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a b s t r a c t
The Fourier transform infrared (FTIR) spectra combined with one-dimensional convolutional 
neural network (1DCNN) based on multi-level feature fusion, that is, MLF-1DCNN, were used 
to determine the concentration of imidacloprid in water. The FTIR spectra of imidacloprid water 
solutions with different concentrations (0–0.41 g/L) in 700–4,000 cm–1 were measured and the cor-
responding dataset was constructed, and the concentrations were predicted by the MLF-1DCNN. 
The effect of the spectral data preprocessing by multivariate scattering correction (MSC) and stan-
dard normal variate (SNV) transformation on improving the concentration prediction accuracy 
was studied. The result shows that the SNV preprocessing has the better prediction effect. The 
comparison of our model with partial least squares (PLS), support vector regression (SVR) and 
multiple linear regression (MLR) shows that our model can effectively predict the imidacloprid 
concentrations with a higher prediction accuracy than the other comparative models. The results 
obtained in this study demonstrate the analytical potential of applying this method to rapidly 
predict imidacloprid concentration in water.
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1. Introduction

Correct use of pesticides plays an important role in pre-
venting crop diseases, pests, rodents, etc., and promoting 
high-quality and high-yield crops. With the increase in the 
production and consumption of pesticides year by year, 
the release of pesticide to the environment will increase, 
which will inevitably lead to an increase in the harm risk 
of human beings by the pesticides with high toxicity, 

strong stability, and leading to biological aggregation [1,2]. 
Usually, the utilization rate of pesticides is low, that is, 
most of the pesticides will remain in the environment, for 
example entering the soil and water through precipitation, 
surface runoff and soil leaching, thereby destroying the 
ecosystems [3] and posing a great threat to human health 
[4,5]. Imidacloprid is a kind of insecticide with high effi-
ciency, long residual effect, easy absorption and potent 
contact killing [67], and if it enters the environment in 
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large quantities, it will cause great harm on environment, 
including aquatic organisms, industrial and agricultural 
production water [8]. Therefore, the research on imida-
cloprid residues in the water is an essential part of water  
quality testing.

There are some available methods for the detection of 
imidacloprid, such as gas chromatography-mass spectrom-
etry (GC-MS) [9], high performance liquid chromatogra-
phy (HPLC) [10], HPLC-mass spectrometry (HPLC-MS) 
[11], nano-capsule probe [12] and nano-plasmonic bio-
chips [13]. In addition, researches show that the specific 
fluorescence response of Tyr-MoO3 quantum dots toward 
imidacloprid [14] or the colorimetric reaction via the aggre-
gation of functionalized metal nanoparticles induced by 
pesticides as colorimetric sensors [15] can also be used 
for the detection of imidacloprid. These detection meth-
ods mentioned above are generally time consuming with 
many steps and costly. With the development of pesticide 
residue analysis technology, the simplified, miniaturized 
and high-sensitivity detection methods are constantly 
emerging. The infrared spectrum can be used in the quan-
titative analysis of pesticide residual, which uses Lambert–
Beer law, that is, the absorption strength of a substance to 
light at a certain wavelength is proportional to the con-
centration and the thickness of the absorbing substance. 
Accordingly, the sample to be tested is put into the sample 
cup of the infrared spectrometer, and the corresponding 
absorbance is obtained by scanning and the transmittance 
at the selected wavelength band is measured to obtain the 
content of the tested sample. Quantitative detection can 
also be performed by combining spectral data and mod-
eling including partial least squares (PLS), multiple linear 
regression (MLR) and artificial neural network (ANN) 
[16–22]. For example, Soyeurt et al. [16] used the infrared 
spectroscopy to analyze the content of several elements 
in milk. Basalekou et al. [21] combined infrared spectros-
copy and least squares discrimination to accurately iden-
tify wines. In recent years, convolutional neural networks 
(CNNs) have been applied to spectral analysis. For exam-
ple, Ng et al. [22] used a CNN with visible/near-infrared, 
mid-infrared and their combined spectra to predict soil  
properties.

So far, for the concentration prediction of imidacloprid 
in water, there is the lack of FTIR spectral dataset of imida-
cloprid in water with different concentrations and its efficient 
detection model. In this paper, the corresponding dataset 
was constructed and a one-dimensional CNN model based 
on multilevel feature fusion (MLF-1DCNN) was proposed to 
predict the concentration of imidacloprid in water.

