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a b s t r a c t
2,2′-Dithiobis(2,3-dihydro-1,3-benzothiazole), DTDBT, was used to mitigate the destructive effect 
of 0.5 M HCl on the C-steel surface. Gravimetry, potentiodynamic polarization, and electrochem-
ical impedance spectroscopy, techniques as well as scanning electron microscopy complemented 
with energy-dispersive X-ray analysis for some corroded steel samples were employed. The data of 
different techniques were compatible and confirmed the inhibition effect of DTDBT. The potentio-
dynamic polarization data disclosed that the DTDBT molecules behave as a mixed-kind inhibitor. 
The different thermodynamic factors for the corrosion and adsorption processes were deduced 
to suggest the inhibition mechanism. The DTDBT molecules are adsorbed on the C-steel surface 
confirming the Langmuir isotherm according to a mixed mechanism (physical and chemisorption).
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1. Introduction

Carbon steel is mightily employed as the structural 
matter in various fields owing to the outstanding mechani-
cal characteristics and relatively little price [1,2]. Acid solu-
tions are employed in the different fields for the production 
processes, and the different usages, such as acid pickling, 
acid purifying, acid de-scaling, and oil well cleaning [3]. 
The advantages of using HCl over others acids are less 
pickling time, lower temperature as well as better surface 
quality. The deleterious effect of using acids oxidizes the 
industrial and metal containers, lowering the production 
and causing economic loss [4]. Due to the destructive 
effect of HCl solutions on metallic surfaces, inhibitors 
are substantial to reduce the aggressive effect on the steel 
surface [5]. The effective organic molecules are generally 
used in small quantities in acid solutions to tolerate severe 

corrosion [6]. The chosen of the selected materials as inhib-
itors depend on many factors among of these is the eco-
nomic purpose and the other is the molecular structure 
should include an aromatic ring with an electron cloud 
and/or the electronegative centers like S, N, and O atoms 
in the relatively long-chain compounds [7]. Such of these 
organic molecules have been mightily utilized as effica-
cious retarders towards the acid destruction of steel.

Benzothiazole derivatives have been employed as 
suitable retarders for the destruction of steel in acidic 
aqueous solutions [8,9], zinc in HCl [10] and copper in 
NaCl solutions [11]. The molecules of benzothiazole are 
characterized by the existence of an aromatic ring includ-
ing sulfur and nitrogen atoms, which are rich in electrons 
densities and display active centers for the inhibition pro-
cess. The mechanism of inhibition of such compounds was 
found to depend on the adsorption process on the metal 
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surface as well as the inhibitor concentration and tempera-
ture. The efficient adsorption could have resulted from the 
presence of the π-electrons inside the selected molecule 
beside the unsaturated bonds formed in the presence of 
the heteroatoms (S or O or N) in the inhibitor’s molecular 
composition [12].

Our work aims to explore the inhibition performance 
of 2,2′-dithiobis(2,3-dihydro-1,3-benzothiazole), DTDBT, 
as an efficient retarder against the destruction of C-steel 
in 0.5 M HCl solutions. The material of DTDBT is an eas-
ily prepared laboratory with a high yield that is soluble in 
dilute acid solutions. Gravimetric, potentiodynamic polar-
ization, and electrochemical impedance spectroscopy (EIS) 
were utilized. Some of the thermodynamic parameters of 
the corrosion and adsorption processes were calculated  
and explored.

2. Experimental part

2.1. Working electrode

All working coupons and electrodes for the exper-
imental study were prepared from C1018 low carbon 
steel. The components of this kind of steel are clarified in 
Table 1. The coupons and electrodes were abraded with 
various series of polished papers, washed thoroughly 
with bi-distilled water, degreased, and dried with acetone. 
The surface area of each coupon was 38.70 cm2.

