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a b s t r a c t
The strategy of hydrogen generation from sodium borohydride (NaBH4) hydrolysis has obtained 
extensive attention in the past decade, but it is restrained by the high cost and limited abundance 
for the used noble metal catalysts. Herein, we prepare noble-metal-free Co–Fe–B catalysts on Cu 
sheet, which can reduce the cost to satisfy the demand of practical application. The as-synthesized 
high-performance Co–Fe–B catalysts show filamentous structure by optimizing pH value to 12.0, 
providing more contact areas and active sites on reaction interface. Compared with the binary 
Co–B and Fe–B materials, the ternary Co–Fe–B nanofilaments exhibit good catalytic performance 
for dehydrogenation from the NaBH4 hydrolysis. The catalyzed hydrogen generation rate (HGR) 
of Co–Fe–B can achieve 9,408.9 mL min–1 g–1 at 25°C. The HGR value is 1.5 times higher than Co–B 
and 2.6 times higher than Fe–B under the same condition. Moreover, the result suggests that 
NaBH4 hydrolysis process is independent of the amount of added catalysts, which means that it 
is a zero-order reaction. This work sheds light on the vital role of the cooperative action between 
different elements and the unique microstructure for designing high-performance catalysts.

Keywords:  Sodium borohydride; Hydrogen generation kinetics; Cooperative action; Filamentous 
Co–Fe–B; hydrolysis

1. Introduction

In the past few decades, the development of efficient 
and clean energy replacement has been considered to be 
a hotspot to resolve a range of environmental issues such 
as the shortage of fossil energy and climate warming [1–4]. 
Sodium borohydride (NaBH4) has caused more public 
concern owing to its high hydrogen density (10.6 wt.%), 
good solubility in water and non-toxicity [5–8]. The 
stored hydrogen can be released by the means of NaBH4 

hydrolysis with proper catalysts. For noble metal cata-
lysts, they can possess good catalytic activity. However, 
the high cost and limited abundance unavoidably hinder 
the extensive application of hydrogen generation from 
NaBH4 solution [9–11]. To date, noble-metal-free catalysts 
have received tremendous interests because of the bar-
gain prices, rich reserves and enhanced activity. It contains 
Co-based, Ni-based, and Cu-based catalysts.

As early as 1971, the reaction mechanism of NaBH4 
hydrolysis has been reported by Holbrook and Twist [12]. 
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The authors have revealed that –BH3 in the cracked B–H 
bond firstly integrates with the active site (M) on the cat-
alyst surface to form with the species M–BH3

–. After that, 
OH– attacks M–BH3

– to product intermediate BH3 and 
transfer electrons to M (eM). And then, eM transfers to neigh-
boring H2O molecular and form M–H. Finally, M–H inte-
grates with the other M–H species from BH4

– to create a H2 
molecule. It can be inferred the surface structure of cata-
lysts is an important factor for improving the catalytic per-
formance. Therefore, various catalyst materials with differ-
ent structures have been reported, such as, nanosheets [13] 
nanoflowers [14], nanoarrays [15], hollow structures [16], 
and nanoparticles [17], and so on. In addition, it has been 
pointed out that combining with different non-noble met-
als and metalloid is another effective method to increase 
the catalytic performance. Yang et al. [18] reported that 
the ternary Ni–Fe–P catalyst showed the outstanding cat-
alytic performance when compared with binary Ni–P and 
Fe–P. Li et al. [19] pointed out that the activity of NiCoP 
nanosheet array outperformed most Co based catalysts and 
some precious metal based catalysts for NaBH4 hydroly-
sis. It should be noted that nanoparticles prepared by the 
traditional liquid phase reduction are in a powdery form, 
which are difficult to separated and easily aggregated 
because of the high surface area. Compared with the tra-
ditional liquid phase reduction, electroless plating method 
is employed to prepare thin-film catalysts on numerous 
substrate materials. It can avoid above-mentioned prob-
lems and enhance the catalytic performance. Moreover, 
the thin-film catalysts easily recover and benefit 
the recycling test during the hydrolysis of NaBH4.