2. Materials and methods

2.1. Experimental materials

The tested imidacloprid water dispersible granules, 
with an active ingredient content of 70%, were purchased 
from Yi Nong Plant Protection Mall. In our experiment, 
the imidacloprid in water with 42 different concentrations 
from 0 to 0.41 g/L with the gradient of 0.01 g/L were used. 
All the imidacloprid solutions with different concentra-
tions were prepared under the same environmental con-
ditions with the same water sample.

2.2. Experimental equipment

In this experiment, the infrared spectra of different con-
centrations of imidacloprid in water were detected by the 
FTIR spectrometer (Perkin Elmer), which includes a light 
source, an interferometer, a sample room, a detector and a 
computer (convert the interference signal into spectrum), 
as shown in Fig. 1. The detection principle is that when 
light source passing through the interferometer and sam-
ple room, all wavelengths of light source enter the detector 
at the same time, and the total light signal is split through 
Fourier transform (FT) calculation and the intensity of differ-
ent wavelength is extracted to form the entire FTIR spectrum.

2.3. Data description

In our experiment, during detecting the imidacloprid 
concentration in water by FTIR, the wavenumber range is 
700~4,000 cm–1 and each spectral curve is obtained by aver-
aging eight scans. For each concentration of imidacloprid in 
water, 50 spectral curves were collected through repeated 
measurement, that is, a total of 2,100 spectra curves were 
collected from the 42 concentration samples of the imi-
dacloprid water solutions. The obtained original 2,100 
spectra curves with different concentrations are shown in 
Fig. 2. It can be seen that there are obvious absorption peaks 
in these samples in 1,500–1,700  cm–1 and 3,000–3,700  cm–1 
with the strongest peaks mainly at 1,636 and 3,310 cm–1.

Because the 2,100 original spectral curves in Fig. 2 
are close together, the spectral characteristics of different 
concentrations cannot be seen intuitively. By averaging 50 
spectral curves at each concentration to obtain the aver-
age spectrum, the variation of spectrum with imidacloprid 
concentration can be analyzed. Fig. 3a shows the example 
of average spectral curves at four different concentrations. 
It can be seen that the spectral intensity increases as imi-
dacloprid concentration, especially at 1,636 and 3,310 cm–1. 
In order to show the contribution of imidacloprid to the 
spectral peaks more clearly, the spectra curves at differ-
ent concentrations by deducting the influence of water 
from the original curves were shown in Fig. 3b. It can 
be seen that imidacloprid mainly contributes the wider 
peak at 2,700–3,700 cm–1 and the peaks of about 1,636 and 
1,065  cm–1. The areas of these peaks mainly increase as 
the concentration and there is a relationship between the 

Fig. 1. Structure diagram of Fourier transform infrared spec-
trometer.
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areas of these peaks and the imidacloprid concentration. 
Thus, the method based on the calculation of the charac-
teristic peak areas of imidacloprid in FTIR spectra is com-
monly used. However, with this method, it is needed to 
find the characteristic peaks first and calculate the peak 
areas, then the concentration of imidacloprid can be 
obtained, which is time consuming and manual. Since the 
spectra at different concentrations differ in overall and in- 
detailed shapes, we propose the MLF-1DCNN model 
to quickly identify the concentration of imidacloprid 
water solution without calculating the areas of the peaks 
and without calculating the deduction of the spectra of 
imidacloprid water solutions and the spectra of water.

2.4. Spectra data preprocessing

The original spectral data can be affected by different 
noise interferences from the environmental background 
(for example, illumination) and from the instrument per-
formance (for example, random error), causing baseline 
drift, light scattering, and sample inhomogeneity, which 
may influence the accuracy of the predicated concentra-
tion. In order to make the extracted spectral data more 
accurate and more effective, so that it can be used for the 

fast and accurate identification of our proposed model. 
It is necessary to preprocess the original spectra data to 
eliminate or reduce the noise influences. In this paper, we 
will compare the effectiveness of two preprocessing meth-
ods, that is, multivariate scatter correction (MSC) and 
standard normal variable (SNV) transformation.