2.2. Synthesis of 2,2′-dithiobis(2,3-dihydro-1,3-benzothiazole)

The used inhibitor was prepared laboratory by a trans-
formation reaction of a thiol compound into disulfide by 
using an ammonium persulfate salt in the presence of eth-
ylenediamine [13]. 2,3-Dihydro-1,3-benzothiazole-2-thiol 
(10 mmol) was mixed thoroughly with ethylenediamine 
(5 mmol). The ammonium persulfate (11 mmol) was added 
with a continuous mixing using pestle and mortar for a 
while 40 min. After the accomplishment of the reaction, 
the crude product was extracted by using a dichlorometh-
ane solvent. The removal of the solvent under reduced 
pressure and the yield was recrystallized using ethanol 
to give a purity of 87%. The synthetic route for the syn-
thesis of 2,2′-dithiobis(2,3-dihydro-1,3-benzothiazole) 
(inhibitor) is shown in Fig. 1.

2.3. Electrochemical measurements

The electrochemical experimental are included the 
potentiodynamic polarization, E-i curves, and the EIS were 

executed on a Voltalab 40 Potentiostat PGZ 301. The used 
electrolytic cell was formerly described [14], which is pro-
vided with many electrodes as a Pt foil, a saturated calo-
mel, and C-steel (SCE) as an auxiliary, a reference, and a 
working electrode (WE), respectively. A small cylindrical 
rod of low C-steel (WE) was settled to a borosilicate glass 
tube with an Araldite leaving the cross-sectional surface 
area of 0.28 cm2. The C-steel electrodes were polished with 
a series of various polished papers and washed using dis-
tilled water and acetone. The WE was immersed in the 
investigated solution under the open circuit situation for 
60 min until a steady-state potential, Est was attained. The 
polarization data were gained by sweeping the WE poten-
tial between –800 and –200 mV, at Ecorr with a sweeping 
rate of 1 mV/s, at 298 K. To ensure the repeatability of the 
results, each experiment was duplicated and the data were  
identical.

The impedance spectra curves were obtained when a 
small alternating voltage perturbation (10 mV) was uti-
lized on the electrolytic cell. The range of frequency was 
varied between 100 kHz to 50 mHz and the EIS curves 
were fitted utilizing the ZSimpWin program.

2.4. Gravimetric measurements

The cleaned and dried C-steel specimens were weighed 
prior and next inundation in an open bottle containing 
a fixed amount (250 ml) of 0.5 M HCl solutions devoid of 
containing the DTDBT inhibitor. Trails were done at vari-
ous temperatures, 298–313 K. The temperature was mon-
itored by using a water bath equipped with thermostat 
control, ±1°C. The C-steel specimen was removed after 6 h, 
washed with distilled water two times followed by degreas-
ing with acetone, dried, and accurately weighed. For good 
reproducibility, the trials were done in triplicate.

Table 1
Chemical composition (wt.%) of the C-steel

Element Composition (wt.%)

C 0.12
Mn 0.5
Si 0.17
S 0.6
P 0.046
Fe Rest

 
Fig. 1. Synthetic route of 2,2′-dithiobis(2,3-dihydro-1,3-benzothiazole), DTDBT.
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2.5. Scanning electron microscopy and energy-dispersive 
X-ray investigations

The scanning electron microscopy (SEM), and energy 
dispersive X-ray analysis energy-dispersive X-ray (EDX) 
are utilized to investigate the changes in the surface mor-
phology of some selected C-steel specimens after inunda-
tion in the examined solutions. The elemental composition 
of the surface film of the investigated steel samples was 
investigated by the EDX analysis. The working specimens 
were examined employing a JEOL TM Scanning Microscope 
JSM-T100 (Japan).

