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a b s t r a c t
This study has been focused on the development of natural adsorbents for the decolorization of paint 
industry effluent. A natural residue Cyamopsis tetragonolobus (guar gum) was tested as an adsorbent 
in a fixed bed adsorption column. The design variables influent flow rate, adsorbent mass, efflu-
ent initial concentration were fixed as influencing parameters on the color removal. The adsorbent 
showcased its treatability at the lower initial concentration, lower flow rate and higher adsorbent 
mass. The adsorption phenomena were expressed using breakthrough curves and models. The trans-
port of pollutants onto the adsorbent was explained with the help of mass transfer model equations. 
The results were recommended the usage of bio-based adsorbent Cyamopsis tetragonolobus (guar gum) 
for the decolorization of paint industry effluent.

Keywords:  Paint industry effluent; Adsorption; Cyamopsis tetragonolobus (guar gum); Breakthrough 
models; Mass transfer models

1. Introduction

The presence of heavy metals, colorant, high biochem-
ical oxygen demand/chemical oxygen demand, turbidity, 
total dissolved solids in the paint industry effluent converts 
it into a highly toxic pollutant, which defines that treatment 
before disposal is mandatory. Usually, the waste generated 
during the production of paint is much less (≈15%) than the 
waste generated from the degreasing of the unit operations 
(≈80%–85%). So the wastewater is a diluted form of paint 
only [1]. The complication involved in the treatment pro-
cess depends on the origin of the solvent that existed in the 
effluent. Water-based effluents are usually simple to degrade 
than organic solvent-based paint effluent. The molecules of 
color, heavy metals released into the aquatic system dam-
ages not only the aquatic animal kingdom and also human 
health indirectly [2,3].

Largely to diminish the pollutants of lower concentra-
tion adsorption process would be suggested. The choice of 
adsorbent used depends on the availability and efficacy. In 
the process of pollutant removal from paint effluent, natural 
materials viz., Strychnos potatorum, C. opuntia, Moringa oleifera, 
Cassia fistula and the shells of shrimp, crab were attempted as 
a coagulant [4–6]. Besides immobilized packings of Strychnos 
potatorum, C. opuntia, Portunus sanguinolentus were also 
applied as adsorbents [7–9].

Different varieties of adsorbents in their natural form 
and also physically and chemically modified forms were 
utilized in the removal of dyes, heavy metals and organic 
and inorganic pollutants. The results were further moti-
vated to search for a commercially viable and technically 
efficient adsorbent in the decolorization phenomena of paint 
industry effluent [10].

Guar gum has a molecular weight of about 220,000 and 
is constituted D-mannose, D-galactose as a straight chain 
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and aside chain respectively in an alternative manner. Guar 
gum is the most widely used in the cosmetic industry, food 
industry, drug delivery, pharmacotherapy and water purifi-
cation. Even though it is nonionic, it can be used as a floc-
culant in a wide range of pH and ionic strengths. Almost 
all the galactomannans are not soluble in organic solvents 
other than formamide. The most denoting solvent for galac-
tomannans is water. In the dissolution process along with 
the hydration, it produces colloidal suspension with appre-
ciable high viscous. Being a Non-Newtonian fluid it follows 
the pseudoplastic along growing shear rate. The viscosity 
of the guar gum solution is also inversely proportional to 
temperature. Guar gum solution is susceptible to microbial 
decay biocompatible. If not used within 24 h, the unpre-
served guar gum solution must be preserved with preser-
vatives [11–16].

The application of guar gum as an adsorbent on the 
treatment of paint industry effluent is not attempted yet. 
Keeping this gap in our mind, this research was focused to 
find the optimized conditions to decolorize the paint indus-
try effluent using Cyamopsis tetragonoloba immobilized beads 
as packing in an adsorption column by modifying the oper-
ational parameters viz., initial effluent concentration, flow 
rate and packing length.

2. Materials and methods

2.1. Materials

2.1.1. Adsorbate

The adsorbate selected for the current study was water 
based paint wastewater (WPW). It was prepared by mixing 
white primer and blue colorant at the proportion of 4% (wt./
vol.). The samples of different initial concentrations such as 
1,250; 2,000 and 3,100 mg/L were prepared and used (Table 1) 
[9]. The physic-chemical properties are listed in Table 2 [17].

2.1.2. Adsorbent

Seeds of Cyamopsis tetragonolobus (guar gum) were pro-
cured from a seed shop in Pudukottai, Tamil Nadu, India. 
Using the domestic blender it was crushed towards powder 
and brought to 0.5 mm size using sieves.

