

tested using the intraparticle diffusion model, which can be 
represented by Eq. (16):

q k t Ct = +ipd
0 5.  (16)

where kipd (mg g–1 min–0.5) is the intraparticle diffusion rate 
constant and C is boundary thickness, which are determined 
from the plot of qt against t0.5 at different MG concentrations.

2.5.3. Adsorption thermodynamic studies

Thermodynamic investigation is required to determine 
the significance of adsorption processes. The variations in 
Gibbs free energy ΔG° (kJ mol–1), enthalpy ΔH° (kJ mol–1), 
and entropy ΔS° (kJ mol–1 K–1) are significant to detect heat 
alterations during the adsorption process. The thermody-
namic parameters of MG adsorption onto kaolinite were 
calculated by the equations given below:

∆G RT Kd° = − ln  (17)

∆ ∆ ∆G H T S° = ° − °  (18)

lnK S
R

H
RTd =

°
−

°∆ ∆  (19)

where Kd is the equilibrium constant (qe/Ce; L g–1), R is the 
gas constant and T is temperature (K). ΔH° and ΔS° param-
eters are calculated from slope and intercept of the plot of 
lnKd vs. 1/T.

3. Results and discussion

3.1. Effects of contact time, temperature and initial 
dye concentrations for MG adsorption on kaolinite

Contact time and initial concentration effects of MG 
adsorption on kaolinite are shown in Fig. 5a–c for 298, 308 
and 318 K, respectively. These figures show the removal 
percentage curves which indicate that MG adsorption 
speed is very high for the first period and remains con-
stant after 100 min indicating equilibrium. The migration 
of MG molecules in the solution can easily access the vacant 
sites on the adsorbent in the initial period. However, in the 
next period, adsorption decreases due to the slower diffu-
sion of dissolved molecules through the adsorbent pores.  
The rapid removal of dye facilitates the use of decreased 
adsorbent volumes and thus ensures efficiency and lower 
costs of the operation. As the initial dye concentration 
increased from 10 to 60 mg L–1, the removal percentage 
of MG on kaolinite increased from 68.71% to 79.61% for 
298 K, 72.26% to 82.58% for 308 K and 78.75% to 85.91% 
for 318 K, respectively. After batch experiments, 68.71%, 
72.26% and 78.75% removal percentages for MG were 
achieved with kaolinite for 10 mg L−1 initial dye concentra-
tion at 298, 308 and 318 K, respectively. Removal percent-
ages of 74.16%, 76.49% and 82.44% for MG were obtained 
with kaolinite for 40 mg L−1 initial dye concentration at 
298, 308 and 318 K, respectively. Comparatively, 79.61%, 
82.58% and 85.91% removal percentages were obtained for 
60 mg L−1 initial dye concentration at 298, 308 and 318 K, 
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respectively. According to the results, kaolinite has higher 
removal capacity for adsorption of MG. The experimental 
data indicate that the initial dye concentration and tem-
perature play important roles in dye adsorption capacity 
and provide interaction between the adsorbent and the dye 
molecules. Increasing the initial dye concentration results 
in an increase in the adsorption capacity because it supplies 
a driving force to overcome all mass transfer resistances 
of dye between the aqueous and solid phase. However, 
the adsorbent has a limited number of active sites, which 
become saturated at a certain concentration. This indicates 
that the adsorption capacity will increase with the increase 
of initial dye concentration mainly due to the elevation 
of mass transfer from the concentration gradient.

3.2. Results of machine learning methods for 
removal of MG adsorption on kaolinite

MATLAB and Python programs were used for the 
machine learning applications developed for this study. 
These applications were run on a computer with 8 GB RAM 
and I5 processor. The data set used for the study consists 
of three attributes and eighty samples. Initial dye concen-
tration, contact time and temperature values, which are 
the three attributes, were used in applications as the input 
data and removal percentage value was the target value. 
Input and output data were normalized in the range of 
0–1 for attributes using Eq. (5). In this study, mean squared 
error (MSE), root mean square error (RMSE) values and 

  

 

 
Fig. 5. Removal percentage for MG adsorption on kaolinite at three temperatures: (a) 298 K, (b) 308 K and (c) 318 K.
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coefficient of determination (R2) were used to evaluate the 
model results [37]. MSE, RMSE and R2 values showed the 
efficiency of these machine learning methods and they were 
calculated with Eqs. (20)–(22), respectively.