3. Results and discussion

3.1. Potentiodynamic polarization

The potentiodynamic polarization data of C-steel 
immersed in 0.5 M HCl solutions devoid of and con-
taining various amounts of DTDBT inhibitor are plotted 
in Fig. 2. The corrosion current density (icorr) has been 
deduced from the anodic–cathodic polarized curves 
by the Tafel extrapolation method. The different polar-
ization factors like Ecorr, icorr, the cathodic (βc), and the 
anodic (βa) Tafel slopes, the protection efficacy, ηp and 
standard deviation, σ were determined as offered in 
Table 2. It is noted that the values of βc and βa do not 
display a noticeable mutation that reveals that the mech-
anism of the steel destruction does not alter, when the 
DTDBT inhibitor is added, for each of the anodic and 
the cathodic reactions. Also, Fig. 2 depicts that the 
existence of the DTDBT inhibitor displaces the anodic–
cathodic polarized curves to the less active directions to 
give lower values of icorr, which manifests that DTDBT 
molecules behave as a mixed-kind inhibitor [15–18].

In other words, it can be monitored that the entity of 
the DTDBT molecules does not have a noticeable effect 
on Ecorr concerning the blank. This proves that DTDBT 
inhibits each of the anodic and cathodic reactions. If the 
displacement in the Ecorr exceeds + 85 mV concerning the 
blank value will confirm that, the inhibitor is classified as 
either an anodic or a cathodic inhibitor [17]. However, in 
our study, the maximum displacement in Ecorr was found 
to be within –10 to –36 mV, therefore, the DTDBT could 
be categorized as a mixed-kind inhibitor [15–17]. Ajmal et 
al. [8] indicated that 2-hydrazino-6-methyl-benzothiazole 

acts as an effective cathodic inhibitor for the corrosion 
of mild steel in HCl and mixed inhibitor in H2SO4 [8].

The surface coverage, q, and the protection efficacy, 
ηp, of the DTDBT molecules were determined from the 
values of icorr using the following relations [18–20]:

θ = −
°







1

i
i
corr

corr

 (1)

� �p � 100  (2)

where i°corr and icorr are the corrosion current density gained 
with the free acid and the added DTDBT molecules, 
successively.

The obtained data indicated that, by increasing the 
amount of the DTDBT, the protection efficacy is raised 
due to the reduction in the icorr value. This would con-
firm the adsorption of the DTDBT molecules through the 
anodic and cathodic active centers on the C-steel surface. 
The rise in inhibition efficacy with inhibitor concentration 
explores that the DTDBT inhibitor has a good adsorptive 
properties towards the metal surface.

 

Fig. 2. Potentiodynamic polarization curves of C-steel in 0.5 M 
HCl solution without and with different additions of DTDBT 
inhibitor.

Table 2
The corrosion parameters, Ecorr, icorr, cathodic Tafel slope (βc), anodic Tafel slope (βa), protection efficacy, ηp and standard 
deviation, σ for C-steel immersed in 0.5 M HCl containing different concentrations of DTDBT inhibitor, at 298 K

σηp %qicorr, mA/cm2–βc, mV/decβa, mV/dec–Ecorr, mVConc., M

––1.04199289501Free acid
0.6944.10.440.582001825315 × 10–6

1.2757.50.580.441921505221 × 10–5

1.2278.10.780.231491285395 × 10–5

0.2084.60.850.161611885171 × 10–4

0.7590.90.910.091511375115 × 10–4

0.8693.40.930.0691422505271 × 10–3
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The standard deviation values, σ, of the protection 
efficacy listed in Table 2 are varied between 0.2 and 1.27 
depending on the DTDBT concentration that manifests 
the good agreement between the different techniques. It 
is noteworthy to find that the DTDBT inhibitor is similar 
in the inhibition ability with some other benzothiazoles 
compounds [8,9]. The high values of the inhibition effi-
ciency of the DTDBT molecules could be attributed to 
the increase in the adsorbability of such molecules. This 
behavior could be related to the presence of different 
types of heteroatoms which are rich by the lone pair of 
free electrons besides the presence of two aromatic rings 
(π-electrons on the conjugated system) which are con-
sidered as active centers for adsorption on the metallic 
surface to form a protective layer.

