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a b s t r a c t
The solution to the second-order unsteady partial differential one-dimensional Boussinesq equation 
is examined. The physical problem concerns unsteady flow in a semi-infinite unconfined aquifer bor-
dering a lake. Two cases are examined: In the first case, a sudden rise and subsequent stabilization 
in the water level of the lake occurs, thus the aquifer is recharging from the lake. In the second-case, 
the lake sustains a surface drop, and the aquifer is discharging to the lake. In the first part of the 
article a new analytical Wiedeburg’s transformed method for the solution of the one-dimensional 
Boussinesq equation is presented, for both recharging and discharging of a homogeneous uncon-
fined aquifer. The solution is presented by a simple algebraic equation, transformed into a fourth-de-
gree polynomial approximation for the head profiles. Additionally new formulas for recharged 
and discharged stored volumes are presented. Subsequently some applications are presented with 
profiles and stored volume, compared to other analytical solution. This extremely simple solu-
tion was proved to be very accurate in comparison to other analytical solutions in existence.
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1. Introduction

The horizontal water flow concerning unconfined aqui-
fers without precipitation is described by the one dimen-
sional second-order unsteady partial differential equation, 
called Boussinesq equation.
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This equation was presented by Boussinesq, with the 
following assumptions [1]: (a) the inertial forces are neg-
ligible and (b) the horizontal component of velocity ux 
does not vary depending on depth, and it is a function of 

x and t. In 1904, Boussinesq provided a special solution of 
this nonlinear equation in the French Journal “Journal de 
Mathématiques Pures et Appliquées”. Boussinesq’s solu-
tion concerned the case of an aquifer overlying an imper-
meable layer, with boundary conditions like those of a soil 
drained by a drain installed in the impermeable substratum. 
A solution to Boussinesq’s equation using the method of 
small disturbances was published by Polubarinova-Kochina 
[2–4]. An approximate closed form solution was obtained 
by Tolikas et al. [5], by applying similarity transformation  
and polynomial approximation. Lockington [6] provided 
a simple analytical solution using a weighted residual 
method. This method was applied to both, recharging 
and discharging of an unconfined aquifer, due to sudden 
change in the head at the origin. Moutsopoulos [7] derived 
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an analytical approximate solution of the Boussinesq’s 
equation by combining an expression describing the water 
table elevation upstream, obtained by the Adomian decom-
position approach, to an existing polynomial expression 
[5], adequate for the downstream region. Lockington et 
al. analyzed the problem of flow in a one-dimensional 
semi-infinite horizontal aquifer, initially dry and a head 
expressed as power-law function of time at the origin [8]. 
A quadratic approximate solution was derived in agreement 
with numerical results. The traveling wave method was 
used by Basha [9], in order to obtain a nonlinear solu-
tion of a simple logarithmic form. The solution is adapt-
able to any flow situation that is recharge or discharge 
and allows results of practical importance in hydrology. 
Additionally algebraic equations are included for the 
velocity of the propagation front, wetting front position 
and relationship for aquifer parameters. Chor et al. [10] 
provided a series solution for the nonlinear Boussinesq 
equation in terms of the Boltzmann’s transformation in a 
semi-infinite domain. A decomposition method was used 
by Jiang and Tang [11], separating the original problem 
into linear diffusion equations. They developed a general 
approximate explicit solution in terms of error functions. 
More recently Hayek provided an approximate solution, 
by introducing an empirical function with four parame-
ters [12]. The parameters were obtained using a numerical 
fitting procedure performed with Microsoft Excel Solver. 
It should also be mentioned Moutsopoulos [23], who pre-
sented the flow processes in unconfined double porosity 
aquifers, and in the special case for single porosity aqui-
fer, proposed a simple formula of the discharge flow rate. 
Several other authors including [13–19,20,22,23] provided 
useful tools for testing the accuracy of numerical methods.