MSE prd exp= −( )
=
∑1 2

1N
y yi i

i

N

, ,  (20)

RMSE
prd exp

=
−( )

=
∑ y y

N

i i
i

N

, ,

2

1  (21)

R
y y

y y

i i
i

N

i m
i

N
2

2

1

2

1

1= −
−( )
−( )

=

=

∑

∑

prd exp

prd

, ,

,

 (22)

where yprd,i is the ith predicted value, yexp,i is the ith observed 
value, ym is the mean value of yexp,i, and N is the number 
of observations. R2 shows the fit of the predicted output 
variable estimation curve to the experimental data out-
put variable curve. Higher R2 with lower MSE and RMSE 
values indicate a model with better output prediction and 
better performance.

The ANN parameters used in this study were train 
ratio 0.7, validation ratio 0.15, test ratio 0.15, and the 
Levenberg Marquardt transfer function algorithm was used 
for error minimization. ANN results for Malachite green 
adsorption on kaolinite are given in Table 1. The results of 
ANN were obtained by increasing the number of hidden 
layers in the range of 1–10. The average values of R2 for the 
ANN model were observed to be 0.9681, 0.9728 and 0.9616 
for 298, 308 and 318 K, respectively. When the average R2 val-
ues of the ANN model are compared, the average R2 values 
obtained at 308 K are higher than for the temperatures of 

298 and 318 K. In general, R2 values increased and MSE, 
RMSE values decreased with the increase in the tempera-
ture. The lowest MSE and RMSE values for the ANN model 
were determined as 0.00148 and 0.03556 for 308 K, respec-
tively. The low MSE and RMSE values showed that the 
training network did not have any over-fitting problem. 
The high correlation and predictive accuracy of the ANN 
model was attributed to its well-known ability to approxi-
mate the non-linearity of the system [38]. The ANN model 
showed good performance with highest R2 (0.9658) and the 
lowest MSE (0.0017) values compared to the multiple lin-
ear regression model for Malachite green adsorption onto 
copper nanowires loaded on activated carbon [39].

The RBFNN parameters used in this study were spread 
of radial basis functions 0.2, mean squared error goal 0, and 
transfer function radbas. The average R2 values obtained 
by the RBFNN were 0.98 for the three temperatures. These 
values were obtained by increasing the number of hidden 
layers and R2 values of 0.99 were obtained after the 20th 
hidden layer for the three temperatures. The lowest RMSE 
values were determined as 0.011 for 298 and 308 K and the 
lowest MSE values were obtained as 0.0001 for all three 
temperatures. Detailed RBFNN results are given in Table 2.

SVR model results for Malachite green adsorption on 
kaolinite obtained for linear, polynomial and RBF kernel 
functions are given in Table 3. The GridSearchCV method 
was used to determine the appropriate parameters in the for-
mation of SVR and RF models. This method allows parame-
ters to be found that give the best results by using the values 
of the parameters one by one at specified intervals. Using 
this method, the parameter values were found for 298 K 
as follows; linear kernel: C = 1.0, ε = 0.05, polynomial ker-
nel: C = 1,000, ε = 0.001, and RBF kernel: C = 1,000, ε = 0.005. 
The linear kernel gave the worst R2 results with the value of 
0.74 for 308 and 318 K temperatures. The polynomial kernel 
achieved better R2 values than other temperatures for 298 K 
with the value of 0.92. Similar to the polynomial kernel, better 