3.2. EIS investigations

The Nyquist plots of C-steel in 0.5 M HCl solution 
without and with various additions of DTDBT molecules 
are represented in Fig. 3. The obtained impedance data 
have considerably changed with the existence of DTDBT 
molecules. The gained impedance spectra data can be 
explicated within the equivalent circuit of the electric dou-
ble layer (Fig. 4) that has been utilized formerly for the 
Fe-acid interface [21].

As can be indicated in Fig. 3, the impedance spec-
tra offer an individual capacitive loop as performed by 
a little dejected semi-circle in the presence of the used 
inhibitor, not exemplary semicircles as expected from 
EIS theory for assumed equivalent circuit. The presence 
of the capacitive loop confirms that the charge trans-
fer process dominates the destruction of metal with the 
existence of a preventative layer on the C-steel when the 
DTDBT molecules are added [22]. The depression in the 
Nyquist plot of the semicircles spectra of Fig. 3 is gen-
erally pointed to the heterogeneity of the metal surface 
owing to the grossness of the metal surface or interfacial 
phenomena [23,24]. The diameter of the capacitive loops is 
elongated gradually with raising the added amount of the 
DTDBT molecules, indicating a strengthening of the formed  
inhibitive film.

The symmetric Bode and phase angle curves acquired 
for the C-steel surface in 0.5 M HCl in the absence and 
presence of the various amounts of DTDBT inhibitor are 

shown in Fig. 5. It is clear that, at the low-frequency zone, 
the values |Z| are raised, which would establish the rise 
in the inhibition efficacy with higher additions of the used 
inhibitor. This could be related to the adsorption of the 
DTDBT molecules through the lone pair of electrons of 
the active centers on the C-steel surface protecting it from 
the acid attack [25]. In addition to this, the displacement 
of the phase angle into the more negative values confirms 
the presence of an insulating film protecting the surface 
of the C-steel from the corrosion process [25,26].

The electrochemical impedance parameters such as the 
charge transfer resistance, Rct, double layer capacitance, 
Cdl, and the percent of protection efficacy, ηI, are calculated 
from the analysis of Nyquist plots, Table 3. The protection 
efficacy (ηI) was determined according to Eq. (3) [27,28]:

 

Fig. 3. Nyquist plots of C-steel in 0.5 M HCl solution without 
and with different additions of DTDBT inhibitor.

 
Fig. 4. Equivalent circuit model is used to fit the EIS data in 
the absence and presence of DTDBT inhibitor.

 

Fig. 5. Bode and phase angle plots of C-steel in 0.5 M HCl 
devoid of and containing different amounts of DTDBT inhibitor.

Table 3
EIS data for corrosion of C-steel in 0.5 M HCl devoid of 
and containing different amounts of DTDBT inhibitor, at 298 K

Conc., M Cdl, µF/cm2 Rct, Ω cm2 q ηI

Blank 124.3 20.22 – –
5 × 10–6 103.7 42.95 0.425 42.48
1 × 10–5 72.48 54.89 0.545 54.53
5 × 10–5 55.08 80.89 0.806 80.64
5 × 10–4 35.20 90.40 0.902 90.18
1 × 10–3 37.26 95.65 0.954 95.44
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where R°ct and Rct are the charge transfer resistance in the 
case of the free acid and in the presence of the DTDBT mol-
ecules, successively. The different values of the Cdl were 
deduced from the relation [29]:

C Yo
n

dl = ( ) −
ωmax

1  (4)

where ωmax = 2πfmax and fmax is the frequency at which the 
imaginary component of the impedance is the topmost.

The increases in Rct values with the additions of the 
DTDBT molecules could be suggested the adsorption of the 
inhibitors molecules on the metallic surface [25]. On the other 
hand, the reduction in the Cdl values when the DTDBT mol-
ecules are added could be attributed to the rise in the den-
sity of the electrical double layer confirming the reduction 
in the corrosion rate due to the adsorption process [25,26].

