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a b s t r a c t
Water treatment demands have intensified increased due to aggravated environmental pollu-
tion. Finding materials to remove toxic contaminants, which include heavy metal ions, organic 
dyes and radionuclides, have become highly urgent. Adsorption, as one of the widely used 
water purification technology, has attracted much attention because of its low cost and high effi-
ciency. Traditional adsorbent’s applications are limited by their poor selectivity, high recycling 
cost, and small specific surface area. MXene, an emerging two-dimensional layered material, 
has attracted much attention owing to its excellent hydrophilicity and adjustable surface proper-
ties. Particularly, in the domain of adsorption. A large number of MXene-based adsorbents have 
shown great promising in numerous researches. Based on this, in order to understand the adsorp-
tive behavior of MXene-based materials, a detailed and comprehensive review is necessary. The 
purification progress via MXene-based adsorbents is easy to be affected by not only the operat-
ing condition of application but also the structure of materials, such as interlayer space and sur-
face group composition. Therefore, this review summarizes recent advances in water treatment 
via MXene-based adsorbents. The synthesis of MXene used in adsorption is presented. The effect 
of the structure of MXene on the adsorption of various contaminants by comparing the pre-
vious data of the kinetics, isotherms and uptake capacity is discussed. Finally, this article also 
covers those strategies that can elevate adsorption capacity by changing the structure of MXene.
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1. Introduction

The requirement for high-quality water has increased 
as a results of population development and industrial-
ization [1]. So far, more than 700 different contaminants 
have been discovered in natural water [2]. Among them, 
heavy metals, organic dyes, and radioactive elements 
have become widely researched objects due to their 
non-biodegradability, gene mutation, and carcinogenicity 
[3,4]. Numerous removal methods for the three types of 

pollutants mentioned above have been developed, includ-
ing chemical precipitation [5], advanced oxidation [6], 
ion-exchange [7], membrane separation [8], and adsorp-
tion. However, the complex composition of wastewater 
poses a severe application limitation for above technolo-
gies. Adsorption technology has attracted great attention 
because of its low cost and high efficiency. A large number 
of natural materials has been considered absorbents with 
certain adsorption capacity, such as kaolinite [9], activated 
carbon, and bentonite clay [10]. While, the defects such as 
low selectivity, high recycling cost, and the large volume 
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of traditional natural adsorption materials hindered their 
practical applications. Recently, two-dimensional mate-
rials have been considered one of the most promising 
adsorbents [11–13]. With a large specific surface area, 
these two-dimensional materials have exhibited excellent 
removal capacity for pollutants [12]. MXene, an emerging 
two-dimensional material, has attracted much attention in 
water treatment due to its abundant surface groups, high 
hydrophilicity and structural stability [4].

MXene is produced from the layered ternary MAX 
phase. MAX phase is a general term for various different 
metal nitrides or carbides, which conform to the formula 
of Mn+1AXn. Where “M” represents the early transition met-
als, the “A” is the elements of group IIIA or IVA, “X” is 
carbon or nitrogen and the “n” generally takes from one 
to four [14]. Owing to the differences in relative strengths 
of the M-A bonds and M-X bonds, MXene can be obtained 
by removing the “A” layer atoms from the MAX phase via 
hydrofluoric acid (HF) etching [15,16]. The general for-
mula of MXene is Mn+1XnTx (n = 1, 2, 3). Here, the “T” rep-
resents the surface terminal group such as −O, −F, –Cl and 
−OH. The symbol “x” is the number of surface groups.

In recent years, MXene-based materials have been 
used for water purification as an adsorbent [17–19]. These 
studies have confirmed that MXene-based adsorbents can 
remove various environmental contaminants owing to their 
abundance of active sites, hydrophilic nature and high sur-
face area. With the development of various MXene-based 
adsorbents and modification strategies, it is extremely 
important to comprehensively understand the relation-
ship between the structure and adsorption performance of 
MXene to improve its application performance.

This review focuses on the scientific advances in the 
water purification of MXene as the adsorption material over 
the past decade. Although some review articles on MXene 
in the field of water treatment have been published, they 
either focused on the comprehensive application or tar-
geted other particular domains. For example, one study 
reviewed the synthesis, characteristics, and comprehensive 
environmental applications of MXene [20], while another 
looked at MXene-based water treatment membranes [21]. 
However, few review papers focused on the effects of the 
structure of MXene on adsorption properties. Furthermore, 
since numerous MXene adsorption materials have been 
developed and applied to water purification; therefore, in 
order to scientifically design MXene-based adsorbent, it 
is necessary to pay more attention to the influence of the 
structure of MXene on adsorption performance. This pres-
ent review briefly introduces the preparation methods of 
MXene materials used in the adsorption domain and ana-
lyzes the relationship between the structure of MXene, 
especially the topography and group composition, and 
adsorption performance by comparing the thermodynamic, 
kinetic, and adsorption data from the previous reports. 
Finally, we summarize those strategies that can elevate 
sorption capacity by changing the structure of MXene.

