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a b s t r a c t
Electrochemical advanced oxidation processes (EAOPs) can effectively eliminate organic pollutants 
using the reactive oxygen species (ROS) produced by electrode reactions. Three-dimensional elec-
trochemical reactors (3DERs) are the research frontier of EAOPs. They have higher catalytic activ-
ity and lower energy consumption than conventional electrochemical reactors. This mini-review on 
3DERs includes their structures, reaction mechanisms, and applications in treating refractory organic 
wastewater. Developing the preparation techniques for highly efficient particle electrodes (PEs), the 
core of 3DER, is essential to constructing a high-performance 3DER. This study introduces the char-
acteristics and main preparation methods of carbon-based, metal-based, and composite PEs materi-
als in detail, the applications in refractory organic wastewater treatment are summarized, and the 
research direction of 3DER in the future is prospected. Our findings could aid new approaches to 
constructing more efficient 3DERs.

Keywords:  Advanced oxidation processes (AOPs); Electrochemical technology; Three-dimensional 
electrochemical reactor (3DER); Particle electrodes (PEs); Refractory organic wastewater

1. Introduction

The production of refractory organic wastewater, such as 
landfill leachate, oily wastewater, coking wastewater, phar-
maceutical wastewater, and dye wastewater, increases rap-
idly with the incessant societal development [1,2]. Because 
refractory organic wastewaters contain numerous highly 
toxic pollutants, including persistent organic pollutants 
(POPs) and toxic metals, efficient treatment technology for 
its control is crucial in environmental science and engineer-
ing [3,4]. Biotechnologies, such as anaerobic and aerobic bio-
technology, are the most commonly used treatment methods 
for organic wastewater due to the methods’ relatively low 

cost. However, their removal efficiency toward refractory 
organics is minimal [5].

In the past 20 y, electrochemical advanced oxidation pro-
cesses (EAOPs) have been widely used to treat high salin-
ity or refractory organic wastewaters [4,6–8]. Pollutants in 
wastewater are removed by direct and/or indirect oxidation 
in electrochemical systems [9,10]. Nevertheless, conventional 
EAOPs (i.e., 2DER) still have some defects, such as rela-
tively low current efficiency and small treatment capacity, 
limiting their applications [11]. These limitations are solved 
by three-dimensional electrochemical reactor (3DER) tech-
nology. Compared with conventional electrochemical sys-
tems, 3DER increases the electrode reaction area, providing 
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more reaction sites and mass transfer efficiency, thereby 
improving the system’s efficiency. Hence, removing the 
organics improves significantly [12–15].

Herein, we provide a comprehensive summary of the 
3DER, including its structure, organics removal mechanism, 
and the characteristics of carbon-based, metal-based, and 
composite particle electrodes (PEs) materials. Moreover, 
applying 3DER to treat refractory organic wastewaters is 
elucidated.

2. Characteristics of 3DER

2.1. Definition

The 2DER is a conventional electrochemical reactor with 
a pair of parallel anode and cathode (i.e., 2D electrodes). 
Similarly, 3DER was established based on 2DER by fill-
ing conductive particles between the parallel electrodes. 
The conductive particles are called PEs, third electrodes, 
or bed electrodes. In the electric field, PEs are polarized to 
form several micro-electrodes with different charges at both 
ends. This process illustrates that electrochemical reactions 
take place on the electrode surfaces and at the surface of PE 
ends [16]. Therefore, the mass transfer distance in the reac-
tor is significantly reduced [17]. As a result, contaminants 
can be removed on the surfaces of 2D electrodes and PEs. 
Hence, the pollutant removal efficiency of 3DER is much 
higher than 2DER.

2.2. Mechanism

The most significant advantages of 3DER in refractory 
wastewater treatment are (i) the high pollutants removal 
efficiency with relatively low cost, and (ii) stable and sim-
ple operation. Refractory organic pollutants are primarily 
removed by direct and indirect oxidation (Fig. 1). In some 
cases, adsorption and coagulation contribute to the removal 
process. Meanwhile, the reduction at the cathode is also 
relevant to removing pollutants, such as nitrates, and toxic 
metals (or trace metals).