3.3. Mass loss investigations

The loss in weight mensuration is employed to confirm 
the inhibition achievement of C-steel corrosion in 0.5 M 
HCl without and with the additions of different amounts 
of DTDBT molecules. The data of weight loss are used to 
determine various corrosion factors such as corrosion rate 
(rcorr, µg/cm2/h), q, and the protection efficacy (ηw), Table 4. 
The value of rcorr was deduced utilizing the equation [30]:

r
W W
Atcorr =
− ′( )

 (5)

where W and W′ are the weight losses of C-steel coupons 
before and after immersion in the investigated solution, A is 
the contact surface area of the C-steel, and t is the immersion 
time.

The values of q and the protection efficacy (ηw) of the 
DTDBT inhibitor was determined, respectively, from the 
relations [31]:

� � �
�

�
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�

�
��1

r
r

corr

corr.inh

 (6)

� �w � � �100  (7)

where rcorr and rcorr-inh are the weight loss values in the 
case of 0.5 M HCl without and with the added DTDBT 
molecules, respectively. The data indicates that the rcorr 
is reduced as the amount of DTDBT is increased and is 
raised with the temperature with the free acid and the 
inhibited solutions. The presence of higher additions of 
DTDBT inhibitor decreases the rcorr and raises the inhibi-
tion efficiency values, ηw, Table 4. The sigmoid nature of 
ηw – logCinh curves, of Fig. 6 could confirm the adsorptive 
ability of the DTDBT inhibitor towards the metal surface 
[31]. The reduction in the protection efficacy values, ηw, 
with the inhibitor concentrations, at high temperatures 
(Fig. 6) could be related to the desorption of some of the 
DTDBT molecules with the rise in the temperature [32].

3.4. Thermodynamics of adsorption process

Generally, the premier process in the toleration of the 
metal destruction is the adsorption of the inhibitor through 
the active sites on the metallic surface at the metal/solution 
interface forming a preventative layer that reduces the direct 
contact between the aqueous phase and the investigated 
metal. The adsorption process is found to rely on variable 
factors among which are the electrochemical potential of 
the investigated metal surface, the chemical composition 
of the inhibitor, and the temperature. The molecules of 
H2O could easily adsorb at the metal/solution interface. So, 
the process of adsorption of the used inhibitor can be con-
sidered as a quasi-substitution process between adsorbed 
water molecules, H2O(ads), and the added organic inhibitor 
in the aqueous phase, DTDBT(sol), according to [33]:

DTDBT H O DTDBT H Osol ads ads sol( ) ( ) ( ) ( )� ��x x2 2  (8)

where x refers to the number of water molecules, 
H2O(sol), substituted by an inhibitor molecule, DTDBT(ads).

Table 4
Gravimetric data for corrosion of C-steel in 0.5 M HCl and in the absence and presence of different concentrations of 
DTDBT inhibitor, at 298 and 313 K

Conc., M 298 K 313 K

rcorr, µg/cm2 min θ ηw % rcorr, µg/cm2 min θ ηw %

Free acid 5.720 – – 7.530
1 × 10–6 3.720 0.35 35.00 6.100 0.19 19.00
5 × 10–6 3.260 0.43 43.00 5.800 0.23 23.00
1 × 10–5 2.574 0.55 55.00 5.570 0.26 26.00
5 × 10–5 1.260 0.78 78.00 4.740 0.37 37.00
1 × 10–4 0.858 0.85 85.00 3.990 0.47 47.00
5 × 10–4 0.458 0.92 92.00 2.11 0.72 72.00
1 × 10–3 0.343 0.94 94.00 1.656 0.78 78.00
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The surface coverage, θ, associated with the inhibi-
tor concentration, C, are employed to fit the preferable 
applicable adsorption model. Attempts are done to fit the 
different kinds of known adsorption isotherms. The more 
suitable type was Langmuir, which has a simple represen-
tative form [34]:

C
K

C
θ

= +
1

ads

 (9)

As elucidated in Fig. 7, the relation between Cθ–1 and 
C introduced a straight-line relation, with a slope around 
unity, confirming the adsorption of the DTDBT molecules 
in 0.5 M HCl obeying the Langmuir model. The intercept 
of the straight-line Cθ–1 axis was equal to the inverse of the 
adsorption equilibrium constant (Kads)–1. The high value of 
Kads confirms the high adsorption capacity of the DTDBT 
molecules on the metal surface. The decrease in Kads value 
with temperature (Table 5) could be related to the reduction 
in the adsorption ability of the added DTDBT molecules on 
the metal surface confirming the decrease in the inhibition 
achievement [35].