2. Synthesis and surface chemical properties

Until now, more than thirty kinds of MXenes have 
been obtained by selective removal of A-layers atoms 

from nitride, carbide, or carbo-nitride. According to differ-
ent preparation methods and MAX precursor phases, the 
atomic structures of these MXenes can be classified into 
three types: M2XTx, M3X2Tx, and M4X3Tx [22]. Generally, 
most of the MXenes used for adsorption are M3X2Tx. There 
are two main strategies for the synthesis of MXene, sum-
marized as top-down and bottom-up mechanisms. The 
former mechanism corresponds to the exfoliation of MAX 
precursor into single-layered MXene sheets, and the lat-
ter concentrates on the growth of MXene from atoms or 
molecules. Most of the current preparation routes belong 
to the former strategy, which includes HF etching, in-situ 
HF etching, alkali etching, etc. These preparation methods 
endow MXene with unique structure and surface prop-
erties reflected in exterior groups and interlayer spacing. 
Here, only the common preparation methods of MXene 
used in adsorption are introduced.

2.1. HF etching

Most parts of MXenes-based adsorbents reported to 
date are generally synthesized by etching in HF, and this 
method was first proposed in 2011 [15]. The etching process 
involves the destruction of M-A bonds by strong acids and 
the formation of surface group structures [20,22,23]. The fol-
lowing are the reaction equations:

Ti AlC HF AlF H Ti C3 32 3 2 23 3
2

� � � �  (1)

Ti C H O Ti C OH H3 22 3 2 2 22� � � � �  (2)

Ti C HF Ti C F H3 2 3 2 2 22� � �  (3)

As can be seen from the above reaction equations,  
–OH, –F groups are formed on the MXene surface by this 
method, which imparts MXene good hydrophilicity and 
dispersibility to be a great adsorbent to treat water. Due 
to van der Waals forces, the production in this way has a 
restack trend to form an accordion-like structure (Fig. 1) 
[24]. This unique structure makes layer spacing one of the 
main factors affecting MXene adsorption. Different pro-
cess conditions may lead to the distinction of interlayer 
spacing [16]. It will be discussed in Section 2.4 – Synthesis 
conditions and structure characteristics.

Simple operation and considerable laboratory yield 
are the advantages of this method. But the HF etching pro-
cess involves the usage and post-use treatment of HF solu-
tion, which is extremely dangerous for operators. Hence, 
the development of more safety and environmentally 
compatible methods for MXene synthesis is warranted.

2.2. In-situ HF etching

To avoid the hazardous and toxic impact of HF, an 
alternate way of preparing MXene has developed. Less 
hazardous acids (such as hydrochloric acid or sulfuric 
acid) can be used to form hydrofluoric acid with fluoride 
salts, such as KF, NaF, NH4F and FeF3 [26,27]. The reaction 



63Y. Liu et al. / Desalination and Water Treatment 284 (2023) 61–71

mechanism is the same as HF etching. Theoretically, fluo-
ride salts formed by the elements of the first groups can 
be used to prepare MXene [20]. Compared to HF etch-
ing, the resulting product by this way has a larger layer 
spacing owing to the cationic intercalation effect. It can be 
characterized by the c lattice parameter. For example, the 
c lattice parameter of Ti3C2Tx etched by hydrofluoric acid 
is only 1.98 nm, while that of the same Ti3C2Tx etched by 
fluoride salts is 2.47 nm [28].

In addition, MXene produced in this way possesses 
few defects and a larger lateral size [28–30]. Based on the 
above, it is one of the most commonly used methods for 
the preparation of MXene adsorbents.

2.3. Intercalation and delamination

Intercalation and delamination are two major processes 
for getting single-layered MXene. Both HF etching and 
in-situ HF etching produce multilayered MXene samples, 
which results in a limited specific surface area of MXene, 
and some adsorption sites are unavailable. Intercalation is 
conducted after etching to expand the space between the 
layers of accordion-like MXene, and delamination is con-
ducted after intercalation to produce single-layered MXene 
to get a larger specific surface area and release more active 
sites. The common intercalants include dimethyl sulfox-
ide, tetraalkylammonium compounds, alkaline solutions 
and water molecules [30]. Delamination can be achieved 
by three methods: centrifugation alone, hand-shaking 
and sonication. Hand-shaking separates multilayered 
Ti3C2Tx powder, produced by (7.5 M LiF/9 M HCl), into 
single and obviously large flakes [31]. It resulted in a 
few defective single flakes and a higher concentration of 

MXene [22]. Sonicating results in smaller flakes with more 
defects and may also yield higher concentrations.