In the present article, the problem of unsteady flow in a 
semi-infinite unconfined aquifer bordering a lake is exam-
ined. There is a sudden change and subsequent stabiliza-
tion of the lake’s water level, thus the aquifer is recharging 
from the lake or discharging to the lake. In the first part of 
the article a new analytical Wiedeburg’s [21] transformed 
method to solve the one-dimensional Boussinesq equa-
tion is presented, for both the recharging and discharg-
ing of a homogeneous unconfined aquifer. The solution 
is expressed by a simple algebraic equation for the head 
profiles. Additionally algebraic equation is derived for the 
stored or drained water volume. Subsequently some appli-
cations are presented with profiles and stored volume, 
compared to other analytical solutions. The present solu-
tion was proved to be very accurate for small and inter-
mediate values of the ratio value hx = 0/hx → ∞ concerning, the 
profiles propagation, as well the water stored volume, with 
respect to other exact analytical solutions.

2. Governing equations

The equation to be solved is:
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with initial and boundary conditions.

t h x h x h t h x h t h= ( ) = = ( ) = → ∞ ∞( ) =0 0 0 00 1 0, , , , , , , , 	 (3)

where h is the piezometric head, K is the hydraulic con-
ductivity, S is the specific yield of the aquifer, h0 is the ini-
tial piezometric head and h1 is the piezometric head at the 
origin. A sudden increase (or decrease) of the piezometric 
head at the origin is considered (h1 > h0, or h1 < h0).

3. Analytical solution

3.1. Transformed Wiedeburg’s solution

3.1.1. Profiles

Wiedeburg proposed a solution for a nonlinear heat dif-
fusion problem in “Annalen der Physik” [21]. A transformed 
aspect of Wiedeburg’s solution is given now for the case of 
Boussinesq equation. A new variable H = h – h1 is introduced 
now in Eq. (2), and the above equation becomes (Appendix):
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with new initial and boundary conditions.
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where the following relations have been inserted.
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The linear form of Eq. (6) (for a = 0) is:
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Fig. 1. Definition sketch of the investigated problem. This sketch 
is referred to Eq. (2). The level h0 concerns the initial water 
level and the level h1 concerns the sudden increase (h1 > h0), 
or decrease (h1 < h0) of the piezometric head at the origin.
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with its solution.
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where a0t and ξ are the Boltzmann’s transformation:
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Wiedeburg [21] suggested that for the term of Eq. (6) 
containing “a” a value of the h can be chosen, which would 
conform to the appropriate expression if “a”  =  0. This sub-
stitution transforms the nonlinear equation into a linear one 
with a source dependent on the space coordinate and the time.
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Now the Boltzmann’s transformation � � x a t/ 2 0  is 
introduced and an ordinary differential equation is obtained:
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with new boundaries.
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The solution of the equation is:
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In order to simplify Eq. (14), it is posed:
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and the Eq. (14) becomes:
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It is to be noted that Eqs. (14) and (17) both satisfy the 
boundary conditions (13) and (2). Indeed:

For

For

� � �

� � �

� � � � � � � �
�

� � � � �

� � � �

0 0 1 1 0

0

0

0 1
1, , , , ,

, ,

F
h h

h
h h H

F

h
�

� ��� � � �
�

� � �

� � �

0 00

0 1
0

0 0 1

, ,
h h

h
h h

H t h h
h

	 (18)

Function F(ξ) is now expressed as a polynomial approxi-
mation vs. ξ, which is of the form:
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0.340 is approximately the inflection point of F(ξ)):
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For Eq. (19) it is used a polynomial regression given by 
Excel, which provides the coefficients ai,j, as well as the cor-
relation coefficient R(R = 0.99999 for this case) and the poly-
nomial equation. This approximation is presented in Fig. 2 
and the absolute mean distance between the two functions 
F(ξ) and Fi(ξ) is about O(10–6) for F1(ξ) and O(10–4) for F2(ξ).

Each polynomial approximation (Eq. 19) has five coeffi-
cients which are presented in Table 1.

3.1.2. Stored volume/width

The stored volume/width is deduced from the following 
relation:
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It is posed now.