Table 1
ANN results for MG adsorption on the kaolinite

Number of neurons 298 K 308 K 318 K

R2 RMSE MSE R2 RMSE MSE R2 RMSE MSE

1 0.9357 0.0631 0.0043 0.8984 0.0745 0.0055 0.8675 0.0834 0.0071
2 0.9426 0.0595 0.0035 0.9528 0.0508 0.0026 0.9149 0.0669 0.0045
3 0.9733 0.0406 0.0017 0.9796 0.0333 0.0011 0.9621 0.0446 0.0023
4 0.9709 0.0424 0.0018 0.9778 0.0348 0.0012 0.9688 0.0405 0.0016
5 0.9723 0.0413 0.0017 0.9846 0.0291 0.0008 0.9867 0.0264 0.0007
6 0.9718 0.0417 0.0017 0.9854 0.0283 0.0008 0.9725 0.0381 0.0014
7 0.9759 0.0386 0.0015 0.9852 0.0284 0.0008 0.9832 0.0297 0.0009
8 0.9776 0.0372 0.0014 0.9899 0.0235 0.0006 0.9902 0.0227 0.0005
9 0.9718 0.0417 0.0017 0.9854 0.0282 0.0008 0.9846 0.0284 0.0008
10 0.9892 0.0258 0.0007 0.9888 0.0248 0.0006 0.9855 0.0276 0.0008
Avg. 0.96811 0.04318 0.00197 0.97279 0.03556 0.00148 0.9616 0.04082 0.00202
Std. 0.01541 0.01016 0.00095 0.02678 0.01488 0.00145 0.03771 0.01872 0.00199
Min. 0.9357 0.0258 0.0007 0.8984 0.0235 0.0006 0.8675 0.0227 0.0005
Max. 0.9892 0.063 0.004 0.9899 0.0745 0.0055 0.9902 0.0834 0.007
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R2 values were obtained with RBF kernel at 298 K. The low-
est MSE and RMSE values were determined as 0.003371 and 
0.05806 for 298 K, respectively. MSE and RMSE values were 
close to each other for polynomial and RBF kernels at 298 K.

The obtained RF model results for Malachite green 
adsorption on kaolinite are given in Table 4. The Grid 
SearchCV method was used for the selection of suitable 
parameters for this model. The max_depth value obtained 
by this method was 6. While obtaining results, the n_esti-
mator parameter increased by 10 and reached up to 200. 
This parameter represents the number of trees in the ran-
dom forest. The average and maximum R2 values were 
obtained as 0.97 and 0.98 for the three temperatures, respec-
tively. The lowest MSE and RMSE values were determined 
as 0.00112 and 0.0334 for 318 K, respectively. The obtained 
graphical scores as a result of these experiments are given 
in Fig. 6. It is possible to see the effect of estimators for the 
three temperature values. The RF model showed the best 
performance with the highest R2 (0.994) and the lowest 
RMSE (1.92) values compared to Bayesian multiple lin-
ear regression and multiple linear regression models for 

2,4-dichlorophenoxy acetic acid adsorption by rice husk bio-
char from synthetic wastewater [40]. Similarly, the highest 
R2 (0.9895) and lowest MSE (0.0006) values were obtained 
with the RF model compared to multiple linear regression 
model for bromophenol blue adsorption by activated carbon 
which was derived from the Astragalus bisulcatus tree [41].

It is possible to see the results of all models in Table 5.  
If we examine this table, the best results were obtained 
from ANN among the models used in our study. If a model 
comparison is made on the basis of temperature, the best 
R2 value was obtained at 308 K from ANN with 0.9728. 
RBFNN and RFR model results were close to each other. 
At 308 K, the RF model achieved the highest value with 
0.97895 R2 value. ANN and RBFNN models were also 
close to this value. Here, like the 298 K temperature, the 
SVR model achieved worse results compared to the other 
models. Finally, when the temperature of 318 K is exam-
ined, the ANN model obtained a better result with R2 value 
of 0.9862 compared to the other models. It is possible to 
see that RBFNN and then RF get better results than SVR 
compared to the other models, respectively. The results 