2.4. Synthesis conditions and structure characteristics

So far, all MXenes produced by the methods described 
above always have surface terminations such as fluo-
rine, oxygen, or hydroxyl, which impart hydrophilicity to 
their surfaces and make them suitable for adsorption [32]. 
Different preparation methods and process conditions 
affect the product structure of MXene. It is mainly reflected 
in surface groups and interlayer spacing.

The MXene made by HF have more –F groups and less 
oxygenated groups than that synthesized by the in-situ 
HF method (Fig. 2) [33]. The process conditions also have 
an influence on the proportion of different surface groups. 
With the concentration of HF increased from 5 to 30 wt.%, 
the proportion of –F terminations increased by 11.66% 
(from15.85% to 27.51%), and the oxygen-containing termi-
nations decreased by 7.77% (from 16.59% to 8.82%) [14]. 
The –F group has a better affinity for cationic dyes than –O, 
while Oxygenated groups, such as –OH and –O, have better 
for heavy metal ions and radionuclides [34–36]. Therefore, 
the appropriate preparation method can be selected accord-
ing to the contaminant. Interestingly, the heating process 
promotes the change of surface groups from –F to –O, and 
even makes part of the MXene surface bare [37]. It allows 
further functionalization according to the application 
demand of adsorption.

Interlayer spacing is an important structure parameter 
for adsorption; narrower interlayer spacing prevents pol-
lutants from interlayer space, thereby limiting the number 
of react sites and decreasing the adsorption capacity [38]. 

Fig. 1. Morphological structure of (A) Ti3AlC2 phase before HF treatment, (B) accordion-like structure of Ti3C2 after HF etching and 
(C) schematic of the exfoliation process from MAX phases to multilayer MXene. Reproduced with permission Naguib et al. [25]. 
Copyright 2012, American Chemical Society.
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The interlayer spacing was affected by etching conditions 
and intercalation of organic solvents, cations and water 
molecules in the preparation process [22,30]. At a unified 
reacting time (24 h) and temperature, when the HF concen-
tration increased from 10 to 25 wt.%, the interlayer spac-
ing was enlarged; but with the HF concentration increased 
from 25 to 50 wt.%, the interlayer spacing was shrunken. 
It is attributed to the formation of ternary fluorides and 
long etching time [14,22,39]. Regarding the effect of tem-
perature, there is a positive correlation between reaction 
temperature and layer spacing [14,40]. Regarding the influ-
ence of intercalants, after treatment with 5% NaOH solu-
tion, the surface areas of Alk-Ti3C2Tx (76.42 m2/g) are much 
bigger than Ti3C2Tx (9.78 m2/g), which can be attributed 

to the enlargement of the interlayer spacing by intercala-
tion of Na+ [41]. These intercalants expand the interlayer 
spacing by weakening the van der Waals forces through 
ion-exchange and osmotic swelling [24].

3. Adsorption application

3.1. Heavy metal

Removing heavy metal contaminants has attracted much 
attention because of their high toxicity to organisms. Pb(II), 
Cr(IV), Hg(II), Cd(II), and Cu(II) are standard pollutant 
components in the wastewater. Due to the complex com-
position of polluted wastewater and the refractory biode-
gradability of heavy metals, adsorption is considered to be 
the most effective way to remove heavy metal ions. Heavy 
metal ions can be adsorbed by MXene through interactions 
such as electrostatic attraction [39], ion-exchange [18], and 
chelation [42]. So far, numerous studies on the removal of 
heavy metal ions by MXene-based adsorbents have been 
carried out, as shown in Table 1. In this section, the effect 
of operating conditions and structure of MXene-based 
absorbent on adsorption efficiency were discussed.

Numerous researches have shown that adsorption per-
formance is associated with oxygen exchange sites, such 
as –OH, –O–. According to First-Principles Calculations, 
the adsorption efficiency of heavy metal ions for MXene is 
restrained by –F groups [36]. The surface group of MXene 
can be altered by functionalization. For instance, Peng et al. 
[44] reported that the MXene treated with alkalization has 
a better adsorption effect than pristine. After alkalization, 
the X-ray diffraction (XRD) spectrum revealed a decrease 
in the F peak as well as the presence of a Na peak. It indi-
cates that the alkalization process involves the conversion of 
–F to –OH and the intercalation of Na+. With similar group 
modification, the Alk-Ti3C2 exhibits improved Ba2+ treat-
ment performance, with maximum Ba2+ adsorption reaching 

Fig. 2. Composition of the Ti3C2Tx surface functional groups 
produced by HF etching of Ti3AlC2 and in-situ HF etching 
of Ti3AlC2. Reproduced with permission Hope et al. [33]. 
Copyright 2016, Royal Society of Chemistry.