Fig. 2. Functions F(ξ), Fi(ξ) with respect to ξ.
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3.1.2.1. Recharging case
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3.1.2.2. Discharging case
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Numerical results for the function H(μ) with respect to 
μ are presented in Figs. 3 and 4. The substitution of Eq. (21a) 
into Eq. (20) gives:
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where:
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and Eq. (22) takes its final form.
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3.1.3. Flow-rate Q
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3.2. Applications

3.2.1. First example

3.2.1.1. Recharging

Profiles

To make a benchmark test for the recharging aquifer 
proposed solution and other existing analytical solutions, 
four other methods are chosen and a numerical method, 
which is assumed to be the reference solution. The numer-
ical solution presented in Moutsopoulos [7] and Hayek [12] 

Fig. 3. Function H(μ) with respect to µ (recharging case).

Fig. 4. Function H(μ′) with respect to μ′ = h0/h1 (discharging case).

Table 1
Coefficients ai,j, of polynomial approximation, (i = 0, …, 4, j = 1, 2)

a0,j a1,j a2,j a3,j a4,j

Fi = 1(ξ) –0.00000422 0.205319663 –0.643143783 –0.018209237 0.504985372
Fi = 2(ξ) –0.00110088 0.284398024 –1.114903246 0.988794972 –0.259307367

Table 2
Parameters a, c, m, n

μ a c m n

1.5 –5.956736 –0.251981 1.113585 1.373567
3 –3.198256 –0.192291 1.136821 1.417222
10 –1.008772 –0.406052 1.248848 1.111019
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is the Runge–Kutta method. The four chosen methods are: 
Polubarinova-Kochina method [4], which was first reported 
by Moutsopoulos [7]. Lockington method [6], Moutsopoulos 
method [7] and Hayek method [12]. In order to test also 
the nonlinear character of the equation, the solution has 
been evaluated for three different values of the ratio μ = h1/
h0 = 1.5, 3, 10. The same example with [6], [7] and [12] is used, 
namely the estimation of a water table for an aquifer with 
K = 20.00 m/d, S = 0.27 and t = 5 d, and (h1 = 3 m, h0 = 2 m), 
(h1 = 3 m, h0 = 1 m), (h1 = 10 m, h0 = 1 m).

Polubarinova-Kochina method [4]

Polubarinova-Kochina’s expansion of third-order is exam-
ined, [7] vs. the present solution, which was first reported 
by Moutsopoulos [7]. This expansion corresponds to Eq. (18) 
of [7] plus an additional term ℓ3u3.

Lockington method [6]

An approximate analytical solution of Lockington [6], 
who has solved the nonlinear Boussinesq equation by a 
weighted residual approach and his solution can be also 
applied for recharging and discharging aquifers. Lockington’s 
solution is:
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The parameters l, μ1, for the case μ  =  1.5 are given by 
Lockington (l = 5.3453, μ1 = 0.5215). For the other values of 
μ = 3 and μ = 10, the numerical data was taken of [7], because 
the relations given the parameters l, μ1 in [6] are complicated.

Moutsopoulos method [7]

Moutsopoulos [7] derived an analytical approximate solu-
tion of the Boussinesq equation by combining an expression 
describing the water table elevation upstream, obtained by 
the Adomian’s decomposition approach, to an existing poly-
nomial expression [5]. The numerical data for μ = 1.5, 3, 10 
were taken from his article.

Hayek method [12]

Hayek solution for recharging case is:
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where h/h0, for recharging μ = h0/h∞, (h0 = h1, h∞ = h0).
In order to find the water table profiles, the function 

Xr = F(h, a, c, m, n) was solved for the three different values 
of μ = 1.5, 3, 10 and the parameters a, c, m, n were taken from 
Hayek [12]:

It is noteworthy that the parameter “a” for μ = 10, should 
take the value a = –0.829800 for the best results.

Fig. 5a–c illustrate the profiles of the solutions for the 
three values of μ:

The stored volume/width recharge coefficient Cr:
For the numerical value of the dimensionless recharge 

coefficient Cr Eq. (24) is applied:

V C SKh tr
i� � �0

3 / m /m3 	 (28)

where i indicates the different solutions formulae. For the 
case μ = h1/h0 = 1.5 and applying Fig. 3, Cr

w = 0.648 is found, 
which is in a good agreement with the numerical value of 
Table 3 for the case of this study.