Table 2
RBFNN results for MG adsorption on the kaolinite

Number of  
neurons

298 K 308 K 318 K

R2 RMSE MSE R2 RMSE MSE R2 RMSE MSE

10 0.9622 0.0483 0.0023 0.9426 0.0563 0.0031 0.9693 0.0828 0.0069
20 0.9907 0.024 0.0006 0.9884 0.0252 0.0006 0.9735 0.0373 0.0014
50 0.9967 0.0143 0.0002 0.9963 0.0142 0.0002 0.9966 0.0133 0.0002
80 0.9981 0.011 0.0001 0.9977 0.0112 0.0001 0.9989 0.0078 0.0001
Avg. 0.986925 0.0244 0.0008 0.98125 0.02665 0.001 0.984575 0.0353 0.00215
Std. 0.014543 0.014603 0.000886 0.022595 0.017728 0.001227 0.0530585 0.029583 0.002789
Min. 0.9622 0.0113 0.0001 0.9426 0.0112 0.0001 0.8693 0.0078 0.0001
Max. 0.9981 0.0483 0.0023 0.9977 0.0563 0.0031 0.9989 0.0828 0.0069

Table 3
SVR results for MG adsorption on the kaolinite

Kernel 298 K 308 K 318 K

MSE RMSE R2 MSE RMSE R2 MSE RMSE R2

Linear 0.014771 0.12155 0.76144 0.014191 0.119121 0.74113 0.013447 0.115959 0.74594
Polynomial 0.003429 0.05855 0.92825 0.005135 0.071656 0.85284 0.005323 0.072956 0.87151
RBF 0.003371 0.05806 0.92771 0.004529 0.067298 0.89824 0.005154 0.071794 0.90265

Table 4
RF model results for MG adsorption on kaolinite

298 K 308 K 318 K

MSE RMSE R2 MSE RMSE R2 MSE RMSE R2

Avg. 0.00186 0.04298 0.9761 0.00164 0.04011 0.97844 0.00168 0.0409 0.9771
Min. 0.00151 0.03893 0.9638 0.00114 0.03379 0.95317 0.00112 0.0334 0.9708
Max. 0.00282 0.05315 0.9805 0.00356 0.05973 0.98501 0.00214 0.0463 0.9847
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obtained from applied machine learning methods are com-
pared in Fig. 7. The highest R2 values and the lowest MSE 
and RMSE values were determined with ANN model for 
the three temperatures. R2 values of RBF and RF models were 
close to the ANN model for the three temperatures. RF and 
ANN models exhibited similar performances according to 
their R2 values of 0.9739 and 0.9734, as well as their MSE 
values of 0.0012 and 0.0016 for methylene blue adsorp-
tion on residual agricultural biomass (orange bagasse), 
respectively [34]. The lowest R2 values were obtained 
with the SVR model with linear kernel and the highest 
MSE and RMSE values were determined with RF model 
for the three temperatures. ANN and RF models were 
used for the adsorption of Malachite green with jackfruit 

seed and high R2 values of 0.966 and 0.981 and low RMSE 
values of 0.048 and 0.038 were obtained, respectively [42].

3.3. Isotherm results of Malachite green adsorption onto kaolinite

D-R, Freundlich, and Langmuir isotherm models were 
chosen to explain the interaction of adsorbate molecules and 
adsorbent surface in this study. All models were applied 
for the description of the experimental data obtained at 
three temperatures. The coefficients of these isotherm 
models determined for adsorption of MG onto kaolinite 
are presented in Table 6. R2 values of the Langmuir model 
were higher than the Freundlich and D-R model val-
ues. With respect to the coefficients, the Langmuir model 