2.1.3. Fixed bed column

Pyrex glass was used to fabricate a fixed-bed column 
(FBC) with an inner diameter of 2 cm and a length of 50 cm 
with a tapered end (Fig. 2). A peristaltic pump (Ravel Hitek, 
India) with a managed flow rate was used to pump waste-
water into an FBC from the top at N.T.P. conditions [18].

2.2. Methods

2.2.1. Preparation of encapsulated beads

The encapsulation of Cyamopsis tetragonolobus was carried 
out with the help of the sodium alginate component. Using 
a magnetic stirrer with a hot plate, Cyamopsis tetragonolobus 
powder (3% (w/v)) and sodium alginate (1% (w/v)) were 
suspended in distilled water. Hot temperatures (≤45°C) 
being maintained to guarantee consistent mixing without 
any lumps. When the temperature is elevated, the adsor-
bent’s characteristics may be lost. Using a syringe, the result-
ing combination was ejected as a dewdrop in an antiseptic 
CaCl2 solution (3%) at 25°C. The encapsulated pellets were 
strengthened by soaking them in a new CaCl2 solution at 4°C 
for overnight and then rinsing them with deionized water 
to remove any excess calcium ions. As a control, encapsu-
lated beads were created entirely from sodium alginate [8].

Using the volume displacement approach, the mean 
diameter of the immobilized bead was determined to be 
0.53 cm. The density of beads (ρ) 0.75 g/cc was computed 
by dividing the mass of a known number of beads by total 
volume. The adsorbent’s bulk density (ρB) was calculated by 
dividing the total mass of the beads used for the requisite 
packing height by the volume of the beads, and the conclu-
sion was 0.856 g/cc.

2.2.2. Experimental set-up

In a FBC, the arrangements were made from the bot-
tom as, glass wool, glass beads, encapsulated Cyamopsis 
tetragonolobus pellets and glass beads. The glass beads served 
as a supporting layer, and glass wool was used to minimize 
the glass beads from being jammed in the outlet. The glass 
beads at the top are there to ensure a seamless input flow. 
The adsorbate was fed in a down flow mode at a controlled 
flow rate and a room temperature of 30°C without any pH 
adjustment.

The packing of the beads began with half-filled distilled 
water in a fixed bed column, followed by the gentle addi-
tion of a known mass of beads. For each run, almost con-
stant and uniform packing was accomplished according to 

Table 1
Concentration of WPW (made upto 1,000 mL)

Sample 
number

White 
primer (mL)

Blue colorant 
(mL)

Initial chemical oxygen 
demand (mg/L)

1 48 2 1,250
2 44 6 2,000
3 40 10 3,100

Table 2
Physico-chemical characteristics of the WPW (Sample number 3)

Parameters Concentration (except for 
pH, color and turbidity)

pH at 25°C 7.7–8.1
Color, nm Blue
Total dissolved solids, mg/L 214
Total suspended solids, mg/L 11,200
Oil and grease, mg/L 19
Chemical oxygen demand (COD), 

mg/L
3,100

Sulphate as SO4, mg/L 24
Biochemical oxygen demand, 

mg/L (3 d incubated at 27°C)
1,375

Turbidity, NTU 1,780
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the concept of terminal settling velocity. After achieving the 
appropriate bed height, the water was drained off, resulting 
in more tightened packing. The treated wastewater was col-
lected regularly for residual color analysis.

The treatment was terminated once an FBC approached 
exhaustion point. The experiments were repeated three 
times to assure reproducibility. The given figures were based 
on the average of three different data sets. The trials were 
repeated to see how bed height, flow rate, and initial WPW 
concentration affected removal efficiency.

Once the column had acquired saturation stage, the treat-
ment was discontinued. The experiments were run three 
times to assure stability. The presented data were the result of 
averaging three different data sets. The trials were repeated 
to see how bed height, flow rate, and WPW starting con-
centration affected removal efficiency [7–9].

2.2.3. Analysis

An SL 218 double UV-visible spectrophotometer (Elico-
India) was used to examine the adsorbent’s ability in the 
decolorization of SPIE at λmax 612 nm.

3. Results and discussions

3.1. Effect of operating variables on breakthrough curves

3.1.1. Effect of initial effluent concentration

The initial concentration of the effluent described the 
pollutant load on it. The ability of the fabricated fixed-bed 

column in the removal of pollutant molecules is examined 
by varying the initial effluent concentration, whereas the bed 
height, flow rate were kept constant as 30 cm and 5 cc/min 
respectively. Three different initial concentration effluents 
viz., 1,250; 2,000 and 3,100 mg/L were applied. The process 
analysis parameters of an FBC are given in Table 3.