3.2.1.2. Discharging

Profiles

For the discharging case the same example with [6] is 
used, namely the estimation of a water table for an aquifer, 
with K = 20.00 m/d, h1 = 3 m, h0 = 2 m and t = 5 d, S = 0.27, 
(h0 = 3, h1 = 2), so:

Water profiles in the present study are:

h h hh� � �� � � � � � � �0 0 1 3� �� � � �, , 	 (29)

Water profiles for the Lockington’s case are:

h x� � �� �3 1 0 006028
3 0328

.
.

	 (30)

Except to Lockington’s case, it was difficult to find 
available data in order to make a complete benchmark 
test. Consequently, for the case μ  =  10, our research was 
limited to make a comparison between Runge–Kutta and 
Wiedeburg’s transformation method, but failed to give 
sufficient results.

Fig. 6 illustrates the water profiles of the three methods 
and Table 4 shows the performance of analytical solutions 
for t = 5 d, and for the ratio μ = h1/h0 = 1.5.

The results are provided by numerical integration of 
the water profiles. The application of Eqs. (21b) and (24) 
gives for this study:

V C C HKh Std
w

d
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3 2 1 1 2 3m /m3 , / , /� � � � �
		

	 (31)

in which H h h H0 1 1 5 0 61628/ . .� � � � � � �
discharge

, Cd
w  =  0.33646 

and V = 9.099 m3/m.
For Lockington’s solution it is:
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3

1
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where l = –8.5535, μ1 = –0.2543, Cd
L = 0.3337, V = 9.0099 m3/m.
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This is a very good agreement between numerical and 
analytical results.

3.2.2. Second example

3.2.2.1. Recharging

In order to test the present solution for the case of 
larger values, a shallow sand-gravel aquifer is considered 
with the following hydraulic characteristics: hydraulic 
conductivity K = 300 m/d, specific yield S = 0.15, h0 = 30 m, 
h1 = 45 m, t = 100 d. The aquifer is semi-infinite and under-
lained by a horizontal impermeable datum, having an ini-
tial water table elevation h0 = 30 m. In this example the case 
of a sudden elevation of the water level to h1 = 45 m at the 
origin is examined. To test the validity of present solution, 
our research was limited to make a comparison between 
Runge–Kutta method (reference solution), this study 
method and Polubarinova-Kochina method, due to lack of 
available data. The water table profile of this study can be 
written as follows:

(Eq. 18), h(μ,t) = h(1.5,100) = 30–15Ω(1.5,ξ)

Fig. 7 illustrates the profiles of water table for t = 100 d 
of the present solution vs. Runge–Kutta method and 
Polubarinova-Kochina’s expansion ([7]). In Table 5 it is 
shown that the three solutions approach each other closely, 
and the absolute relative mean error DCr is of the order  
O(10–3).

The stored volume/width:
The results are provided by numerical integration of the 

water profiles. The application of Eqs. (21a) and (24) gives for 
this study:

V C C HKh Std
w

d
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3 2 1 1 2 3m /m3 , / , /� � � � �
		

	 (33)

where C2
w = 0.647789, V = 7,140.38 m3/m.

It is a very good agreement between theoretical and 
numerical methods.
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Fig. 5. (a) μ = 1, (b) μ = 3, and (c) μ = 10. Water table profiles h vs. x at t = 5 d and for three different values of the ratio μ = h1/
h0. The illustrated profiles are: Runge–Kutta (solid line), this study (black squares), Polubarinova-Kochina (triangles), 
Moutsopoulos (×), Hayek ( ), Lockington (°).
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4. Discussion and conclusions

Eq. (18) has been written in the following simple 
expression, where:

� �� � � � �, / ,� � � �� � � � � � �1 1 Fi 	 (34)
h h

h
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h
h

h
h

�
�
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�

� �0

0 1

0 1

1

1 1 � � � �
�
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Fig. 6. Profiles of water table for t = 5 d.

Fig. 7. Profiles of water table for t = 100 d (This study vs. Poluba-
rinova-Kochina).