Table 5
Numerical results of applied models for MG adsorption on kaolinite

Method 298 K 308 K 318 K

MSE RMSE R2 MSE RMSE R2 MSE RMSE R2

ANN 0.000808 0.02263 0.986917 0.001181 0.03013 0.978357 0.000721 0.019017 0.986275
RBFNN 0.0193933 0.028275 0.97855 0.010281 0.02695 0.974575 0.02102 0.02775 0.97135
RF 0.036799 0.191262 0.973634 0.034255 0.178596 0.978958 0.057994 0.239267 0.964613
SVR_L 0.014771 0.12155 0.76144 0.014191 0.119121 0.74113 0.013447 0.115959 0.74594
SVR_P 0.003429 0.05855 0.92825 0.005135 0.071656 0.85284 0.005323 0.072956 0.87151
SVR_RBF 0.003371 0.05806 0.92771 0.004529 0.067298 0.89824 0.005154 0.071794 0.90261

MSE
298 K

RMSE MSE
308 K

RMSE MSE
318 K

RMSE
0

0.2

0.4

0.6

0.8

1
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RBF
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Fig. 7. Graphical results of applied machine learning models for MG adsorption on kaolinite.

   
(a)  (b) (c) 

Fig. 6. Effects of RF model estimators for different temperatures: (a) 298 K, (b) 308 K and (c) 318 K.
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fit better than the Freundlich and D-R isotherm models 
and this indicates that the adsorption of MG on kaolin-
ite takes place as monolayer adsorption on a surface that 
is homogenous in terms of adsorption affinity [43]. The 
KF and n values increase as temperature increases, and 
also indicate that adsorption is more favorable at higher 
temperatures. Monolayer adsorption capacity (qm) val-
ues were determined as 50.67, 54.74 and 57.95 mg g–1 for 
298, 308 and 318 K, respectively. The adsorption intensity 
(KL) is the Langmuir constant, which expresses the affin-
ity of the binding sites in relation to energy. The KL val-
ues were obtained as 0.033, 0.038 and 0.046 L mg–1 for 298, 
308 and 318 K, respectively. The KL values increased with 
the increase in temperature, which accounts for the endo-
thermic nature of the adsorption process. The separation 
factor (RL) is used as a dimensionless constant in equilib-
rium concentration studies. If RL is greater than 1, it is con-
cluded that adsorption is unsuitable and if the calculated 
RL value is between 0 and 1, adsorption is favorable. The 
RL values for the adsorption of MG onto kaolinite are in 
the range of 0.675–0.906, indicating that the adsorption is 
a favorable process and that the adsorption is nearly irre-
versible at initial MG concentrations. The n values were 
determined from the Freundlich isotherm and 1/n values 
show the adsorption intensity was higher than 1.0, which 
indicates good adsorption by kaolinite clay. The KF values 
were obtained as 1.219, 1.850 and 3.019 L mg–1 for 298, 308 
and 318 K, respectively. The increase in Freundlich constants 
with the increase of temperature confirmed that adsorption 
was favorable at high temperatures and the process was 
endothermic in nature. The D-R model is generally applied 
to distinguish the physical and chemical adsorption of ions 
by their average free energy (E) which is determined per 
molecule of adsorbate for this relationship. The calculated  
energy values from the D-R equation were 10.541, 13.131 
and 16.667 kJ mol–1 for MG adsorption onto kaolinite at 
298, 308 and 318 K, respectively. E values were higher 
than 8 kJ mol–1 for all studied temperatures indicating 
that chemical adsorption takes place.

Various studies in the literature investigated the usage 
of different adsorbents and biosorbents for MG adsorp-
tion. Comparison of the monolayer adsorption capacity 
values of MG by various adsorbents are given in Table 7.  
When the results of case studies and those of the pres-
ent study are compared, kaolinite has a relatively large 
adsorption capacity for MG. This suggests that MG could 
be easily adsorbed on kaolinite and it can be used as an 
abundant, inexpensive and effective adsorbent for MG 
removal from aqueous solutions.