2.2.1. Direct and indirect oxidation

Like a conventional electrochemical system, the electro- 
oxidation (EO) in 3DER can be categorized into direct and 
indirect oxidation [18]. Direct oxidation refers to the pro-
cess whereby pollutants are oxidized on the anode surface 
through electron transfer. Indirect oxidation is one where 
reactions at the electrodes promote the production of rad-
ical reactive oxygen species (ROS) (e.g., •OH, SO4

•–, •Cl) 
and non-radical ROS (e.g., ClO– and Cl2) in the system. 
These ROS can oxidize and remove the contaminants in the 
electrolytes.

The mechanism of direct oxidation mainly depends 
on the anode materials, which could be active or inactive. 
Under an electrical current, OH– and H2O lose electrons, 
combining with the metals on the anodes to form M(•OH) 
[Eqs. (1) and (2)]. Many active sites are present on the sur-
face of an active electrode, capable of combining with 
M(•OH) to form MO with higher oxidation ability [Eq. (3)]. 
Subsequently, MO could oxidize the organics [Eq. (4)], and 

the oxygen evolution reaction converts MO to M simulta-
neously [Eq. (5)]. For the inactive anode, M(•OH) directly 
reacts with organics [Eq. (6)], and the oxygen evolution 
reaction also occurs on the anode surface [Eq. (7)] [19,20].

M H O M OH H e2+ → ( ) + +• + −  (1)

M OH M OH e+ → ( ) +− • −  (2)

M OH MO H e• + −( ) → + +  (3)

MO R M RO+ → +  (4)

MO M O→ + 1 2 2/  (5)

M OH R M CO H O H e2
• + −( ) + → + + + +m n2  (6)

M OH M O H e• + −( ) → + + +1 2 2/  (7)

The indirect oxidation mechanism is relatively com-
plicated. Some inorganic ions can be converted into radi-
cal and/or non-radical ROS [Eqs. (8)–(17)] with high redox 
potential under electrical current [21–23]. Meanwhile, the 
current can promote the circulation between the high and 
low valence metals (such as Fe(IV)/Fe(III)/Fe(II), Ni(III)/
Ni(II), and Co(III)/Co(II)), so that organics can be removed 
continuously [18]. Additionally, the cathode, such as graphite 
felt, can produce hydrogen peroxide (H2O2) in-situ [Eq. (18)], 

 
Fig. 1. The main electrochemical reaction in 3DER.
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which can be decomposed by metal catalysts (such as 
Fe(II)) in the system to form •OH [Eq. (19)] [7].

Cl Clcurrent activation− • →  (8)

• − •−+ →Cl Cl Cl2  (9)

Cl H O HClO Cl H e22
•− − + −+ → + + +  (10)

2 22Cl Cl e− −→ +  (11)

Cl H O H ClO Cl22 2+ ↔ + ++ − −  (12)

S O SO SO2
current activation

8
2

4
2

4
− − −•( )  →/  (13)

SO OH SO OH4 4
2−• − − •+ → +  (14)

SO H O SO OH H4 2 4
2−• − • ++ → + +  (15)

SO SO S O24 4 8
2−• −• −+ →  (16)

S O e SO SO2 8
2

4 4
2− − −• −+ → +  (17)

O H e H O22 22 2+ + →+ −  (18)

H O Fe H Fe H O OH2 22
2 3+ + → + ++ + + •  (19)

2.2.2. Adsorption and coagulation

The specific surface area and porosity of PEs are gener-
ally large, allowing the removal of contaminants by physi-
cal adsorption. Under the optimal conditions, positive and 
negative charges converge simultaneously at each end of 
the particles to form anodic and cathodic surfaces, respec-
tively. The ions in the solution migrate toward the surface 

with an opposite charge under Coulomb force, allowing 
the pollutants to adsorb on the particles [24–27]. In some 
cases, the combination of physical and electro-sorption can 
effectively remove organics [12].

Coagulation or electrocoagulation exists in electrochem-
ical reactors using iron-based and/or aluminum-based PEs. 
These electrodes are continuously consumed to produce 
in-situ Al(III), Fe(II), or Fe(III) ions under electrical cur-
rent. At the same time, H2O is incessantly reduced to gas-
eous hydrogen and OH– at the cathode (or cathodic surface 
on PEs). Hence, Aln(OH)m

(3n–m)+ (n > 1, m  ≤  3n) or Fe(OH)n  
(n = 2,3) is formed in solutions and finally polymerize to 
colloids with a positive charge. This occurrence allows the 
removal of contaminants through coagulation or electroco-
agulation [28,29].