Table 3
Performance of various analytical solutions for t = 5 d, and for three different values of the ratio μ = h1/h0 = 1.5, 3, 10

R-K vs. This study R-K vs. Pol.-Kochina R-K vs. Moutsopoulos R-K vs. Lockington R-K vs. Hayek

DCr 2.31E-03 5.21E-04 1.07E-02 1.33E-03 2.11E-02
D 2.27E-06 7.64E-07 2.84E-05 3.37E-05 8.58E-06

Runge–Kutta This study Pol.-Kochina Moutsopoulos Lockington Hayek

µ = 1.5 V 9.516 9.548 9.511 9.618 9.529 9.717
Cr 0.648 0.649 0.647 0.654 0.648 0.661
Q 0.952 0.955 0.951 0.962 0.953 0.972

R-K vs. This study R-K vs. Pol.-Kochina R-K vs. Moutsopoulos R-K vs. Lockington R-K vs. Hayek

DCr 1.39E-03 2.02E-02 2.43E-03 2.15E-02 1.13E-04
D 6.51E-04 6.34E-04 9.13E-05 1.24E-06 7.61E-04

Runge–Kutta This study Pol.-Kochina Moutsopoulos Lockington Hayek

µ = 3 V 17.646 18.009 18.002 17.689 18.026 17.644
Cr 3.396 3.391 3.465 3.404 3.469 3.396
Q 1.765 1.801 1.800 1.769 1.803 1.764

R-K vs. This study R-K vs. Pol.-Kochina R-K vs. Moutsopoulos R-K vs. Lockington R-K vs. Hayek

DCr 8.08E-02 7.18E-02 3.99E-04 1.83E-03 4.84E-04
µ = 10 D 5.23E-02 4.18E-02 2.50E-04 3.39E-03 9.44E-06

Runge–Kutta This study Pol.-Kochina Moutsopoulos Lockington Hayek

V 111.594 120.609 119.610 111.639 111.799 111.540
Cr 21.476 23.211 23.019 21.485 21.516 21.466
Q 11.159 12.061 11.961 11.164 11.180 11.154

Cr = dimensionless recharge coefficient (23), V = stored volume/width, D C C Cr r
i

rCr
Runge-Kutta Runge-Kuttaabs� �� � �/ , Cr

i = remainder dimension-

less recharge coefficients, V = stored volume/width, D h h
n

h i

i

n

� �� �
�
�1

2

0

Runge-Kutta Runge-Kutta/ , hi = remainder water tables and Q = flow rate.
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This function is very easy to calculate and gives imme-
diately a value h(ξ, μ) for every value of μ and ξ. So, with 
the Boltzmann’s transformation, the profiles of h vs. x for t 
constant are calculated according to the above simple trans-
formed formula.

4.1. For the first example

4.1.1. Recharging case

According to Table 3 it is shown that for the cases:

•	 μ  =  1.5 all methods give good results regarding the 
water tables propagation, the stored volume/width V 
and the non-dimensional recharge coefficient Cr, with a 
slightly smaller relative error of Polubarinova-Kochina, 
this study and Lockington methods. Besides the numer-
ical values and the theoretical values of recharge coef-
ficient Cr, show very good agreement for the cases of 
this study and Lockington.

•	 μ = 3 all methods gives good results regarding the water 
tables propagation, the stored volume/width V and the 
non-dimensional recharge coefficient Cr, with a slightly 
smaller relative error of Moutsopoulos and Hayek methods.

•	 μ  =  10 the Moutsopoulos and Hayek methods show 
a strong smaller relative error vs. the methods of 
Polubarinova-Kochina, and this study and a slightly 
smaller relative error vs. Lockington method.

4.1.2. Discharging case

According to Table 4 the three methods, this study, 
Runge–Kutta and Lockington give good results regarding 
the water tables propagation, the stored volume/width V, 
and the non-dimensionnel recharge coefficient Cr, for the 
case μ = 1.5. The DCr relative errors of the Lockington’s and 

this study methods vs. Runge–Kutta method are of O(10–3). 
For large values of μ  =  10 this study gives non-physical  
results.