The standard free energy of adsorption, ΔG°ads, can be 
deduced from the relation [36,37]:

∆ ° = − ( )G RT Kads adsIn 55 5.  (10)

where 55.5 value represents the concentration of water. 
According to the literature, ΔG°ads values about −20 kJ/
mol or higher confirm the physisorption among the used 
inhibitor molecules and the corroded metal surface. 
Furthermore, ΔG°ads values about −40 kJ/mol or lower 
assert covalent chemical bonds formation owing to elec-
trons sharing between the inhibitor molecules and the 
metal surface (chemisorption) [8]. In our results, the ΔG°ads 
values lye between –36.51 and –34.86 kJ/mol depending 
on the temperature confirm that the physisorption and 
chemisorption mechanisms [35]. The negative values of 

ΔG°ads explore the spontaneous adsorption of the DTDBT 
inhibitor through the active sites on the metal surface 
forming a stable adsorbed film [38,39]. Also, the decrease 
in ΔG°ads values with temperature confirms that the pro-
tection of C-steel by the adsorbed film of the DTDBT 
molecules is an endothermic process [40].

The standard enthalpy, ΔH°ads, can be obtained by using 
the Van’t Hoff equation [41]:

ln constantads
adsK

H
RT

= −
∆ °





+  (11)

The relation between the Kads values and 1/T can be plot-
ted, Fig. 8. A straight-line relation is gained with a slope = –
ΔH°ads/R. The negative value of the standard enthalpy, 
ΔH°ads, Table 5, proves that the adsorption of the DTDBT 
molecules on the metal surface is an exothermic process 
[41]. This conclusion illustrates the reduction in the protec-
tion efficacy with the rise of the solution temperature, (as 
shown in Fig. 6). This is considered as an indication of the 
desorption of some of the adsorbed DTDBT molecules from 
the metal surface by the rise in the solution temperature. 
In an exothermic process, physical adsorption is featured 
from chemical adsorption by the gained value of ΔH°ads. 
The obtained ΔH°ads value was –71.16 kJ/mol which confirms 
the adsorption of the DTDBT molecules by electrostatic 
interaction between the charged DTDBT molecules and the 
charged C-steel surface [39]. In the case of the chemisorp-
tion process, ΔH°ads value reaches 100 kJ/mol; while those 
for the physical adsorption process are less than 40 kJ/mol 
[42]. The calculated ΔH°ads are more than that of the physical 
adsorption enthalpy and lower than that of the chemisorp-
tion confirming the mixed chemisorption and physisorption  
processes [42,43].

The standard entropy, ΔS°ads, can be determined by the 
equation [44]:

∆ ° = ∆ ° = ∆ °G H T Sads ads ads  (12)
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Fig. 6. Variation of the inhibition efficacy (ηw %) with logCinh of 
DTDBT inhibitor (data obtained by gravimetric method).

0.0000 0.0003 0.0006 0.0009
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

 3 13 K
 308 K
 303 K
 298 K

C/
θ

C, M

Fig. 7. Langmuir adsorption isotherm of DTDBT inhibitor on the 
C-steel surface in 0.5 M HCl at different temperatures.
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The estimated ΔS°ads at different temperatures are tab-
ulated in Table 5. The negative sign of ΔS°ads could be 
attributed to the advancement of the adsorption process 
just the transfer of the DTDBT inhibitor into the metal 
surface. Before the adsorption process, the inhibitor mol-
ecules might diffuse freely in the bulk of the corrosive 
solution (the inhibitor molecules were disordered), but 
with the advance in the adsorption process, inhibitor mol-
ecules were systematically adsorbed on the metal surface 
with a reduction in the entropy of the system [13].