2.2.3. Reduction process on the cathode

Removing contaminants (such as NOx
––N, metals, flu-

orides, and chlorinated organics) through cathodic reduc-
tion requires some attention [30]. For instance, NOx–N can 
be reduced to nitrogen gas or ammonia nitrogen [31], while 
metal ions are deposited in-situ on the cathode or form 
hydroxide (M(OH)n) near or on the cathode surface under 
alkaline conditions [30]. Therefore, the cleaning of the cath-
ode surface is vital to the performance of an electrochemical 
reactor. However, in some cases, chlorinated organics can 
be removed directly by cathodic reduction or indirectly by 
catalytic hydrogenation [32].

2.3. Classification and characteristics of 3DER

According to the filling way of PEs, 3DER can be classi-
fied into fixed-bed and fluidized-bed 3DER. Fixed-bed 3DER 
(also called a PEs bed) refers to the fixing PEs in a container 
located between the anode and cathode. In contrast, the PEs 
in a fluidized-bed 3DER can move freely [18]. The charac-
teristics of the two 3DER types are summarized in Table 1.

2.3.1. Fixed-bed 3DER

Fixed-bed 3DER is a reactor in which the PEs are fixed 
inside the reaction tank. Compared with the fluidized-bed 
3DER, the fixed-bed 3DER is much easier to operate, and its 
PEs have a longer lifetime. However, the particles agglom-
erate more easily, and the reactor is prone to short circuits. 
Therefore, fixed-bed 3DER has relatively poor stability. 
Generally, fixed-bed 3DER can be divided into two types 

Table 1
Characteristics of fixed-bed 3DER and fluidized-bed 3DER

Items Fixed-bed 3DER Fluidized-bed 3DER

Characteristics Fixed PEs in the container(s) PEs is free to move
Advantages Relatively easy to operation

Long PEs lifetime
High mass and heat transfer
Relative stable

Disadvantages Prone to short circuit
Particles are easy to agglomerate
Relatively poor stability

Difficult to study the mechanism 
of pollutant removal
Relatively high-cost
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according to the fluid flow patterns, which are continuous 
flow reactor (Fig. 2) and intermittent flow rector (Fig. 3).

The continuous flow reactor can be divided into three 
types, (a) horizontal-flow reactor (Fig. 2a), refers to a reac-
tor in which fluid flows horizontally through the PE bed; 
(b) vertical-flow reactor (Fig. 2b), refers to a reactor where the 
wastewater flows vertically through the PE bed; and (c) tube 
type (Fig. 2c), composed of several hollow tubes in parallel, 
with the particles arranged on the surface of the tubes, fluid 
heat carrier (such as water) flows through the tube to heat 
or cool the electrolytes. Notably, there is scarcely any heat 
exchange between (a), (b), and outside. As for intermittent 
flow rector, a certain volume of electrolytes electrolyte is 
introduced into the reactor until the reaction is completed 
and then discharged them. Mechanical stirring or aeration is 
used to achieve homogenization rather than liquid flow.

2.3.2. Fluidized-bed 3DER

The particle sizes in fluidized-bed 3DER are much 
smaller than those in fixed-bed 3DER and are usually pow-
dery or even nanoscale. Fluid flow and mechanical agitation 
are usually used to homogenize and suspend the particles 
in the electrolyte. Therefore, fluid always flows from the 
bottom to the top of the reactor to negate particulate depo-
sition by gravity [33].

According to fluid flow patterns, fluidized-bed 3DER 
can be divided into two types: (i) continuous flow reactor 
(Fig. 4a), which has continuous influent and effluent, and 
(ii) intermittent flow reactor (Fig. 4b) has discontinuous 
influent and effluent. Fluidized-bed 3DER usually applies 
mechanical stirring and/or aeration to achieve electrolyte 
homogenization.

The mass (i.e., contaminates) and energy (i.e., heat) in 
fluidized-bed 3DER are relatively evenly distributed [34]. 
The particulate surfaces can make full contact with the elec-
trolytes, making particle agglomeration tedious. Hence, the 
system is more stable, exhibiting a higher mass transfer effi-
ciency than the fixed-bed 3DER [35,36]. However, the cur-
rent studies focus on improving the conductivity of PEs in 
fluidized-bed reactors [33]. Moreover, the randomness in 
particle movement in the system, resulting in the pollutant 
mechanism, is also extremely complicated and should be 
further studied [34,36].