The observations from Fig. 1 and Table 4 indicated 
that the increase in the pollutant load shortened the break-
through time (from 40 to 10 min) and total time (from 200 to 
170 min). A known height of adsorbent packings was deac-
tivated and saturated faster for the higher concentrations, 
which brought down the breakthrough time and the total 
time.

For the given system, a liter of 1,250 mg/L initial con-
centration effluent could be treated whereas only 850 mL 
of 3,100 mg/L loads of effluent were treated. The phenom-
ena indicate that when the total treatment time extends it 
could treat more volume of effluent. The raise in the qt value 
(7.45–11.24 mg/g) corresponding to the effluent concentra-
tion revealed the transportation of the pollutants onto the 
adsorbent [19,20].

3.1.2. Effect of adsorbent packing height

The success of the adsorption treatment process in pri-
marily depends on the selection of an adsorbent and the 
availability of the required amount of adsorbent. Here the 
phrase “packing height” refers to the amount of adsorbent 
used, which linearly determines the number of active sites 

Table 3
Process analysis parameters of a FBC

Total quantity of solute adsorbed for a given Co, Q, mg q QC
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Fig. 1. Effect of initial effluent concentration on breakthrough curves.
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available. Unsatisfactory results may occur due to a lack of 
bed height.

The success of the adsorption treatment process primar-
ily depends on the selection of an adsorbent and the avail-
ability of the required amount of adsorbent. Here the phrase 
“packing height” refers to the amount of adsorbent used, 
which linearly determines the number of active sites avail-
able. Unsatisfactory results may occur due to a lack of bed 
height.

The time it took to achieve equilibrium removal in 
10 cm to 30 cm columns made from encapsulated Cyamopsis 
tetragonolobus beads was 90, 130 and 160 min (Fig. 2). Under 
these settings, the breakthrough times were the same for 10 
and 20 cm heights, but it is 40 min for 30 cm packing height. 
When the adsorbent bed height was increased, adsorption 
capacities (qt) were climbed from 3.24 to 7.45 mg/g, while 
the length of the mass transfer zone increased from 8.89 cm 
to 22.50 cm, all following the same pattern. Similarly, the 
treated effluent volume increased from 0.5 to 1 L (Table 4).

Furthermore, as bed height increased, the slope of the 
breakthrough curve became flatter, resulting in a wider 
mass transfer zone (8.89–22.50 cm). The slope of the break-
through curve reduced as bed height increased, owing to the 
increased availability of adsorbate–adsorbent contact time, 
which boosted removal capacity and decreased solute con-
tent in the effluent [21].

3.1.3. Effect of effluent flow rate

As the flow rate increased from 5 to 15 mL/min, the 
overall time taken to complete each run decreased. For the 
applied flow rates the total time and breakthrough time 
were 200, 140 and 100 min and 40, 10 and 10 min, respec-
tively. With a higher flow rate, the breakthrough curves were 
steeper and faster. The empty bed residence time dropped 
from 31.4 to 10.5 min. From 1 to 1.5 L, the total volume of the 
treated effluent grown substantially (Fig. 3 and Table 4).

The color uptake was higher in the onset, then dropped 
significantly until saturation was approached. The contract 
duration was stretched by lowering the flow rate, while the 
adsorption zone was shortened. The ion exchange situation 
vary when the volumetric flow rate was reduced from 15 
to 5 mL/min. When the flow rate was increased, the break-
through curves became steeper and reached the break-
through point in a shorter time. This could be because (a) the 
bed’s saturation capacity was set to allow for concentration 
changes and (b) despite the high flow rate, adsorption equi-
librium could be achieved due to the long residence time 
of the adsorbate in the column. At greater flow rates, the 
contact period between pollutant and adsorbent was fairly 
short, resulting in a decrease in removal efficiency [22].

To recap, the adsorbent acquired saturated quickly at a 
higher linear flow rate because brief contact time resulted 
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Fig. 2. Effect of adsorbent packing height on breakthrough curves.