MSC is one of the commonly used algorithms to elimi-
nate the influence of light scattering, baseline translation and 
offset. The MSC algorithm assumes that the effect of light 
scattering on each sample at each wavelength is linear, and 
the algorithm is as follows.

(i) Calculate the average spectrum xi  of all spectra 
from Eq. (1), and use the average spectrum as the standard 
spectrum.

x
x
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ii

n

= =∑ 1 	 (1)

(ii) Perform a linear regression operation on the spec-
trum of each sample and the standard spectrum by Eq. (2) 
to obtain the regression constant ai and regression coefficient 
bi of each spectrum relative to the standard spectrum.

x a b xi i i i= + 	 (2)

(iii) The corrected spectrum xMSC is obtained by perform-
ing MSC by Eq. (3).

x
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b
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In MSC preprocessing, the relative baseline inclination 
of each spectrum is corrected by subtracting the linear shift 
amount from the original spectrum of each sample and 
dividing by the regression coefficient, so that under the ref-
erence of the standard spectrum the baseline shift and off-
set of each spectrum are corrected, which is different for 
the imidacloprid samples of each concentration. The corre-
sponding spectral absorption information has no influence 
in the whole process of data processing, and thus the MSC 
preprocessing improves the spectral signal-to-noise ratio.

Fig. 2. Original 2100 FTIR spectra of imidacloprid in water 
with the different concentrations from 0 to 0.41 g/L.

Fig. 3. Average spectra of the imidacloprid water solutions with four concentrations (a) and the corresponding spectra after 
deducting water spectrum (b).
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For the method of SNV, the purpose of subtracting the 
linear translation from the original spectrum of each sam-
ple is very similar to the multivariate scatter correction, 
both to eliminate the influence of scattering effects. SNV 
considers that the scattering of the spectra satisfies a cer-
tain distribution law (i.e., standard normal distribution), 
and the spectral correction on each detection data of a 
spectrum curve according to the mean values of individ-
ual spectrum curve can be performed. Therefore, in most 
cases, the correction effect of SNV is better than MSC. 
The correction formula of SNV is shown in Eq. (4).
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 and m is the number of detected 
wavelengths.

In this paper, both MSC and SNV are carried for the 
FTIR data processing of the imidacloprid water solutions 
with different concentrations. The preprocessed results 
by MSC and SNV are shown in Fig. 4a and b, respectively. 
In our experiment, the average spectrum was taken as the 
standard or ideal spectrum for MSC correction, which is 
practically acceptable and feasible. Through our MSC cor-
rections, the spectral curve error is improved, the spectral 
characteristic absorption information related to imidaclo-
prid content was enhanced, and the intensity range of all 
spectra becomes less dispersed decreasing from 0–0.6 to 
0–0.4. Thus, the spectra curves become smoother and the 
characteristic information of all the spectra is increased, as 
shown in Fig. 4a. For the SNV preprocessing, the spectral 
curves after correction are shown in Fig. 4b. From each 
spectrum curve, it is seen that each detected data of indi-
vidual spectrum curve was corrected according to Eq. (4), 
which makes the overall curve shape different from MSC. 
In the later model training and testing, these corrected 
spectral curves by MSC and SNV will correspond to the 
concentration labels.

3. Model framework

In this paper, based on the preprocessed FTIR spectra, 
the MLF-1DCNN is proposed to detect the concentrations 

of the imidacloprid water solutions, as shown in Fig. 5. The 
model consists of five convolution layers, two max pooling 
layers and five full connection layers. Meanwhile, two skip 
connection branches (C3-FC1 and C4-FC2) are also included 
to fuse low-level and high-level features. In the multi-layer 
feature fusion module, for FC1, FC2 and FC3, each con-
tains three linear layers shown in Fig. 5b. For FC4 and FC, 
each contains one linear layer. The low-level local features 
of the spectra are extracted from the input 1D spectral data 
through two convolution layers and two pooling layers, and 
then the features of C3, C4 and C5 layers are fused by the 
skip connection method. Finally, the prediction results of 
the data are deduced through FC4 and the final FC layer. 
The multi-level feature fusion module can directly transfer 
the feature mapping of C3, C4 and C5 layers to FC4, which 
can fuse the low-level local features and high-level global 
features, realize the comprehensive utilization of multi-
level data features, improve the overall feature extraction 
ability of the model, and improve the prediction ability 
of the model. Its basic parameters as shown in Table 1.