2.4. Particle electrodes

The electrodes are the core component of an electrochem-
ical reactor, while PEs are the most crucial part of 3DER. 
PEs consist of many particles with conductive and (or) cat-
alytic abilities [13]. These particles significantly shorten 
the mass transfer distance and increase the system’s reac-
tion area, thus, improving the pollutant removal efficiency 
significantly [37–39]. Previous studies have shown that 
preeminent PEs in 3DER should be porous materials with 
excellent conductivity and catalytic activity, relatively large 
specific surface area, and stable physical and chemical prop-
erties. Several materials, including carbon-based materials 
(e.g., activated carbon (AC) and carbon aerogels), metal- 
based materials (e.g., metal and metal oxide), and minerals 
(e.g., kaolin and zeolite), have been studied as PEs to make 

3DER. In the Table 2, we instructed the main preparation 
methods of typical PEs and summarized the characteristics 
of different types of PEs in Table 3.

2.4.1. Carbon-based materials

The major merit of carbon-based materials is their supe-
rior conductivity, including granular activated carbon (GAC) 
[40,41], carbon nanomaterials [42], carbon aerogels [43], 
flake graphite [44], biochar [45], etc., are the most widely 
used and studied materials for preparing PEs. The carbon- 
based PEs have the advantage of large specific surface area, 
low cost, and easy manufacturing process. The large spe-
cific surface area is usually accompanied by a developed 
porosity and abundant oxygen-containing surface func-
tional groups, which aid adsorption and electrosorption of 
pollutants [46,47]. However, they are prone to short-circuit 
and exhibit poor electro-oxidation capacity.

 

 

 
Fig. 2. The continuous flow fixed-bed 3DER. (a) Horizontal flow 
reactor, (b) vertical flow reactor and (c) tube-type reactor.
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Fig. 3. The intermittent flow fixed-bed 3DER.

 

 
Fig. 4. The fluidized-bed 3DER. (a) Continuous flow reactor and (b) intermittent flow reactor.
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Table 2
Main preparation methods of PEs

Categories PEs Preparation method Main raw material References

Carbon-based 
materials

GAC Purchase GAC Cho et al. [40]
GAC Purchase GAC Pedersen et al. [41]
Modified multi-walled 
carbon nanotube 
(MWCNT)

Mixed heating in anhydrous 
ethylene glycol

MWCNT powder
Bismuth pentahydrate
Ethylene glycol

Dighole et al. [42]

Graphene aerogel
Hummer’s method
Hydrothermal synthesis 
method

Graphite powder
Ethylenediamine

Chen et al. [43]

Flake graphite Sol–gel method

Flake graphite
Pr(NO3)3·6H2O
Co(NO3)2·6H2O
Titanium tetra-n-butoxide
Ethanol

Yu et al. [44]

Granular sludge carbon High temperature sintering

Sewage sludge
FeSO4

Ca(OH)2

ZnCl2

Sodium carboxymethyl 
cellulose

Ji et al. [45]

Metal-based 
materials

Slag High temperature sintering

Steel slag
Zeolite
SnO2

MnO2

Starch

Zhang et al. [48]

Tailing High temperature sintering
Flotation tailings
Soluble starch
Garden soil

Yang et al. [49]

CuFe2O4 Sol–gel combustion method
Cu(NO3)2·3H2O
Fe(NO3)3·9H2O
Citric acid

Li et al. [50]

Fe3O4-based particle Two-step hydrothermal method

FeCl3·6H2O
CH3COONa
Natural flake graphite
Ethylene glycol
Polyethylene glycol

Zhou et al. [51]

Composite 
materials

Conductive polyure-
thane/polypyrrole/
graphene

Solution blending
In-situ oxidative polymerization

Graphene
Sodium dodecyl benzene 
sulfonate
Polyurethane
Citric acid
Polypyrrole
Ferric chloride

Guo et al. [56]

FeC@nitrogen doped-
graphene-iron oxide

High temperature sintering Na4Fe(CN)6·10H2O
Ghanbarlou et al. 
[57]

AgPd nanoparticles sup-
ported on cyclodextrin 
polymers

Self-assemble strategy

5,5-dimethyl-1-pyrrolidine 
N-oxide
Na2PdCl4

(3-Aminopropyl)trime-
thoxysilane
β-cyclodextrin

Guo et al. [58]