3.4. Kinetic results for Malachite green adsorption  
onto kaolinite

Kinetic parameters in the pseudo-first-order, pseudo- 
second-order and intraparticle diffusion models for MG 
adsorption onto kaolinite are given in Table 8. The cor-
relation coefficient R2 values of the pseudo-first-order and 
intraparticle diffusion kinetic models are lower than the 
pseudo-second-order kinetic model; thus, these models 
are not rate-limiting steps. The R2 (>0.990) for the pseudo- 
second-order kinetic model was close to 1.0 and indicates 
that the highest R2 coefficients with calculated qe values for 
the process best fits the pseudo-second-order model. The 
pseudo-second-order kinetic results show that the theoret-
ical qe and the experimental qe values are relatively close 
compared to the other models. The adsorption process of 
MG on kaolinite may be dominated by chemical adsorption. 
According to the kinetic results, it is obvious that the qe val-
ues determined using pseudo-first-order, pseudo- second-
order and intraparticle diffusion models increased with 
increasing temperature and initial dye concentration (Table 
8). Kinetic results show that MG adsorption on kaolinite 
abides by the pseudo-second-order model and suggests 
that the rate-limiting step is explained by electron exchange 
between the kaolinite and MG molecules. Kinetic data 
for adsorption is better represented by a pseudo- second-
order model for most dye removal processes [56,57].

Table 6
Isotherm model constants for MG adsorption onto kaolinite 

Isotherm/Temperature 298 K 308 K 318 K

Langmuir

KL (L g–1) 0.033 0.038 0.046
qm (mg g–1) 50.665 54.737 57.945
R2 1.000 0.994 0.998

Freundlich

KF (mg g–1)(L mg–1)1/n 1.219 1.850 3.019
1/n 0.852 0.864 0.873
R2 0.990 0.970 0.995

Dubinin–Radushkevich

KD-R 0.002 0.003 0.005
E (kJ mol–1) 10.541 13.131 16.667
R2 0.861 0.827 0.888

Table 7
Comparison of the MG adsorption capacity of various 
adsorbents

Adsorbent Adsorption capacity 
(mg g–1)

Reference

Ni:FeO(OH)-NWs-AC 29.81 [44]
Potato peel 32.39 [45]
Luffa aegyptiaca peel 70.21 [46]
Annona squamosa seed 25.91 [47]
Wood apple shell 34.56 [48]
Seed hull 8.40 [49]
Rice husk 24.92 [50]
Copperpod fruit shell 62.50 [51]
Sea shell powder 42.33 [52]
Diatomite 23.64 [53]
Rattan sawdust 62.71 [54]
Coal fly ash/CoFe2O4 89.32 [55]
Kaolinite 57.95 This study
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3.5. Thermodynamic results for Malachite green 
adsorption onto kaolinite

Thermodynamic parameters for MG adsorption onto 
kaolinite were calculated using Eqs. (17)–(19) and the Gibbs 
free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) val-
ues are given in Table 9. The values obtained for ΔG° and 
ΔH° can help in describing the mechanism of the adsorption 
process. ΔG° values for MG adsorption onto kaolinite were 
determined as –2.919, –3.531, and 4.143 kJ mol–1 for 298 K, 
308 K and 318 K, respectively. ΔH° and ΔS° values for MG 
removal with kaolinite were calculated as 15.318 kJ mol–1 and 
61.201 J mol–1 K–1, respectively. The ΔG° values, which var-
ied between 0 and –30 kJ mol–1, show the feasibility of this 
removal process and spontaneous nature of MG adsorption 
on kaolinite (Table 9). The absolute values of ΔG° increase as 
the temperature increases showing that this separation pro-
cess is better at high temperatures. Accordingly, the increase 
in dye removal with increasing temperatures is due to chem-
ical bonds, electrostatic interactions and Van der Waals forces 
between MG and kaolinite. The positive ΔH° value shows 

that the removal process is endothermic and the positive 
ΔS° value establishes enhanced randomness at the kaolinite–
dye interface and the affinity of kaolinite for MG [58].