4.2. For the 2nd example

4.2.1. Recharging case

A case for values of h0 = 30, h1 = 45 (μ = 1.5), is examined in 
order to test the present solution for large values. According 
to Table 5, the three examined methods Polubarinova-
Kochina, this study and Runge–Kutta give good agreement 
regarding the water profiles (Fig. 7), stored volumes/width 
and non-dimensional recharge coefficients Cr. The DCr rela-
tive errors of the Polubarinova-Kochina and this study meth-
ods vs. Runge–Kutta method are of O(10–3).

The present analytical solution is valid for small and inter-
mediate values of the ratio μ. For these cases this study pro-
vides a simple and accurate formula allowing managers and 
engineers to solve practical problems (in irrigation and water 
management), and estimate the stored water of the aquifers, 
knowing only the recharge coefficient, the time and the initial 
parameters of the aquifer. For larger values the [7] and [12] can 
be used.

Finally the solution of this problem (sudden water level 
rise), are useful for the computation of flow volumes stored 
or extracted from the aquifers, recharging man-made by irri-
gation trenches (artificial recharge). According to Hayek [12] 
and Revelli and Ridolfi [22], water level changes in trenches/
channels occur in times that are much shorter than those 
occurring in phreatic aquifers and therefore can be schema-
tized by sharp jumps. Consequently approximate analyti-
cal solutions for problems with sudden water level rise are 
important in modeling such real cases.

References
[1]	 J. Boussinesq, Recherches théoriques sur l’écoulement des 

nappes d’eau infiltrées dans le sol et sur le débit des sources, 
J. Math. Pures Appl., 10 (1904) 5–78.

[2]	 P. Ya. Polubarinova-Kochina, On a Non-Linear Partial 
Differential Equation Occurring in Seepage Theory, Doklady 
Akademii Nauk, 36, 1948 (in Russian).

[3]	 P. Ya. Polubarinova-Kochina, On Unsteady Flow of Groundwater 
Seeping From Reservoirs, Prikladnaya Mathematika i 
Makhanika, 32, 1949 (in Russian).

[4]	 P. Ya. Polubarinova-Kochina, Theory of Groundwater Movement, 
2015 ed., 1st ed., Princeton University Press, USA, 1962, pp. 497–517.

[5]	 P.K. Tolikas, E.G. Sidiropoulos, C.D. Tzimopoulos, A simple 
analytical solution for the Boussinesq one-dimensional 
groundwater flow equation, Water Resour. Res., 20 (1984) 24–28.

[6]	 D.A. Lockington, Response of unconfined aquifer to sudden 
change in boundary head, J. Irrig. Drain. Eng., 123 (1997) 24–27.

[7]	 K.N. Moutsopoulos, The analytical solution of the Boussinesq 
equation for flow induced by a step change of the water table 
elevation revisited, Transp. Porous Media, 85 (2010) 919–940.

[8]	 D.A. Lockington, J.-Y. Parlange, M.B. Parlange, J. Selker, 
Similarity solution of the Boussinesq equation, Adv. Water 
Resour., 23 (2000) 725–729.

[9]	 H.A. Basha, Traveling wave solution of the Boussinesq equation 
for groundwater flow in horizontal aquifers, Water Resour. 
Res., 49 (2013) 1668–1679.

[10]	 T. Chor, N.L. Dias, A.R. de Zarate, An exact series and improved 
numerical and approximate solutions for the Boussinesq 
equation, Water Resour. Res., 49 (2013) 7389–7387.

[11]	 Q.H. Jiang, Y.H. Tang, A general approximate method for the 
groundwater response problem caused by water level variation, 
J. Hydrol., 529 (2015) 398–409.

Table 5
Performance of analytical solutions for t = 5 d, and for the ratio 
μ = h1/h0 = 1.5

This study Runge–Kutta Lockington

V 7,141.878 7,137.288 7,157.720
Cr 0.648 0.648 0.649
Q 35.709 35.686 35.789

R-K vs. Ts R-K vs. L
2.21E-03 2.85E-03

Table 4
Performance of analytical solutions for t = 5d, and for the ratio 
μ = h1/h0 = 1.5

This study Runge–Kutta Lockington

V 9.099 9.063 9.010
Cr 0.337 0.336 0.334
Q 0.909 0.906 0.901

R-K vs. Ts R-K vs. L
3.96E-03 5.86E-03



233C. Tzimopoulos et al. / Desalination and Water Treatment 260 (2022) 225–234

[12]	 M. Hayek, Accurate approximate semi-analytical solutions 
to the Boussinesq groundwater flow equation for recharging 
and discharging of horizontal unconfined aquifers, J. Hydrol., 
570 (2019) 411–422.