Table 3
Characteristics of different PEs

Categories Advantages Disadvantages

Carbon-based materials
Excellent adsorption performance
Low-cost
Easy manufacture

Easy to short-circuit
Poor catalytic activity

Metal-based materials
Good electrical conductivity
Low-cost
Have many catalytic active sites

Poor adsorption
Difficult to fluidize

Composite materials
High stability
Excellent catalytic performance

High-cost
Complex manufacture

Table 4
Application of 3DER in treating some organic wastewaters

Wastewater Main pollutant 2D electrodes PEs Operating conditions Removal rate References

Leachate

Humic acid, 
fulvic acid and 
other refractory 
organics

Ru/Ir coated 
titanium plate

Fe/C 
particles

U = 5 V
PE = 1 g
Na2S2O8 = 5 mM

COD = 72.9%
NH4

+–N = 99.9%
Yu et al. 
[60]

Stainless steel 
sheet, graphite

Columnar 
AC

J = 30 mA/cm2

Electrode spacing = 6 cm
Fe2+ = 1.0 mM
Initial pH = 3.0

COD = 96.2%
NH4

+–N = 94.3%
TP = 99.2%
Chroma = 93.6%

Lu [61]

Oily 
wastewater

Refractory 
organics, 
petroleum and 
so on

Pt electrode, 
stainless steel

Magnetic 
steel slag

U = 20 V
PE = 75 g
HRT = 2 h

TOC = 85%
Wang et 
al. [62]

Ir/Ru coated 
titanium mech

Rod AC, 
glass beads, 
quartz sand 
insulating 
particles

I = 6 Å
Electrode 
spacing = 40–60 mm
V = 4 L

COD (in 
15 min) = 55%
COD (15–
35 min) = 35.8%

Yin et al. 
[63]

Porous 
graphite plate

Iron particle
U = 12 V
Initial pH = 6.5

COD = 92.8%
Yan et al. 

[64]
Ti/SnO2+Sb2O3 
DSA type 
anodes, 304 
stainless steel 
mesh plate

GAC, 
porous 
ceramsite 
particle

J = 30 mA/cm2

PE = 75%
HRT = 100 min

COD = 45.5
TOC = 43.3%
Toxic unit = 67.2%

Wei et al. 
[65]

Stainless steel, 
graphite

Metal 
loaded slag

U = 6 V
PE = 15 g
V = 200 mL

COD = 88.23%
Liu et al. 
[66]

Coking 
wastewater

Toxic inorganics 
(ammonia 
nitrogen, 
cyanide, sulfide, 
fluoride, etc.), 
refractory 
organics 
(phenol, 
polycyclic 
aromatic 
hydrocarbons, 
oxygenated 
heterocyclics, 
nitrogen 
containing 
heterocyclic, 
etc.)

Ti plate coated 
with Ru/Ir, Ti 
plate

Ti-Sn-Ce/BC
J = 30 mA/cm2

HRT = 150 min
COD = 92.91%
DOC = 74.66%

Zhang et 
al. [67]

Ti/RuO2-IrO2 
plates

Metal oxide 
load GAC

Electrode 
spacing = 28 cm
HRT = 3.53 h
Aeration

Liu et al. 
[68]

Ti/RuO2-IrO2 
electrodes

Metal oxide 
load GAC, 
AC

I = 150 mA (3DERs)
I = 20 mA (3DBERS)
CH3COONa = 0.4 g/L

TN = 70.7%
COD = 55.8%

Wu et al. 
[69]

Ti/RuO2-IrO2 
electrodes

Metal oxide 
load GAC, 
GAC

U = 8 V 1,000 Hz 
(3DERs)
U = 3 V (3DBERS)
I = 10–20 mA (3DBERS)
Aeration = 100 L/h

TN = 76.30%
COD = 79.63%

Wu et al. 
[70]

(Continued)



(Continued)

Wastewater Main pollutant 2D electrodes PEs Operating conditions Removal rate References

Coking 
wastewater

Ti/RuO2-IrO2 
electrodes

Metal oxide 
load GAC

I = 150 mA
HRT = 1 h
Aeration = 100 L/h

COD = 73.21%
NH4

+–N = 38.2%
NO3

––N = 91.46%

Wu et al. 
[71]