Table 1
Comparison of MXene-based adsorbent for heavy metal removal

Material Pollutant pH Temperature 
(°C)

Pollutant 
concentration (mg/L)

Materials 
dose (mg/L)

Maximum 
uptake (mg/g)

References

Ti2CTX-EHL Pb(II) 1–6 30 200 1,600 233 [18]
Ti3C2TX-NH2 Pb(II) 6.3 5 25 100 385 [42]
Ti3C2Tx-KH570 Pb(II) 1–6 30 500 1,280 147 [43]
Alk-Ti3C2Tx Pb(II) 5.8–6.2 0 100 400 140 [44]
Ti3C2@IMIZ Cr(VI) 2 25 30 200 184 [45]
Ti3C2Tx Cr(VI) 2 25 50 200 170 [46]
Alk-Ti2C Cd(II) 2–9 25 19–561 330 326 [47]
Magnetic Ti3C2Tx Hg(II) 2–9 25 10 25 1,128 [48]
Ti3C2Tx/sodium 
alginate balls

Hg(II) 6 25 25 1,667 933 [49]

Ti3C2Tx Hg(II) 1–6 30 100 500 1,057 [50]
Ti3C2TX-PDOPA Cu(II) 1–11 25 10 200 47 [51]
Ti3C2Tx Cu(II) 1–6 25 25 500 79 [52]
Alk-MXene/LDH Ni2+ 1–14 25 100 100 223 [53]
Ti3C2Tx Ba2+ 3–9 25 1–50 250–500 9 [54]
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46.46 mg/g, nearly three times that of pristine Ti3C2Tx [41]. 
As predicted by the density-functional theory (DFT) result, 
the negative formation energies for the adsorption of Pb2+, 
Cd2+, Cu2+, Pd2+, and Zn2+, indicate that Alk-MXene is an 
ideal material for removing heavy metals [36]. This great 
improvement was attributed to the abundant activated 
Ti–OH sites, they trap for heavy metal ions by electrostatic 
attraction and ion-exchange after deprotonation.

The hydrated radius of most metal ions is larger than the 
layer d-spacing for MXene, which prevents metal ions from 
entering the layer of MXene, which may reduce the adsorp-
tion capacity [55]. Hence, for multilayer MXene, interlayer 
spacing is an essential factor in adsorption. Alkalization fur-
ther enlarges the interlayer spacing by intercalating cations 
for more adsorption sites and faster adsorption [44,56].  
For Pb(II), Alk-Ti3C2 showed an adsorption capacity of 
up to 140 mg/g, which can be considered high compared 
to other two-dimensional adsorbents (Pb(II) adsorption 
by GO–COOH, 96.21 mg/g) [44,57]. Moreover, Alk-Ti3C2 
attained equilibrium in almost 120s, 15 times faster than 
pristine Ti3C2Tx, owing to its enlarged interlayer spac-
ing, which may result in rapid reaction with Pb(II) [58]. 
Likewise, the presence of hydrophilic groups and weak 
bonding forces can bind more water molecules, increasing 
the c-lattice parameters with multilayers of water inserted 
between MXene nanosheets, allowing more metal ions to 
combine with MXene [55].

Temperature influences the adsorption efficiency by 
affecting the diffusion of the metal ions from water to the 
adsorbent [59]. The effect of temperature on adsorption 
was investigated by thermodynamic test and adsorption 
isothermal model. Major reports showed a similar ten-
dency: the negative value of ΔG°, the positive value of ΔH°, 
and the positive value of ΔS°, which represent the sponta-
neous, endothermic, and increased disorder of adsorption 
[45,48,52,60]. ΔH° also reflects the energy information of 
the force involved in the adsorption process. The energy of 
4–10 kJ/mol for van der Waals forces, 5 kJ/mol for hydro-
phobic bond forces, 2–40 kJ/mol for hydrogen bond forces, 
and 40 kJ/mol for coordination exchange [61]. For instance, 
ΔH° of Ni(II) adsorption on Alk-MXene/LDH is 8.96 kJ/
mol; the mechanism can be illustrated by weak interaction 

such as van der Waals force [53]. ΔH° of Hg(II) adsorption 
on MXene/Fe2O3 is 47.56 kJ/mol, reflecting the ion-exchange 
in this process [48]. The negative value of ΔS° also indi-
cates that no substantial variation changed in the internal 
structure of the adsorbent during the sorption process [61].