Hence, in view of the above unique feature, we design 
Co–Fe–B catalyst system containing two non-noble met-
als and one metalloid with unique filamentous struc-
ture. The Co–Fe–B catalysts are prepared on Cu sheet by 
electroless plating method. It has been confirmed that 
Co–Fe–B is an economical and efficient catalyst toward 
the hydrogen generation from the hydrolysis of alkaline 
NaBH4 solution. The obtained hydrogen generation rate is 
1.5 times and 2.6 times higher than Co–B and Fe–B under 
the same conditions, respectively.

2. Experimental

2.1. Synthesis of Co–Fe–B catalysts

Co–Fe–B catalysts were synthesized by electroless 
plating method. Firstly, Cu sheet with an apparent sur-
face area of 4 cm2 × 4 cm2 was successively handled with 
alkaline solution, acid solution, sensitizing solution and 
activate solution. And then, 1.1896 g CoCl2·6H2O, 1.1122 g 
FeSO4·7H2O, and 4.5042 g C2H5NO2 were dissolved into 
80 mL deionized water in a 200 mL beaker. Then, the 
solution pH value ranged from 11.0 to 12.5 was adjusted 
by the NaOH solution (4 g NaOH, 20 mL deionized water). 
The temperature was set at 25°C by the thermostatic 
water bath. After that, 6.8094 g NaBH4 was added into the 
aforementioned solution. Finally, the pretreated Cu sheet 
was used as the substrate and carried out the deposition 
process for 5 min. A series of Co–Fe–B samples were syn-
thesized on the Cu sheet by changing the deposition pH 

value. Moreover, binary Co–B and Fe–B samples were 
also prepared through the same method. In particular, 
the calculation of the hydrogen generation rate is in view 
of the weight of Co–Fe–B, Fe–B or Co–B without Cu sheet.

2.2. Samples characterization

X-ray diffraction (XRD, Rigaku-Dmax 2500, Cu Kα 
radiation) was used to analyze the phase composition of 
the as-synthesized catalysts. Scanning electron microscopy 
(SEM, Hitachi S-4800), transmission electron microscopy 
(TEM, JEOL JEM-2100) were employed to study the surface 
microstructure. Inductively coupled plasma-mass spec-
troscopy (ICP-MS, Agilent 7900) was adopted to observe 
the element composition. Brunauer–Emmett–Teller (BET) 
measurement was carried out by N2 adsorption–desorption 
isotherms at 77 K (TriStar II 3020).

2.3. Hydrolytic dehydrogenation of NaBH4

0.1 g NaOH was dissolved into 10 mL distilled water in 
a 20 mL two-necked flask. Then, 0.5 g NaBH4 was added 
slowly into the alkaline solution. After it is entirely dis-
solved, a certain amount of Co–Fe–B (Co–B or Fe–B) cata-
lyst was rapidly placed into the flask in a thermostatic water 
bath. The released hydrogen was collected by the water 
displacement method. The hydrolytic dehydrogenation 
reaction was performed at 25°C, 30°C, 35°C, and 40°C to 
determine the apparent activation energy (Ea). The hydro-
gen generation rate is abbreviated to hydrogen genera-
tion rate (HGR), which is a crucial parameter that is used 
to evaluate the catalytic activity towards the hydrolysis 
of NaBH4. The HGR value can be obtained by fitting the 
slope of a plot of H2 evolution volume vs. time in the linear 
range. It can be expressed by the following equation:

HGR H

catalyst

=
⋅

V
m t

2  (1)

where the parameters of VH2
, mcatalyst and t are the volume 

number of the generated H2, the total weight of the cat-
alyst used, and the corresponding hydrolysis reaction 
time, respectively. The unit of HGR can be expressed as 
mL min–1 g–1 or L min–1 g–1.