Table 4
Influence of operating variables on a FBC design parameters

Co Q H tt qt tb ts Veff EBRT MTZ

mg/L cc/min cm min mg/g min min mL min cm

1,250 5 10 100 3.24 10 90 500 31.4 8.89
1,250 5 20 140 4.93 10 130 700 31.4 18.46
1,250 5 30 200 7.45 40 160 1,000 31.4 22.50
1,250 10 30 140 10.1 10 130 1,400 15.7 27.69
1,250 15 30 100 8.33 10 90 1,500 10.47 26.67
2,000 5 30 180 8.91 20 160 900 31.4 26.25
3,100 5 30 170 11.24 10 160 850 31.4 28.13
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in adsorption of a larger amount of pollutant on the adsor-
bent, resulting in weak diffusivity of the solute amidst the 
adsorbent particles [23].

3.2. Breakthrough curve models

Breakthrough curve models and their parameters have 
described the phenomena of the fixed bed continuous 
adsorption system. The linearized form of the models viz., 
Wang model, Thomas or bed depth service time (BDST) 
model, Yoon–Nelson model and Adams–Bohart model are 
tabulated in Table 5.

In the Wang model, the plot made between the ln[1/1–
(Ct/Co)] and time is shown in Fig. 4. The kinetic constant 
of Wang model kW (0.0215 min–1) and the time required to 
adsorb half of the initial concentration of the pollutants t0.5 
(62.47 min) are calculated using the slope and the intercept 
values of the plot and given in Table 6. The linear regres-
sion value is mentioned as 0.7774. The plot is made for the 
optimized parameters, but generally, the t0.5 values would 
be in the increasing order concerning the ascending nature 
of pollutant load, due to the existence of a higher range of 

initial pollutant load [24]. The attained kW value agrees with 
previous studies conducted on paint industry effluent using 
Strychnos potatorum [7].

Using the bed depth service time (BDST) model, the 
plot was drawn between ln[(Co/Ct)–1] and time (Fig. 5). 
The model values kBDST (kinetic constant), qBDST (maximum 
adsorption capacity), were calculated and tabulated in 
Table 6. R2 value (0.9604) was in good agreement with the 
linearity. The researchers found that the kinetic constant and 
the maximum adsorption capacity of the adsorbent were 
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Fig. 3. Effect of effluent flow rate on breakthrough curves.
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Fig. 4. Wang model curve under optimised conditions.

Table 5
Breakthrough curve models for a FBC

Wang ln / / .1 1 0 5� � ��� �� � � �C C k t k tt W Wo
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inclined up with the increase in effluent entry flow rate, 
due to the higher mass of pollutant. For the fixed cross-sec-
tional area of the adsorption column, according to the con-
tinuity equation of flow, the velocity of the effluent varies 
with flow rate [8].

The Yoon–Nelson model drawn for the breakthrough 
behavior of the treatment process uses ln[Ct/(Co – Ct)] and 
time to determine kYN and τ values (Fig. 6). Along with ini-
tial concentration, bed height the τ value also increased 
due to the higher mass gradient and more number of active 
sites respectively, whereas it showcased the declined trend 
with the rise in the flow rate because of the shortage in 
the residence time. The values found at the optimization 
conditions are listed in Table 6 [25].

Similarly, the Adams–Bohart model the rate constant kAB 
(1.44 × 10–5 L/(min mg)), the maximum adsorption capac-
ity per unit volume of adsorption column No (2.645 mg/L) 
were observed from the slope and the intercept of the plot 
made between lnCt/Co and time (Fig. 7) [26]. The values are 
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Fig. 5. BDST model curve under optimised conditions.
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Fig. 6. Yoon–Nelson model curve under optimised conditions.

Table 6
Parameters of breakthrough models in a FBC at various condi-
tions

Co: 1,250 mg/L; Q: 5 cc/min; H: 30 cm

Wang
kW 1/min 0.0215
t0.5 min 62.47
R2 0.7774

BDST
kBDST L/(min mg) 3.432 × 10–5

qBDST mg/g 50,642
R2 0.9604

Yoon–Nelson
kYN 1/min 0.0155
τ min 343.6
R2 0.7218

Adams–Bohart
kAB L/(min mg) 1.44 × 10–5

No mg/L 2.645
R2 0.8969
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comparable with the studies done using C. opuntia on paint 
factory effluent and the trend varied based on the adsorbent 
origin [8].