In summary, the adsorption performance of MXene-
based materials is attributed to the interaction between the 
surface group and adsorbate. The modification method of 
increasing the layer spacing and the active site can theo-
retically improve the adsorption performance of MXene.

3.2. Dyes

Dyes are typical synthetic organic compounds with com-
plex structures and are not treated by only single chemical 
progress. Adsorption is the optimal choice for the removal 
of dyes. Generally, MXene-based adsorbents are nega-
tively charged, which are inclined to attract the positively 
charged dyes to achieve wastewater purification.

The adsorption mechanisms, as numerous studies 
mentioned, are electrostatic interaction [34], ion-exchange 
[62], and hydrogen bonding [63]. The detailed mecha-
nism is shown in Fig. 3a–c. The remove behavior of dyes 
compounds has been explored by previous studies. These 
processes generally effected by many factors such as tem-
perature, pH, and competing ions. Here, the relationship 
between the structure of MXene and adsorption perfor-
mance is discussed. The removal for organic contaminants 
by MXene-based absorbents as shown in Table 2.

Mashtalir et al. [71] reported the adsorption perfor-
mance of multilayer MXene for cationic methylene blue 
(MB) and anionic Acid blue (AB80). The study showed 
that under dark conditions, the concentration of MB 
decreased rapidly within 8 h, while the concentration of 
AB80 remained unchanged after 20 h. It can be attributed 
to the electrostatic interaction between positive-charged 
MB and negative-charged MXene. Structure changes were 
also observed in the adsorption process. XRD spectrum 
showed that the c-lattice parameter of MXene increased 
by 2.0 Å due to partial wedging-in of MB molecules at the 
edge of MXene [71]. The surface group structure is also 
regarded as an essential factor for dye removal. Recent 

Table 2
Comparison of dye adsorption by various MXene-based materials

Material Pollutant pH Temperature 
(°C)

Pollutant concentration 
(mg/L)

Materials 
dose (mg/L)

Maximum 
uptake (mg/g)

References

Few-layer Ti2CTx MB 2–10 35 100–1,500 500 2,461 [64]
Ti3C2Tx/sodium 
alginate

MB 7 25 100 50 92 [65]

V2CTx MB 5–11 25 20 150 111 [66]
Ti3C2Tx MB 7 20 10 100 140 [62]
Sulfonic acid Ti3C2Tx MB 7 25 50 10 111 [67]
Alk-Ti3C2Tx MB 7–7.2 25 50 500 189 [68]
Polypyrrole/Ti3C2Tx MB 7 25 80 200 554 [69]
Phytic acid-MXene MB 3–11 25 12 250 42 [70]
MXene@Fe3O4 MB 3–11 25 1–40 500 12 [63]
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research reported that the –F group has a better affinity for 
cationic dyes since the electronegativity of F is more sig-
nificant than that of –O (χF = 3.98, χO = 3.44) [34]. Hence, 
Ti3C2Fx has a better adsorption capacity for MB in theory. 
When the –F groups are replaced by the –OH group, the 
H+ from the acidic environment will compete with the MB+ 
ions for [–O]– adsorption sites and reduce the adsorption  
efficiency.

The preparation of MXene@Fe3O4 through in-situ 
growth progress was developed by Zhang et al. [63]. The 
adsorption test for MB also has been carried out. The max-
imum adsorption capacity was up to 11.68 mg/g as the 
pH of the aqueous solution at 3 or 11. A positive and high 
value of ΔH° (>40 kJ/mol) indicated an endothermic adsorp-
tion process and intense coordination exchange between 
MXene@Fe3O4 and MB [61,63]. The positive value of ΔS° 
and ΔG° reflected that the adsorption is entropy-driven 
and energy-driven. Therefore, the increasing tempera-
ture may be a benefit for MB removal by adsorption. The 
date of MB removal on MXene@Fe3O4 at 25°C fitted well 
with the Langmuir model and the increasing adsorptive 
strength (KL) as the temperature increased, which demon-
strated that external energy promoted the interaction. The 
Dubinin–Radushkevich model showed a mean free energy 
of less than 8 kJ/mol; it also suggested that physisorption 
dominated the MB removal process [72]. In a similar study, 
magnetic Ti3C2Tx MXene prepared by the same process hin-
dered the adsorption of cationic dyes such as MB, as the pH 
of the aqueous solution was lower than 7 [73]. It could be 
explained that the primary mechanism of adsorption under 
acidic conditions depended on the formation of hydro-
gen bonds (Ti–OH…NH) between MB and MXene@Fe3O4 
instead of the electrostatic interaction.