3. Results and discussion

Fig. 1 displays the XRD patterns of the Co–Fe–B sam-
ples deposited at pH ranged from 11.0 to 12.5. It can be 
observed that their phase compositions have no notable 
difference. Except for the diffraction peak of the substrate 
Cu (JCPDS No. 70-3038) at 2θ = 43.2°, 50.3°, and 73.9°, 
Fe3B (JCPDS No. 39-1316) and Co (JCPDS No. 1-1255) can 
be clearly seen. In addition, some weak diffraction peaks 
can be attributed to the Co3O4 phase (JCPDS No. 80-1537). 
The reason may be the contact between the Co–Fe–B sam-
ples and atmospheric oxygen during the material syn-
thesis or stockpile as previously reported [20]. Table 1 
lists the composition of Co, Fe, and B element. The result 
displays that atomic ratio of Co, Fe, and B is 1:1.03:0.76, 
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1:0.95:0.69, 1:0.77:0.63, and 1:0.72:0.63 when the solution 
pH value is 11.0, 11.5, 12.0 and 12.5, respectively. Therefore, 
the corresponding Co–Fe–B samples can be labeled as 
CoFe1.03B0.76, CoFe0.95B0.69, CoFe0.77B0.63, and CoFe0.72B0.63. It 
can be inferred that pH value has remarkably affected the 
chemical composition of the as-prepared Co–Fe–B samples.

In order to observe the surface microstructure of the 
as-obtained Co–Fe–B samples at different pH values, the 
SEM images are exhibited in Fig. 2. It can be seen that Co–
Fe–B samples prepared at pH = 11.0 and 11.5 are composed 
of irregular spheres (Fig. 2a and b). When the pH value was 
increased to 12.0, SEM image (Fig. 2c) reveals that there 
are some hollow structures on the surface of the irregular 
spheres, which is more obvious based on the amplifying 
SEM image (Fig. 2e). With further raising the pH value to 
12.5, the synthesized Co–Fe–B is still irregular spheres, but 
the number of the hollow structures becomes less from the 
SEM image in Fig. 2d. TEM technique has been employed 
for the Co–Fe–B irregular spheres to figure out the detailed 
structural information. As shown in Fig. 2f and g of dif-
ferent magnification, it can be seen that Co–Fe–B irregular 
sphere consists of filamentous structure. Its diameter and 
length is approximately 6.0–8.5 nm and 30–50 nm, respec-
tively. The hollows can also be obviously found from TEM 
image in Fig. 2g, which is consistent with the findings of SEM 
image as shown in Fig. 2e. In addition, BET specific surface 

area is calculated to be 21.2 m2 g–1, along with the adsorption 
average pore diameter is about 10.30 nm, respectively.

To research the effect of the solution pH value on the 
catalytic performance, the hydrolysis experiment was 
performed at pH = 11.0, 11.5, 12.0, and 12.5, respectively. 
Fig. 3a displays the catalytic activity of the as-obtained 
different Co–Fe–B samples toward the hydrogen genera-
tion from the NaBH4 hydrolysis. It can be found that dif-
ferent Co–Fe–B samples show variant catalytic activity. 
Apparently, Co–Fe–B catalyst deposited at pH = 12.0 shows 
the good catalytic performance with the fast HGR value of 
9,408.9 mL min–1 g–1 at 25°C (Fig. 3b). The good catalytic 
activity may be attributed to the unique filamentous struc-
ture which is conducive to the increase of the specific sur-
face area, resulting in the enhancement of transmission of 
generated hydrogen from NaBH4 solution on the catalyst 
surface as previously reported by Jadhav et al. [21]. In addi-
tion, to compare with the catalytic performance of binary 
and ternary catalysts, the kinetics curve of NaBH4 hydroly-
sis by adding Co–B, Fe–B, and Co–Fe–B catalysts (pH = 12.0) 
was provided in Fig. 3c. Based on corresponding HGR his-
togram as shown in Fig. 3d, the result displays that the 
obtained HGR of Co–Fe–B catalyst is 9,408.9 mL min–1 g–1 
at 25°C, which is 1.5 and 2.6 times higher than Co–B and 
Fe–B under the same condition, respectively. It can be 
inferred that the synergistic effect of different element is 
especially important for improving the catalytic activity as 
reported by Patel et al. [22].