3.3. Mass transfer model

The mass transfer may occur during the adsorption pro-
cess, in addition to being adsorbed onto the surface of the 
adsorbent, due to intraparticle diffusion. The plot of the 
Weber–Morris model will not pass through the origin in 
this event, signaling that intraparticle diffusion was not the 
sole rate-controlling step and that film diffusion should not 
be ruled out as a rate-controlling feature. The kWM (0.0578) 
values in this investigation indicated easier diffusion and 
transport into the pores of the adsorbents. The consider-
able intercept “I” (0.8878) also implied that the impacts on 
adsorbate mass transfer resistance were average growth, 
implying that external mass transfer resistance could not 
be ignored (Tables 7 and 8). The nonlinearity of the spots in 
Fig. 8 explains why the adsorption was determined by many 
processes. The solution is carried out by I an external diffu-
sion mechanism, and (ii) intraparticle diffusion, based on 
the interception of the two lines. The linear regression coef-
ficient is measured as 0.8969 [27,28].

The Mathews–Weber model could be used to deter-
mine the external mass transfer coefficients (2.04 × 10–5) for 
adsorption. At the early contact time, it was believed that the 
concentration at the adsorbent surface tended toward zero 
and that intraparticle diffusion was insignificant. With high 
starting dye concentrations, the pollutant transport velocity 

from liquid to solid phase decreased, though intra-parti-
cle diffusion increased. The linear regression coefficient is 
measured as 0.8969 (Fig. 9 and Tables 7, 8) [29].

4. Conclusions

From the commenced research studies it was noticed 
that the Cyamopsis tetragonoloba could be recognized as a 
novel plant-based adsorbent in the decolorization of paint 
industry effluent. The immobilized beads of Cyamopsis 
tetragonoloba with a packing height of 30 cm in the 2 cm 
diameter fixed-bed column, with a flow rate of 5 mL/min 
yielded the better removal efficiency for the 1,250 mg/L 
initial concentration SPIE at room temperature. For the 
recommended conditions the break-through behavior, 
equilibrium pollutant uptake, mass transfer zone, empty 
bed residence time and the total volume of effluent treated 
were evaluated. The process kinetic constant, maximum 
adsorption capacity, the time required for 50% adsorbate 
breakthrough time were found using the BDST model, 
Adams–Bohart, Yoon–Nelson and Wang model respectively. 
With the aid of the mass transfer model like Weber–Morris, 
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Fig. 7. Adams–Bohart model curve under optimised conditions.

Table 8
Parameters of mass transfer models in a FBC at various conditions

Weber–Morris Mathews–Weber

Co Q H kWM I R2 kMW R2

mg/L cc/min cm mg/(min0.5 g) cm/min

1,250 5 30 0.0578 0.8878 0.8288 2.04 × 10–5 0.8969

Table 7
Mass transfer models for a FBC

Weber–Morris q k t It � �WM
0 5.

Mathews–Weber ln / /C C k a V tt o� � � �� �MW ; 
where a V m dP/ /� 6 �
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Mathews–Weber the transport behavior of the pollutant 
onto adsorbent was understood. As a summary, the results 
revealed that the potential of the Cyamopsis tetragonoloba as 
an adsorbent in the decolorization process was proved.

Symbols

a — Total interfacial area of particle, cm2

Co, Ct —  Concentration of the solute, and at time ‘t’ 
in the effluent, mg/L

d — Mean diameter of immobilized beads, cm
H — Bed height, cm
I — Thickness of boundary layer, mg/g
kAB —  Kinetic constant in the model Adams–

Bohart, L/(min mg)
kBDST —  Kinetic constant in the model BDST, L/

(min mg)
kMW —  External mass transfer coefficient from 

Mathews–Weber model, cm/min
kW — Kinetic constant in the model Wang, 1/min

kWM —  Kinetic constant in the model Weber–
Morris, mg/(min0.5 g)

kYN —  Kinetic constant in the model Yoon–
Nelson, 1/min

m — Total mass of adsorbent, g
No —  Maximum adsorption capacity per unit 

volume of adsorption column, mg/L
Q — Inlet feed flow rate, mL/min
qBDST —  Maximum adsorption capacity in BDST 

model, mg/g
qt —  Total quantity of pollutant adsorbed at 

time ‘t’, mg/g
R2 — Correlation coefficient
t, tb, ts, tt —  Time, breakthrough time, saturation time, 

total time taken in FBC, min
t0.5 —  Time required for 50% adsorbate break-

through time, min
Uo — Linear velocity of inlet effluent, cm/min
V, Veff —  Volume of effluent, volume of effluent 

treated, mL

Mathews and Weber 
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Fig. 9. Mathews–Weber mass transfer model curve under optimised conditions.

y = -0.0578x + 0.8878
R² = 0.8288
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t —  Time required for 50% adsorbate break-
through time in Yoon–Nelson model, min

ρP — Apparent density of the adsorbent, g/mL
ρB — Bulk density, g/mL
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