MXene/polypyrrole (PPy) hybrid was developed and 
applied for MB removal [69]. Polypyrrole nanoparticles 
play a role in preventing the MXene from oxidation by 
changing the surface structure with a wrapping strategy. 
After two months of storage, MXene/PPy exhibited higher 
adsorption ability (388 mg/L) than pristine (345 mg/L) 
for MB. Moreover, the addition of polypyrrole nanopar-
ticles promoted the further stratification of MXene and 

got larger interlayer spacing. XRD spectrum proved this 
point: a shift took place in the diffraction peak of (0 0 2) 
crystal plane from 7.58° to 5.68° after in-situ polymer-
ization of PPy nanoparticles, and the crystal plane dis-
tance was also changed from 1.17 to 1.56 nm. As a result, 
an excellent adsorption capacity for MB reached up to 
553.57 mg/g. The adsorption kinetics test result is consis-
tent with the pseudo-second-order adsorption model; it 
indicated that the removal process is dominated by chem-
ical adsorption [74]. The value of ΔH° (ΔH° > 60 kJ/mol) 
also denoted chemical forces as primary interaction in the 
adsorption process, and this process is endothermic.

3.3. Radionuclide elimination

The characteristics of radionuclides include long half-pe-
riod, carcinogenicity, and bio-accumulation, which are 
harmful to the human body. Adsorption is a simple and 
convenient way to remove radionuclides from polluted 
wastewater effectively. Some surface functional group 
formed in the preparation process makes MXene negative 
charged in general; MXene can electrostatically interact with 
positively charged nuclides. The mechanism included elec-
trostatic interaction, ion-exchange, inner-sphere complex-
ation, π–π interaction, and hydrogen bonding; it depends 
on preparation and modification, which may form differ-
ent structures. These MXene-based adsorbents have been 
investigated for removing radionuclides from wastewater, 
as shown in Table 3.

Two recent studies proved the effects of morpholog-
ical structure and group composition of MXene-based 
absorbents on removing radioactive iodine. A composite 
called MXene-PDA-Bi6O7 achieved the adsorption equilib-
rium within 90 min with a maximum adsorption capacity 
of 64.65 mg/g [80]. Another hybrid called MXene-PIL got 
a higher maximum uptake capacity of 170 mg/g within 
10 min [76]. The adsorption kinetics test showed a higher 
fitting degree with the pseudo-second-order model, which 
indicated chemical process dominated the adsorption 
more than the physical process. The difference in the iso-
thermal model (Freundlich model for MXene-PDA-Bi6O7, 

Table 3
Comparison of radionuclide adsorption by various MXene-based materials

Material Pollutant pH Temperature (°C) Pollutant 
concentration (mg/L)

Materials 
dose (mg/L)

Maximum 
uptake (mg/g)

References

Ca2+ induced 3D 
porous MXene gel

U(VI) 5 Room 
temperature (RT)

100 200 824 [75]

MXene-PIL Iodide ions / RT 254 200 170 [76]
Ti3C2Tx Cs+ 6 RT 5 1,000 25 [77]
Ti2CTx U(VI) 3 RT 40 400 213 [78]
nZVI/Alk-Ti3C2Tx U(VI) 3.5 RT 100 80 1,315 [79]
TCCH U(VI) 5 25 200 200 345 [19]
TCCH Eu(III) 5 25 200 200 97 [19]
MXene-PDA-Bi6O7 Iodide ions 5 RT 20 200 65 [80]
Ti2CTx U(VI) 3 25 33.7 100 470 [81]
V2CTx U(VI) 4.5 RT 100 400 174 [82]
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Langmuir model for MXene-PIL) may be related to mor-
phological structure. The flower-like MXene-PDA-Bi6O7 
has fewer exposed sites and prevents adsorbate diffusion 
from interior sites. Therefore, it is multi-molecular layer 
adsorption. The low rate constant of the intraparticle dif-
fusion model (0.80399 mg/g·min0.5) and high boundary 
layer thickness of adsorption proved this point [80]. With 
the layer structure and even-distributed polyimidazole 
surface group, the MXene-PIL adsorption data is more 
consistent with the Langmuir model means a relatively 
uniform single-atom layer adsorption [76].

Wang et al. [81] reported the effect of the number of 
atomic layers of MXene on U(VI) adsorption. X-ray spectra 
of uranium form change after sorption showed the reduc-
tion of U(VI) to U(IV) on Ti2CTx over a pH range of at least 
3.0–8.0, while typical nonreductive sorption of U(VI) took 
place on Ti3C2Tx. The different reductive abilities of Ti3C2Tx 
and Ti2CTx can be rationalized by their different atomic 
layer structures: the fewer atomic layer, the more reductive 
abilities the MXene will be, and it will be more advanta-
geous for removing nuclide [16].