It is well known that the hydrolysis solution of NaBH4 
is alkaline to prevent from itself hydrolysis. Hence, it 
is necessary to discuss the effect of the concentration of 
NaOH on the hydrogen generation kinetics. Fig. 4a exhib-
its the kinetics curve of different NaBH4 solution catalyzed 
by the Co–Fe–B catalyst (pH = 12.0). NaOH concentration 
is 1, 3, 5, 7, 10, 15, and 20 wt.%, respectively. According 
to the line chart in Fig. 4b, it can be seen that the HGR 
value increases from 9,408.9 to 9,614.2 mL min–1 g–1 with 
changing NaOH concentration from 1 to 3 wt.%, and then 
gradually reduces to 3,018.8 mL min–1 g–1 when NaOH con-
centration increases to 20 wt.%. Therefore, it can be con-
cluded that the optimal NaOH concentration is 3 wt.% 
for NaBH4 hydrolysis catalyzed by the as-obtained Co–
Fe–B catalyst. This similar phenomenon has been stated 
for Co–B/Activated carbon and Co–Ni–B catalyst by pre-
viously reported [23,24]. It well known that the hydroly-
sis solution contains two kinds of anions, OH– and BH4

–. 
They dated from an excessive amount of NaOH solu-
tion and NaBH4 solution, respectively. The transfer of 
anions to the catalytic surface is the key for the process 

 
Fig. 1. XRD patterns of the Co–Fe–B samples at differ-
ent pH values: (a) pH = 11.0, (b) pH = 11.5, (c) pH = 12.0 and 
(d) pH = 12.5, respectively.

Table 1
ICP-MS analysis of element composition of the Co–Fe–B samples at different pH values

ICP-MS results pH value

11.0 11.5 12.0 12.5

Co (at.%) 35.82 37.88 41.78 42.66
Fe (at.%) 37.02 35.82 32.10 30.59
B (at.%) 27.16 26.30 26.12 26.75
Co:Fe:B (at.%) 1:1.03:0.76 1:0.95:0.69 1:0.77:0.63 1:0.72:0.63
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of hydrogen generation [25]. To a certain extent, if redun-
dant OH– anions occupy the catalyst surface, the hydro-
gen generation rate will lower because of the decrease of 
BH4

– anions which is used to produce hydrogen. Hence, the 
NaOH concentration needs to be controlled to an optimal 
value which is not only employed to maintain the alkaline 
hydrolysis solution, but also prevents its diffusion to the  
catalyst surface.

In order to ascertain the influence of catalyst amount on 
the HGR, the hydrolysis tests of NaBH4 solution were car-
ried out by applying various amounts of the Co–Fe–B cat-
alyst (pH = 12.0), including 1.85, 3.8, 6.8, and 9.7 mg. The 
corresponding hydrogen generation kinetics curve is given 
in Fig. 5a, the HGR values are 8,952.4; 9,098.56; 9,408.9 and 
9,141.9 mL min–1 g–1, respectively. Fig. 5b provides the plot of 
the HGR vs. the catalyst amounts both in natural logarithmic 

scales to calculate the reaction order. The result displays 
that the fitted slope is 0.02, which is approximately zero, 
illustrating the zero-order reaction on account of Co–Fe–B 
amount.

The apparent activation energy (Ea) is a significant 
parameter for discussing the catalytic hydrolysis of NaBH4 
solution. In view of this, we choose four various tempera-
tures to observe the hydrogen generation kinetics. Fig. 6a 
reveals the time plots of the dehydrogenation kinetics by 
using the Co–Fe–B catalysts (pH = 12.0) at 25°C, 30°C, 35°C, 
and 40°C, respectively. As was expected, the HGR is incre-
mental with the increase of the hydrolysis temperature 
from 25°C to 40°C. Based on the state equation of ideal gas, 
the HGR constant (k, mol min–1 g–1) can be reckoned at dif-
ferent temperatures. The corresponding Arrhenius plots 
(lnk vs. 1/T) obtained from the kinetic data can be shown 