The negative values of ΔS°ads, alludes to the higher 
adsorption ability of the DTDBT molecules on the metal, 
as attributed to the advancement of the adsorption as 
the DTDBT inhibitor molecules reached the C-steel 
surface [39,44].

3.5. Activation parameters

The rate of corrosion, W′, calculated from the gravi-
metric data at various temperatures, Table 4, are utilized 
to calculate the apparent activation energy, Ea. Depending 
on the Arrhenius equation the values of logW′ can be plot-
ted against 1/T for the inhibited and uninhibited solutions,  
Fig. 9 [45].

log
.

logr
E
RT

Aa
corr =

−





+
2 303

 (13)

where Ea refers to the apparent activation energy while 
A represents the pre-exponential constant. Linear rela-
tions are obtained with regression coefficients (R2) very 
near to one. The deduced Ea values (obtained from, 
slope = –Ea/2.303RT) are tabulated in Table 6. The higher 
values of Ea gained in the case of DTDBT inhibitor with an 
attendant decrease in inhibition efficacy at higher tempera-
ture suggests the physisorption mechanism of the DTDBT 
inhibitor on the metal surface [44–48].

The transition state equation can be utilized to deduce 
the activation enthalpy (ΔH°) and entropy (ΔS°) [49]: 

log log
. .

r
T

R S
R

H
RT

corr

Nh
=







+
∆ °





−
∆ °



2 303 2 303  (14)

where R is the universal gas constant, while h and N rep-
resent the Planck’s constant and Avogadro’s number, 
respectively. The values of log (rcorr/T) are plotted against 
1/T for C-steel in 0.5 M HCl without and with the addi-
tions of DTDBT inhibitor, Fig. 10. Straight lines with a 
slope equal to –ΔH•/2.303R and the intercept equivalent 
to {log(R/Nh) + ΔS•/2.303R} are obtained. The deduced 
ΔH• and ΔS• values for the free acid and the various 
amounts of the DTDBT are tabulated in Table 6. The pos-
itive values of ΔH• confirm the endothermic nature of 
the transition state (activated complex) that reflect the 
difficulty of this process [37,44]. The values of the acti-
vation adsorption entropy, ΔS• are varied between –212 
and –130 J/mol/K for all the investigated solutions. The 
negative values of ΔS* reflect that the activated complex 
in the transition state process represents a combination 
rather than a secession process [37,44,50,51].

3.6. Surface investigation

3.6.1. SEM study

The SEM investigation is employed to explore the 
surface morphology of C-steel coupons before and 
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Fig. 8. Van’t Hoff plots (lnKads vs. 1/T) for the adsorption of 
DTDBT inhibitor on the C-steel surface in 0.5 M HCl.
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Fig. 9. Arrhenius plots (logrcorr vs. 1/T) for C-steel corrosion 
in 0.5 M HCl without and with different additions of DTDBT 
inhibitor.

Table 5
Thermodynamic adsorption parameters of DTDBT inhibitor on 
C-steel surface in 0.5 M HCl, at different temperatures

T, K Kads, M–1 ΔG°ads, kJ/mol ΔH°ads, kJ/mol ΔS°ads, J/mol K

298 45,223 –36.51

–71.16

–116.3
303 27,606 –35.88 –116.4
308 15,635 –35.00 –117.4
313 11,862 –34.86 –116.0
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after immersion in 0.5 M HCl for a period of 3 h solu-
tion in the absence and presence of 1 × 10–4 M DTDBT 
inhibitor. The SEM image of the abraded C-steel cou-
pon before immersion in 0.5 M HCl solution, Fig. 11A, 
appears with a soft abraded surface with little scratches 
owing to the polishing process. The SEM micrograph of 
the polished C-steel specimen after immersion in 0.5 M 
HCl is depicted in Fig. 11B. This micrograph indicates 
a sorely damaged surface with conspicuous large pits 
surrounded by some of the formed corrosion prod-
ucts. In contrast, the micrograph of Fig. 11C represents 
the SEM of C-steel electrode surface after immersion 
in 0.5 M HCl containing 1 × 10–4 M DTDBT inhibitor. A 
less deteriorated cracked area on the layer formed on 
the C-steel surface, which means that a preventative 
layer has been formed on the surface of the C-steel spec-
imen, confirming that the DTDBT behaves as an active 
retarder towards the corrosion of C-steel in 0.50 M HCl.