4. Results and discussion

4.1. Experimental environment

Experiments are performed on an NVIDIA GeForce 
GTX 1050 Ti GPU. In addition, it adopts Intel (R), Core (TM) 
i7-9700k (3.00 GHz) processor and 32 GB memory. The oper-
ating system is Windows 10 (64-bit). The implementation 
of the model uses Pytorch. To achieve faster graphics com-
putation and less storage overhead, the Compute Unified 
Device Architecture (CUDA) toolkit 10.0 is applied in the 
experiments.

4.2. Performance evaluation index

In order to verify the performance of the proposed 
model, the determination coefficient R-square (R2), the root 
mean squared error (RMSE), the mean absolute error (MAE), 
the maximum error (Max Error) and median absolute error 
(MedAE) are performed and documented. The above five 
evaluation indicators are defined as follows.
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Fig. 4. Comparison of the preprocessed results by (a) MSC and (b) SNV on the FTIR spectra of the imidacloprid water solutions 
with different concentrations from 0 to 0.41 g/L.
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where n is the number of samples, yi is the true value, and 
ŷi is the predicted value. When the R2 value is larger and 
closer to 1, it indicates that the predicted value is closer 
to the true value and that the prediction accuracy of the 
model is higher. RMSE and MAE indicate the error between 
the true value and the predicted value, and the smaller 
it is, the higher the prediction accuracy of the model is. 
Max Error can show the tolerance of the model for edge 
data and the robustness and generalization ability of the 
model. The smaller the value, the stronger the robustness 
of the model. MedAE value is used to measure the devia-
tion between the predicted value and the true value. The 
smaller the deviation, the higher the reliability of the model.

4.3. Experimental results

Before the model training starts, the dataset of the 2,100 
preprocessed FTIR spectra curves of the imidacloprid water 
solutions with different concentrations was constructed, 
in which 80% data in the dataset is randomly selected 
as the training set and the remaining 20% of the dataset 
is used as the validation set. The hyperparameter settings 
during the training process are shown in Table 2.

In model training, mean square error (MSE) is used as 
the loss function, which is defined in Eq. (10).

MSE = 1 2

1n
y yi ii

n
−( )=∑  	 (10)

Fig. 5. The architecture of MLF-1DCNN.

Table 1
The structure and parameters of the MLF-1DCNN model

Network layer Parameters

Input layer Spectral data
Convolutional layer C1 Convolution kernel 5, stride 3, 

activation function ReLU
Pooling layer S1 Max pooling, size 5, stride 2
Convolutional layer C2 Convolution kernel 5, stride 3, 

activation function ReLU
Pooling layer S2 Max pooling, size 5, stride 2
Convolutional layer C3 Convolution kernel 5, stride 3, 

activation function ReLU
Convolutional layer C4 Convolution kernel 5, stride 1, 

activation function ReLU
Convolutional layer C5
Fully connected layer
Output layer

Convolution kernel 5, stride 1, 
activation function ReLU
Linear activation function
Output a neuron
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where n is the number of samples, yi is the true value, and ŷi  
is the predicted value.

Fig. 6 compares the prediction results of MLF-1DCNN 
(using the parameters in Table 2) without and with the 
preprocessing methods of MSC and SNV. In Fig. 6a–c 
each figure has a black line with the slope of 1.0, which 
indicates that if the predicted concentration values are on 
the black lines, it means that the predicted concentrations 
are equal to the real concentrations, that is, the prediction 
results on the lines are the most accurate. The deviation 
degree of the predicted concentrations from the lines and 
the number of deviation points can show the prediction 
effect of the method. The closer the predicted value is to 
the line, the more accurate the predicted value is. From the 
comparison of Fig. 6a–c, it is seen that more data points 
deviate from the black line in Fig. 6a than in Fig. 6b and 
c, which shows that without data preprocessing, the pre-
dicted concentrations exhibit larger deviation from the 
real concentrations than with data preprocessing. In addi-
tion, different data preprocessing methods also influence 
the prediction results. The comparison of Fig. 6b and c 
shows the predicted concentration by SNV preprocessing 
is closer to the real concentration than by MSC.