Pharmaceutical 
wastewater

Amoxicillin
Ti/RuO2 
electrodes

GAC

J = 5 mA/cm2

NaCl = 17 mM
Initial pH = 5.56
GAC/quartz sand = 9:1

AMX = 98.8%
TOC = 47.6%

Shi et al. 
[72]

Antibiotic 
pharmaceutical

RuO2/IrO2 
coated Ti 
plate, stainless 
steel plate

GAC

Electrode 
spacing = 3.5 cm
PE = 100 g
HRT = 6 h
O2 = 0.4 L/min

TOC = 71%
Bacterial inhibition 
rate < 70%

Zhan et al. 
[73]

Norfloxacin
Ti/RuO2/
IrO2 mesh, 
graphite felt

Sulfur-zinc 
modified 
kaolin/steel 
slag

U = 4 V
pH = 3–10

NOR = 100% (acidic)
NOR > 90% (neutral)
NOR > 80% 
(alkalinity)

Song et al. 
[74]

Antipyrine

Ti mesh 
coated with 
SNO2-TA2O5-
IRO2, Ti mesh

Modification 
Sn-Sb-Bi/γ-
Al2O3

Na2SO4 = 0.1 M
HRT = 4 h
pH = 7

Antipyrine =94.4%
Liu et al. 
[75]

Dye 
wastewater

Rhodamine B 
(RhB)

Stainless steel 
plate, Ti plate

Electro-
biological 
particle 
electrode 
made 
from steel 
converter 
slag

I = 1.00 Å
Na2SO4 = 0.1 M
T = 20°C
Aeration = 2.5 L/min
Initial pH = 5.86
DO = 3.25 mg/L

RhB = 91.68%
COD = 87.63%
NH4

+–N = 90.54%

Feng et al. 
[76]

Ti/RuO2-IrO2-
TiO2-SnO2 
electrode, 
stainless 
steel plate

GAC 
coated with 
SnO2-Sb 
doped TiO2

J = 60 mA/cm2

Electrode spacing = 3 cm
HRT = 3 min
Initial pH = 7
Bed height = 8 cm

COD = 60–70%
Li et al. 
[77]

Methylene blue 
(MB)

Ti/RuO2/IrO2, 
graphite rod

Kaolin/slag

U = 11 V
Electrode spacing = 4 cm
Na2SO4 = 0.1 M
HRT = 90 min
T = 26°C
pH = 3.0

MB = 87.05%
Song et al. 
[78]

Pb/PbO2, 
stainless steel

GAC

J = 23 mA/cm2

Electrode spacing = 3 cm
HRT = 60 min
pH = 7.6

MB = 97.4%
COD = 87.5%
TOC = 83.0%

Shokoohi 
et al. [79]

Turquoise blue 
dye (BT)

Flat Al 
electrodes

Aluminum 
microbipolar 
electrode

J = 180 A/m2

NaCl = 1 g/L
10 mg dye/g Al particle
Rotation speed = 300 rfm

BT = 96%
A. 
Bakalem 
et al. [80]

Other

Reverse 
osmosis 
concentrates

Ti/IrO2-RuO2, 
stainless steel

γ-Al2O3/
Sn-Sb oxide

I =600 mA
HRT > 2 h

COD = 100%
Liu et al. 
[81]

4-Chlorophenol
DSA plate, Ti 
plate

Biochar-
loaded PEs

I = 1 Å
Electrode spacing = 3 cm
PE = 5 g
Na2SO4 = 2 g/L

4-Chloro phenol  
= 99.93%

Xie et al. 
[82]

Table 4
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2.4.2. Transition metal-based materials

Similar to carbon materials, transition metals-based 
materials have good electrical conductivity, additionally 
with several catalytic active sites on their surface. Iron-
based materials (such as steel slag [48], tailings [49]) and 
other iron synthetic materials (e.g., CuFe2O4 [50] and Fe3O4

–-
based materials [51]) are the most researched due to their 
easy availability. Moreover, transition metal-based mate-
rials can provide some metal ions for electro-Fenton-like 
reactions. Hence, the organics degradation efficiency can be 
improved significantly [52]. The slag and tailings are solid 
wastes produced by mining and industrial metallurgical 
processes, harmful to the environment. However, they have 
a high recovery value for metals. Thus, their utilization is 
of great significance to the sustainable development of the 
environment.