The effect of the operating condition, such as pH and 
temperature, have a consistent tendency (Fig. 4b and c). 
For a variety of radionuclides such as Th(IV), U(VI) and 
Eu(III), pH = 5 is a universal optimal adsorption pH [38,78]. 
At low pH (approximately pH = 2), the H+ compete with 
positively charged radionuclides and makes the MXene 
surface protonated [19]. It minimizes the electrostatic inter-
actions and even leads to a shallow adsorption capacity, 
as MXene are not negatively charged. Conversely, under 
high pH (pH > 6), MXene remains negatively charged and 
can efficiently capture radionuclides [75,82]. This trend 
also works with other cationic contaminants. After intro-
ducing carboxyl, MXene has a lower zeta potential at the 
same pH [19,38]; it makes MXene negatively charged over 
a wider pH range and leads to a 99% removal rate of both 
U(VI) and Eu(III) within short 3 min [19]. Generally, the 
effect of temperature on radionuclide removal is demon-
strated by the adsorption thermodynamics test. There 
are also similar trends: the positive reaction entropy and 
enthalpy variations and the negative Gibbs free energy 
demonstrate that MXene’s adsorption of most radionu-
clides is spontaneous and endothermic.

In summary, the regular open structure and more 
exposed sites facilitate the adsorption process based on 
ion-exchange and complexation mechanisms. The admission 
of a particular group, such as –COOH, may alter its surface 
charge, thereby making MXene negatively charged over 
a wide pH range to enhance the adsorption effect of pos-
itively charged radionuclides.

4. Modification

The adsorption performance of MXene is significantly 
related to its surface groups [37], interlayer spacing [68], 
and surface charge [83]. In addition, drawbacks such as 
poor antioxidant capacity and dispersibility in non-polar 
solvents also limit its further application. There are three 
main modification strategies for the above problems: enlarg-
ing the interlayer spacing, introducing the surface group, 
and improving stability.

4.1. Enlarging the interlayer spacing

A significant challenge in removing ions by MXene is 
the narrow interlayer space (less than 2 Å), which hinders 
pollutants with large hydrated ion radii [38]. Delamination 
of multilayered MXene into few-layered and even super-
thin nanoflakes may immensely increase the number of 
active surface sites. However, the stability of the MXene 
will diminish in an oxygen-rich environment, which man-
ifests itself in a correspondingly exacerbated oxidation 
and agglomeration [84]. A strategy to overcome this prob-
lem is intercalation, which expands the c lattice parameter 
of MXene to obtain a relatively open structure and more 
exposed active sites. Cations and small organic molecules 
are ideal intercalants. Ji et al. [85] investigated the effect of 
3-aminopropyltriethoxysilane (APTES) on the structural 
stability and interlayer space of MXene. After APTES func-
tionalization, APTES and MXene were strongly connected 
by covalent bonds. Hence, the stability of MXene could be 
enhanced by preventing contact between MXene and water 
or dissolved oxygen. Compared with pristine MXene, the 
interlayer distance of APTES-MXene increased from 24.47 
to 35.95 Å; the increment is 11.48 Å. Furthermore, the sur-
face area for APTES-MXene material was 162.67 m2/g, four 
times higher than the pristine MXene material. Dimethyl 
sulfoxide (DMSO) and NaOH play a similar role in extend-
ing interlayer space. DMSO can expand the layer spacing 
of the hydrated MXene by 12.66 Å (from 7.52 to 20.18 Å). 
These changes lead to more than five times improvement in 
uptake capacity toward U(VI) [38]. NaOH and KOH inter-
calations increased the layer spacing of MXene by 4.76 and 
6.45 Å, respectively [41,56]. The numerical difference may 
be caused by differences in the cationic hydration radius, 
the interlayer space for Alk-Ti3C2Tx decrease with increas-
ing metal ionic radius [68]. Although cationic lye is not as 
effective as small molecule organics in expanding the spac-
ing of layers, alkalization treatment can also introduce a 
certain amount of –OH, which has considerable advantages 
in secondary modification and direct utilization [56,68].

4.2. Modification of surface groups

The adjustability of surface groups is a significant advan-
tage of MXene; as the binding site of the contaminant, the 
number of surface groups determines the adsorption effect. 
According to previous research, various polar groups 
such as amines (–NH2), hydroxyls (–OH), and carboxyl 
(–COOH) are beneficial for combining with pollutants and 
facilitating their dispersion in water [86,87]. As mentioned 
in Section 4.1 – Enlarging the interlayer spacing, more 
hydroxyl groups exist on the surface of Ti3C2Tx nanosheets 
after alkalinization [42]. After alkalization treatment, it was 
found that with the decrease of –F groups and the increase 
of –OH groups, the ion-exchange between MXene and 
Pb2+ was significantly enhanced [44].