In order to further present the influence of data prepro-
cessing method on the prediction effect of MLF-1DCNN, 
this paper also conducts a detailed evaluation through the 
five evaluation indicators. In comparing the evaluation 
indicators of different methods, the largest determination 
coefficient R2 and the smallest error indicators are high-
lighted in bold. From these specific indicators in Table 3, it is 
seen that the MLF-1DCNN model with SNV preprocessing 

has the highest R2 value and all the lowest error indicators 
(in bold), showing the best performance on the prediction 
of the concentration of the imidacloprid water solutions. 
Therefore, in the following part, the dataset preprocessed 
by SNV are selected for the optimization of MLF-1DCNN.

In machine learning training, the learning rate (LR) 
has an important influence on whether the training pro-
cess can converge and the convergence speed. In order 
to obtain the best learning rate in MLF-1DCNN train-
ing process, the prediction accuracy of the model under 
different learning rates was compared. Fig. 7 shows the 
prediction effect of the MLF-1DCNN model under differ-
ent learning rates (In this paper, the meaning of the black 
lines in Figs. 7–10 is same to that in Fig. 6, that is, the 
points on these lines indicate that the predicted concen-
trations are equal to the real concentrations.). From Fig. 7 
it can be clearly seen that the prediction effect is the worst 
at LR  =  0.005, but at LR  =  0.001, 0.0005 and 0.0001, the 
prediction effect of MLF-1DCNN is difficult to distin-
guish by the naked eyes. So, it is necessary to compare 
the five evaluation indexes, shown in Table 4. As can be 
seen, at LR = 0.0005, R2 is the highest and the error eval-
uations are the lowest (except for the Max Error ranking 
second), showing the best performance of the model at 
LR  =  0.0005. Therefore, LR  =  0.0005 is selected for MLF-
1DCNN to make concentration prediction.

Similarly, different batch size will also have impact 
on the prediction result of imidacloprid concentration, as 

Table 2
MLF-1DCNN model training hyperparameter settings

Hyperparameters Numerical value

Learning rate (LR) 0.0001
Minimum sample of input batch 16
The maximum number of iterations 5,000
Optimization Adam

Fig. 6. Comparison of the predicted concentrations of the imidacloprid in water of the MLF-1DCNN model of without data 
preprocessing (a) and with the preprocessing by MSC (b) and by SNV (c).

Table 3
Comparison of evaluation indicators for using MLF-1DCNN 
with and without data preprocessing

Dataset R2 RMSE MAE Max Error MedAE

Without data 
preprocessing

0.9797 0.0165 0.008 0.1273 0.0041

With MSC 
preprocessing

0.9969 0.0066 0.0037 0.0598 0.0025

With SNV 
preprocessing

0.9984 0.0048 0.0031 0.0271 0.0019
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shown in Fig. 8. It is seen that when batch size is set to 16, 
the prediction effect is the best. At the same time, when the 
batch size is 16, the results of the five evaluation indicators 

(i.e., the highest R2 and the lowest errors) also show the best 
performance on the imidacloprid concentration prediction, 
which is shown in Table 5. Considering with the results 
of Fig. 8 and Table 5, the batch size is finally selected as 16.

In order to verify the impact of multi-level feature fusion 
(MLF) module on the performance of 1DCNN, we compared 
the predicted results by 1DCNN with and without MLF 
module, which are shown in Fig. 9 and Table 6. As can be 
seen from Fig. 9a, the predicted concentrations of our model 
(MLF-1DCNN) are closer to the real concentrations. In addi-
tion, in Table 6, the results of our model with the highest R2 
and lowest error indicators show that the better prediction per-
formance. If the MLF module is removed, that is, the model 
becomes the 1DCNN (Fig. 9b and Table 6), R2 is decreased from 
0.9988 to 0.9911 and all the error indicators are significantly 

Fig. 7. Comparison of the prediction results by MLF-1DCNN model with different learning rates.

Table 4
Prediction and evaluation indicators of our model (MLF-
1DCNN) with different learning rates (LRs)

LR R2 RMSE MAE Max error MedAE

0.005 0.3153 0.0981 0.0572 0.6737 0.0391
0.001 0.9966 0.007 0.0042 0.0639 0.0031
0.0005 0.9988 0.004 0.0024 0.0274 0.0016
0.0001 0.9984 0.0048 0.0031 0.0271 0.0019
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increased. These results indicate that the MLF module can 
improve the prediction performance of the 1DCNN model 
with making the prediction results more accurate.