Fig. 2. SEM images of the Co–Fe–B samples at various pH values: (a) pH = 11.0, (b) pH = 11.5, (c, e) pH = 12.0, (d) pH = 12.5; 
(f, g) TEM images of the as-obtained Co–Fe–B catalyst (pH = 12.0).
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Fig. 3. (a) Hydrogen generation kinetics curve, and (b) the corresponding HGR histogram of the NaBH4 hydroly-
sis catalyzed by different Co–Fe–B samples at pH = 11.0, 11.5, 12.0, and 12.5; (c) Hydrogen generation kinetics curve and 
(d) the corresponding HGR histogram of the NaBH4 hydrolysis catalyzed by Co–B, Fe–B, and Co–Fe–B catalysts.

Fig. 4. (a) The hydrogen generation kinetics curve and (b) the corresponding HGR histogram of the NaBH4 hydrolysis catalyzed by 
Co–Fe–B catalysts (pH = 12.0) at different NaOH concentrations.
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in Fig. 6b. Ea value is calculated to be 33.5 kJ mol–1 on the 
basis of the Arrhenius equation. An intuitive comparison 
about the HGR and Ea has been given in Fig. 7 according 
to the previous reports. Fig. 7 has been divided into four 
regions when it was centered in the red point (HGR, Ea) 
of this work. By contrast, it can be found that Ea value 
in this work is lower than that of most listed catalysts in 
Region 1 and 2 in the literature, including Co–Cr–B/CeO2 
[26], p(HEMA)/Co [27], Co–Ni–P/Cu sheet [28], Fe–CoP/Ti 
[15], Co–B [29], Co–B hollow spheres [30], Co–P [14,17,31], 
Co–Cu–B [32], Ru–IRA-400 [33], Co–Ni–P/Pd–TiO2 [34], 
Co–B/Carbon [35], CoO nanocrystals [36], Co–P/Cu sheet 
[37], Co–B [38], Ru–SZ [39], CSAC–supported Co–Ce–B 
[40], except for Co–B-10CNTs [41], Co–P/Cu sheet [42], 
Co/γ–Al2O3 [43], and Co–B/Ni foam [44] in Region 3 and 4.  
For the HGR, it is clear that the as-obtained HGR for the 
Co–Fe–B is only lower than that of Co–B-10CNTs [41] 

and CSAC-supported Co–Ce–B [40], but higher than that 
of the all of catalysts located in Region 1and 2. It is well 
known that it should show high HGR and low Ea for an 
efficient catalyst. Hence, the as-prepared Co–Fe–B catalyst 
in this work will possess potential application prospect  
to some extent.

4. Conclusions

In summary, noble-metal-free Co–Fe–B has been pre-
pared on Cu sheet and employed as the efficient catalyst 
for the hydrolysis of NaBH4 solution. The composition, 
microstructure and catalytic activity are greatly influenced 
by the solution pH value. The optimum ternary Co–Fe–B 
catalyst shows much higher catalytic performance than 
that of the binary Co–B and Fe–B materials. The high HGR 
of Co–Fe–B can achieve 9,408.9 mL min–1 g–1 at 25°C, which 

Fig. 5. (a) Time plots of the dehydrogenation from NaBH4 hydrolysis catalyzed by various amounts of the Co–Fe–B catalyst 
(pH = 12.0) and (b) plot of the HGR vs. the catalyst amounts both in natural logarithmic scale.

Fig. 6. (a) The curve of hydrogen generation kinetics for NaBH4 hydrolysis catalyzed by Co–Fe–B catalysts (pH = 12.0) 
at different temperature and (b) the corresponding Arrhenius plots (lnk vs. 1/T).
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should attribute to the cooperative action between different 
elements and the unique microstructure. In addition, the 
kinetics has been investigated based on the amount of added 
catalysts, the result presents that the hydrolysis process is a 
zero-order reaction.
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