The sulfonic groups could be introduced on the sur-
face of MXene through the diazo click reaction, and the 
introduction of sulfonic acid groups makes the maximum 
adsorption capacity of Ti3C2–SO3H to MB more than four 
times that of raw materials [67]. Similarly, the spontaneous 
grafting of diazo salts by carboxyl sealing on the MXene 
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surface increases the functional groups by 51.2%, enhanc-
ing the adsorption capacity of radionuclides [19]. L-Dopa, 
silane coupling agents such as APTES and KH570, are also 
used to introduce groups such as –NH2, –COOH [42,51]. In 
addition to increasing the functional groups, these reagents 
also protect MXene from oxidation. This will be discussed 
in the following subsection. The introduction of functional 
groups requires consideration of the steric resistance effect 
[87]. Alkalization pretreatment can alleviate this prob-
lem [42], or using polymer monomers as modifiers can 
also be effectively solved [88].

4.3. Improving the stability

The pristine MXene colloidal solution is suscepti-
ble to oxidation after prolonged exposure to water, high 
temperatures, or ultraviolet (sun) radiation in the air [84]. 
The Ti atoms at the edge of the MXene sheet are easily 
oxidized by oxygen atoms, which makes partial adsorp-
tion sites lose and decreases the adsorption performance 
[89]. Nanoparticle wrapping and polymer film-forming 
strategies can effectively alleviate MXene oxidation to 
improve the reuse of adsorbents. For instance, positively 
charged polypyrrole nanoparticles via electrostatic attrac-
tion are uniformly deposited on MXene nanosheets, 
forming a thin film-like substance that protects the edges 
from oxidation [69]. Silane modification enhances MXene 
stability by providing a chain structure that blocks oxy-
gen. Compared to the original MXene, the structure of 
APTES-modified samples can be maintained for up to 
one month in the presence of water molecules and oxy-
gen molecules, and the long-term stability increases with 
the increasing APTES concentrations [42,85]. This strat-
egy was also applicable to other silane coupling agents. 
Typically, hydrophobic silane coupling agents will further 
improve stability, which is attributed to the formation of 
hydrophobic surfaces. Different from most modification 
strategies relying on the surface properties and func-
tional groups of substrates, mussel-inspired chemistry 
relies on the self-polymerization of dopamine to form 
PDA films on the surface of materials. PDA films contain 
high-molecular-weight polymer chains with covalently 
connected subunits, which also endow materials with 
antioxidant capacity and a platform for further surface  
modification [80].

5. Summary and outlook

This review introduced the synthesis of MXene used 
in adsorption and highlighted the structure of MXene and 
those strategies that can elevate sorption capacity via chang-
ing the structure of MXene. Here, based on the above, 
the following conclusions are summarized.

• As for preparation strategy, in-situ HF etching is suit-
able for preparing MXene-based adsorbents. In this 
way, absorbents are endowed with abundant hydro-
philic groups and more sites such as –OH, which could 
combine with various pollutants.

• Relatively open structure, a large layer spacing is con-
ducive to adsorption. However, in a completely open 

structure, there are inevitable oxidation and agglom-
eration problems, which are also not conducive to 
adsorption.

• The introduction of protonizable groups can increase 
adsorption capacity; in addition, hydrophilic groups 
can also improve dispersibility, and hydrophobic 
groups improve stability.

• In terms of modification strategies, the wrapping strat-
egy is applied to restrain oxidation and improve the 
stability of MXene. The intercalation strategy solves 
the problem of inter-layer stacking. Meanwhile, both 
inorganic ions and organic molecules increase the 
adsorption sites, which is essential for removing  
contaminants.

MXene is a new generation of layered materials, and 
the potential for adsorption is undoubtable. Nonetheless, 
there are still many problems that need to be solved 
before practical application. The following aspects are 
important to be addressed in future research:

• It is fundamental to develop new synthetic strategies 
that introduce a special surface group on MXene while 
achieving large-scale production in less preparation time.

• It is necessary to develop more thermal stability-im-
proving measures which inhibit oxidation in the edge 
of MXene.

• It is key to target introducing some surface groups of 
MXene to eliminate hetero groups inevitably intro-
duced during preparation. So that pollutants are 
removed more selectively.

Further research, MXene is expected to be an excellent 
adsorbent to deal with more challenging in water clean.
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