[13]	 Z.-X. Chen, G.S. Bodvarsson, E.A. Witherspoon, Y.C. Yortsos, 
An integral equation formulation for the unconfined flow of 
groundwater with variable inlet conditions, Transp. Porous 
Media, 18 (1995) 15–36.

[14]	 S.E. Serrano, S.R. Workman, Modeling transient stream/aquifer 
interaction with the non-linear Boussinesq equation and its 
analytical solution, J. Hydrol., 206 (1998) 245–255.

[15]	 J.-Y. Parlange, W.L. Hogarth, R.S. Govindaraju, M.B. Parlange, 
D. Lockington, On an exact analytical solution of the Boussinesq 
equation, Transp. Porous Media, 39 (2000) 339–345.

[16]	 A.S. Telyakovskiy, G.A. Braga, F. Furtado, Approximate 
similarity solutions to the Boussinesq equation, Adv. Water 
Resour., 25 (2002) 191–194.

[17]	 A. Pistiner, Similarity solution to unconfined flow in an aquifer, 
Transp. Porous Media, 71 (2008) 265–272.

[18]	 J.S. Olsen, A.S. Telyakovskiy, Polynomial approximate solutions 
of a generalized Boussinesq equation, Water Resour. Res., 
49 (2013) 3049–3053.

[19]	 H. Aminikhah, Approximate analytical solution for the one-
dimensional nonlinear Boussinesq equation, Int. J. Numer. 
Methods Heat Fluid Flow, 25 (2015) 831–840.

[20]	 M.S. Bartlett, A. Porporato, A class of exact solutions of the 
Boussinesq equation for horizontal and sloping aquifers, Water 
Resour. Res., 54 (2018) 767–778.

[21]	 O. Wiedeburg, Über die Hydrodiffusion, Annalen der PhysiK, 
277 (1890) 675–711.

[22]	 R. Revelli, L. Ridolfi, Influence zone of recharging-dewatering 
actions in unconfined aquifer, J. Irrig. Drain. Eng., 126 (2000) 
110–112.

[23]	 K.N. Moutsopoulos, A simple model for the simulation of 
the flow behavior in unconfined double porosity aquifers, J. 
Hydrol., 596 (2021) 126076, doi: 10.1016/j.jhydrol.2021.126076.

Appendix

Transformed Wiedeburg’s solution [21]

A transformed aspect of Wiedeburg’s [21] solution is 
given now for the case of Boussinesq equation. A new vari-
able H = h – h1 is introduced now in Eq. (1), and the equation 
becomes:
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with new initial and boundary conditions.
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where the following relations have been inserted:

a
Kh
S h

a K
S

h
h

a a0
1

1
0

1

0

1
� � � �, , ,� 	 (A4)

The linear form of Eq. (3) (for a = 0) is:
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with its solution.
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where a0t and ξ are the Boltzmann’s transformation.
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Wiedeburg [21] suggested that it can be chosen for 
the term of Eq. (A3) containing ‘a’, a value of the H which 
would conform to the appropriate expression if ‘a’  =  0. 
This substitution transforms the nonlinear equation into a 
linear one with a source dependent on the space coordinate 
and the time.
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It is introduced now the Boltzmann’s transformation 

ξ =
x
a t2 0

 and an ordinary differential equation is obtained:
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with new boundaries.
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According to Wiedeburg [21] the solution of the equation 
is of the form:

H � � � � � � � � �� � � � �1 2� �, erfc 	 (A11)

After substitution in Eq. (A9), it becomes apparent that 
the functions ϕ1, ϕ2 are determined by the equations:
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The solution of Eq. (A12) yields:
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Hence:
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Combining now the solution Eq. (A15) with boundary 
conditions (10) yields:
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and finally.
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