3.6.2. EDX study

The EDX investigation was carried out in order to 
identify the element composition on the surface of C-steel 
in 0.5 N HCl without and with DTDBT inhibitor. The 
EDX examination manifests that the Fe element was the 
major element in the surface composition before and 
after the immersion in 0.5 M HCl solutions. Fig. 12A and 
B display the EDX spectrum with the chemical composi-
tion of the polished C-steel specimen without and with 
immersion in 0.50 M HCl. The elements existing in the 
surface of the C-steel sample before immersion in 0.5 M 
HCl were 0.046% P, 0.12% C, 1.27% Mn, and 98.56% Fe, 
Fig. 12A. The proportion of the elements has changed 
in the case of C-steel specimen immersed in 0.50 M HCl 
solution free or comprising 1 × 10–4 M DTDBT inhibitor. 
The presence of additional signals for O and Cl elements 
in Fig. 12B and C could be attributed to the oxidation 
of Fe on the steel surface by the effect of HCl solutions. 
On the other hand, the appearance of N and S signals 

Table 6
Thermodynamic corrosion parameters for C-steel in 0.5 M 
HCl, in the absence and presence of concentrations of DTDBT 
inhibitor

Conc., M Ea, kJ/mol ΔHa, kJ/mol –ΔSa, J/mol

Free 26.54 23.38 212
1 × 10–6 M 26.81 24.28 210
5 × 10–6 M 32.84 28.83 198
1 × 10–5 M 36.49 36.97 172
5 × 10–5 M 42.28 41.78 158
1 × 10–4 M 49.17 46.45 145
5 × 10–4 M 54.43 51.90 128
1 × 10–3 M 56.04 51.97 130
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Fig. 10. Transition state plots of log(rcorr/T) vs. 1/T for the cor-
rosion of C-steel in 0.5 M HCl without and with different 
additions of DTDBT inhibitor.

 

Fig. 11. SEM morphology of C-steel specimen before (A) and after inundation for 3 h in 0.5 M HCl solution devoid of (B) 
and containing 1 × 10–4 M DTDBT inhibitor (C), at 298 K.
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Fig. 12. (A) EDX spectra of C-steel before immersion in 0.5 M HCl solution. (B) EDX spectra of C-steel after immersion for 3 h in 0.5 M 
HCl. (C) EDX spectra of C-steel after immersion for 3 h in 0.5 M HCl containing 1 × 10–4 M DTDBT inhibitor, at 25°C.
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after immersion of C-steel sample in 0.5 M HCl con-
taining 1 × 10–4 M DTDBT inhibitor (Fig. 12C) confirms 
the existence of DTDBT inhibitor on the C-steel surface. 
However, the high reduction in the percentage of Fe 
element in the case of DTDBT inhibitor than that of the 
free acid sample, besides the appearance of the N and 
S signal could be related to the presence of a protective 
inhibitor film on the C-steel surface.

4. Conclusions

• The DTDBT inhibitor behaves as a mixed-kind inhibitor 
towards the destruction of C-steel in HCl solutions.

• The DTDBT molecules reduce each of the cathodic and 
anodic reactions.

• The inhibition efficacy of the DTDBT inhibitor is increased 
with the concentration but decreases with temperature.

• The adsorption of the DTDBT molecules obeyed 
Langmuir’s model.

• The data of gravimetric, polarization and EIS methods 
were compatible.
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