In this paper, the comparison on the predicted imida-
cloprid concentrations by MLF-1DCNN (with the selected 
parameters in Table 2) with the methods of Support Vector 
Regression (SVR), Multiple Linear Regression (MLR) and 
Partial Least Squares (PLS) are also conducted. Fig. 10 
shows the comparison of the predicted imidacloprid con-
centrations by different models. From Fig. 10 it is seen that 
compared with other models, our model (MLF-1DCNN) 
has fewer deviation points and weaker deviation from 
the real concentration, which indicates that our model 
has better prediction performance, that is, the predicted 
concentration by our model fits the real concentration 
best, followed by PLS, and the worst is SVR.

Table 7 shows the evaluation indicators of imidacloprid 
concentration prediction by different models. It is seen 
that in these comparative models, our model has the larg-
est coefficient of determination R2 and the smallest error 
indicators. The R2 value of our model (0.9988) is very close 
to 1, which is 11.4% higher than that of PLS and 57.1% 

higher than SVR. The results of five evaluation indicators 
in Table 7 show that our model has the best prediction 
performance for the determination of the concentration 
of imidacloprid in water.

Compared with some traditional detection methods 
such as chromatography, mass spectrometry and their 
combination, the proposed method in this study does 
not need to obtain the detailed information of the spec-
tral peaks, and it makes the detection of imidacloprid 
pesticides simpler and faster. In addition, the proposed 
method extracts the spectra features through a 1DCNN 
with the multi-level feature fusion module, which can cor-
relate and fuse the features of low levels and high levels 
of the spectra, and thus improves the feature extraction 
and generalization ability of the model and effectively 
improves the accuracy of model. The ablation experi-
ment (in Fig. 9 and Table 6) proves the effectiveness of the 
multi-level feature fusion module. Compared with tradi-
tional machine learning methods, such as SVR, MLR and 
PLS, the proposed model shows the better performance, 
indicating the potential advantages of this method in the 
pesticide detection.

Fig. 8. Prediction comparison of imidacloprid concentration by MLF-1DCNN with different batch sizes.

Fig. 9. Comparison of the prediction results by our model (MLF-1DCNN) and 1DCNN model.
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5. Conclusion

In order to accurately predict the concentration of imi-
dacloprid in water, the FTIR dataset of imidacloprid water 
solution was constructed in this paper, and the SNV cor-
rection was used to preprocess the spectra data. A 1DCNN 
based on multi-level feature fusion is proposed, which 
fuses low-level features and high-level features in the FTIR 
spectra by adding two skip-connection branches, which 

Fig. 10. Comparison of the predicted imidacloprid concentrations by different models.

Table 5
Prediction and evaluation indicators by MLF-1DCNN with 
different batch size

Batch size R2 RMSE MAE Max error MedAE

16 0.9988 0.004 0.0024 0.0274 0.0016
32 0.9965 0.0071 0.0044 0.0563 0.0028
64 0.993 0.0101 0.0076 0.038 0.0056

Table 6
Evaluation indicators of imidacloprid concentration predic-
tion by MLF-1DCNN (ours) and 1DCNN

Methods R2 RMSE MAE Max error MedAE

Ours 0.9988 0.004 0.0024 0.0274 0.0016
1DCNN 0.9911 0.011 0.007 0.0931 0.0043

Table 7
Evaluation indicators of imidacloprid concentration prediction 
by different models

R2 RMSE MAE Max error MedAE

SVR 0.6358 0.0709 0.0555 0.2937 0.0475
MLR 0.8117 0.1581 0.0524 0.1587 0.0121
PLS 0.8963 0.0386 0.0226 0.216 0.0135
Ours 0.9988 0.004 0.0024 0.0274 0.0016
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improves the ability to extract spectral features. The results 
show that the model can accurately predict the concentra-
tion of imidacloprid in water, and the prediction effect is 
better than other comparative models. At the same time, 
the effectiveness and performance of the proposed model is 
better than the traditional detection or prediction methods, 
which provides a new method for pesticide detection.
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