Some previous studies modified slags and tailings to 
prepare PEs with a mesoporous structure or multiple active 
sites. They demonstrated that these PEs had outstanding 
adsorption and catalytic abilities [53]. However, due to their 
high density, most transition metal-based materials are rel-
atively difficult to fluidize or homogenize in an electrolyte.

2.4.3. Composite materials

Composite materials mainly refer to combining two or 
more categories of materials that combine their characteris-
tics to achieve a higher stability and better catalytic perfor-
mance than a single material. The properties of these raw 
materials often influence the removal mechanism of con-
taminants. The composite materials frequently have mul-
titudinous surface functional groups, capable of enhancing 
their electro-oxidation and electrocatalytic performances. 
The PEs prepared by composite materials can catalytically 
produce different ROS, increasing the pollutants’ removal 
by the combined efforts of the ROS [54,55]. Recently, some 
scholars [56–58] prepared composite electrodes to build 
3DER for removing refractory organics. These PEs exhibit 
large specific surface area and superior catalytic activ-
ity. However, the composite materials are still tedious for 

practical application due to high-cost and complex manu-
facturing process.

3. Applications in refractory organic wastewater treatment

Generally, the ratio of biochemical oxygen demand 
(BOD) to chemical oxygen demand (COD) of wastewater 
(i.e., the value of BOD5/COD) is lower than 0.3; hence, it can 
be considered as refractory organic wastewater [59]. Due to 
its environmental friendliness, no secondary pollution, high 
efficiency, flexible and easy operation, 3DER has become 
an important method to treat refractory organic wastewa-
ter, such as leachate, oily wastewater, coking wastewater, 
pharmaceutical wastewater, dyeing wastewater, and their 
membrane concentrates. Table 4 shows some recent studies 
on the treatment of refractory organic wastewater by 3DER. 
Voltage (U), current density (J), current intensity (I), reaction 
time (HRT), reaction flow rate (RFT), temperature (T), and 
volume (V) are the key factors affecting the treatment effi-
ciency. The construction of 3DERs, reaction conditions, and 
contaminate removal mechanisms focus on various 3DER. 
However, most of these studies are laboratory-based; their 
practical applications in the field still need further research.

4. Conclusions and prospects

This review summarizes the reaction mechanisms 
and applications of 3DER, elucidating the characteristics 
of carbon-based, metal-based, and composite PEs mate-
rials. In conclusion, direct and indirect oxidation are the 
main organics removal pathway. The PEs can significantly 
increase the current efficiency and shorten the mass transfer 
distance of the electrochemical system, thus, significantly 
improving the pollutants removal efficiencies. Due to the 
excellent ability of 3DER to reduce toxicity and enhance 
the biodegradability of refractory organic wastewater, we 
believe that 3DER is the preeminent treatment process for 
refractory organic wastewaters. However, many studies on 
the treatment of refractory organic wastewater by 3DER 
are still in the laboratory stage, as its practical applicability 
remains to be explored.

Wastewater Main pollutant 2D electrodes PEs Operating conditions Removal rate References

Other

Wood vinegar 
wastewater

Stainless steel, 
graphite

AC and iron 
powder 
mixture

U = 5 V
HRT = 60 min

COD = 70.8%
Fan et al. 
[83]

Atrazine
Ti/RuO2-IrO2, 
stainless steel

CuFe2O4 
magnetite 
nanoparticle

J = 4 mA/cm2

PS = 4.0 mM
PE = 3 g/L
HRT = 35 min
Initial pH = 6.3

ATZ = 99%
TOC = 22.1%

Li et al. 
[50]

Bisphenol A 
(BPA)

DSA and Ti/
IrO2-RuO2, 
gas diffusion 
electrode

Magnetic 
nitrogen 
doped/
reduced 
graphene 
oxide

Electrode 
spacing = 2.5 cm
Na2SO4 = 0.05 M
T = 25°C
Initial pH = 3.0
Aeration = 0.5 L/min

BPA = 90.0%
TOC = 60.5%

Zhang et 
al. [84]

Table 4
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Moreover, many previous studies focused on the prepa-
ration of composite PEs materials, and the preparation meth-
ods and reaction conditions are increasingly complicated. 
These trends seem to work against the engineering appli-
cation of 3DER. Therefore, it will be a promising research 
direction to explore the preparation of the PEs materials 
with low cost and easy synthetic conditions. In addition, 
it is important to realize the stable operation of large-scale 
industrial reactor in the future.
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