4. Conclusions

The presence of synthetic dyes in water sources causes 
serious issues due to poor water quality, toxicity to the envi-
ronment and human carcinogenic effects. Adsorption has 
progressively become an economical and feasible method 
for dye wastewater decontamination. Clay minerals are an 
interesting alternative for removing colorants from colored 
aqueous solutions because they are inexpensive, easy to 
extract and handle, and non-toxic. In this study, machine 
learning methods were used to estimate the adsorption per-
centage of Malachite green dye on kaolinite. When the aver-
age results were analyzed, ANN provided the most efficient 
results for estimating removal percentage. The successful 
performances of other methods are given comparatively. 
Metric values of R2, MSE and RMSE were used for model 
evaluations. In comparative results, ANN, RBFNN, and RF 

Table 8
Kinetic model parameters for MG adsorption onto kaolinite

Kinetic model Temp. (K) Kinetic constant 10 (mg L−1) 20 (mg L−1) 40 (mg L−1) 60 (mg L−1)

298 qexp (mg g–1) 6.568 13.584 28.554 45.774
308 qexp (mg g–1) 7.167 14.328 29.709 48.123
318 qexp (mg g–1) 7.756 15.863 31.714 49.554

Pseudo-first-order

298 k1 (min–1) 0.037 0.030 0.032 0.033
qe (mg g–1) 5.924 6.653 25.868 43.423
R2 0.947 0.873 0.966 0.956

308 k1 (min–1) 0.041 0.043 0.056 0.053
qe (mg g–1) 7.776 10.044 28.191 49.452
R2 0.896 0.983 0.930 0.954

318 k1 (min–1) 0.032 0.041 0.048 0.036
qe (mg g–1) 5.778 10.591 44.124 44.970
R2 0.952 0.923 0.883 0.854

Pseudo-second-order

298 k2 (min–1) 0.010 0.008 0.002 0.001
qe (mg g–1) 6.99 13.49 30.03 48.35
R2 0.996 0.995 0.992 0.993

308 k2 (min–1) 0.012 0.010 0.006 0.003
qe (mg g–1) 7.63 14.93 32.30 50.00
R2 0.993 0.999 0.999 0.998

318 k2 (min–1) 0.013 0.010 0.006 0.002
qe (mg g–1) 8.06 16.39 34.48 52.63
R2 0.996 0.999 0.993 0.993

Intraparticle diffusion

298 kint (mg g–1 min–0.5) 0.554 1.235 4.046 2.283
C (mg g–1) 1.291 2.737 5.916 12.349
R2 0.920 0.887 0.954 0.953

308 kint (mg g–1 min–0.5) 0.571 1.218 4.130 2.452
C (mg g–1) 1.503 3.757 11.585 18.875
R2 0.885 0.860 0.887 0.770

318 kint (mg g–1 min–0.5) 0.567 1.199 2.563 3.488
C (mg g–1) 2.26 5.28 16.19 24.18
R2 0.811 0.760 0.917 0.796
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models were shown to give good results for different tem-
peratures. In order to achieve the purpose of this study, it 
is foreseen that these methods can be used in estimation 
studies for chemical processes. It is thought that workloads 
will decrease if researchers working in this field gain ideas 
from this study and use these models in their research. 
The experimental data of removal percentages showed that 
the initial dye concentration and process temperatures plays 
a crucial role in dye adsorption capacity and provides a driv-
ing force in the interaction between the adsorbent and dye. 
The adsorption equilibrium data were found to best fit the 
Langmuir isotherm at all studied temperatures, indicating 
adsorption on a homogenous surface. The adsorption data 
showed the best agreement with the pseudo-second-order 
kinetic model for different initial dye concentrations. The rate 
constant increased with the increase in temperature indicat-
ing the endothermic nature of adsorption. Thermodynamic 
analysis of the obtained data suggests that the adsorption 
process is spontaneous and endothermic in nature.
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