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a b s t r a c t
An adaptive network-based fuzzy inference system (ANFIS) was used to create models for predict-
ing the removal of biological oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP), 
and total suspended solids (TSS) in a wastewater treatment plant treating process wastewaters. 
Temperature (T), hydraulic retention time, and dissolved oxygen were used as input variables for 
the BOD, TN, TP, and TSS models, using linear correlation matrices between input and output vari-
ables. The results show that the created system has provided reasonable forecasting and control 
performance. The minimum root mean square errors of 1.4816, 1.9558, 0.2299 and 0.4733 for effluent 
BOD, TN, TP and TSS could be achieved using ANFIS. The maximum R-square values for BOD, 
TN, TP and TSS were 0.9137, 0.9204, 0.9865 and 0.9231, respectively. ANFIS’s architecture consists 
of both artificial neural networks and fuzzy logic including linguistic expression of membership 
functions and if–then rules, consequently it can overcome the limitations of traditional neural 
networks and increase the prediction performance.

Keywords:  Adaptive network; Fuzzy inference; Neural networks; Wastewater treatment; Biological 
oxygen demand; Total nitrogen

1. Introduction

As the population grows and industries develop, waste-
water treatment becomes increasingly important due to the 
increasing volume of wastewater generated by facilities 
each year. As a result, low-cost approaches that yield accu-
rate results are required to aid in the prediction of treatment 
efficiency in wastewater treatment plants (WWTP). A num-
ber of complex and uncertain processes that are difficult to 
predict are involved in WWTP. The treatment plant’s smooth 
and effective operation, on the other hand, is dependent on 
a suitable model capable of precisely capturing the system’s 
dynamic character. The vast majority of previous models 
were used in industrial wastewater treatment plants. WWTP 
operation includes the physical, biological, and chemical 

characteristics of wastewater streams, as well as biological 
and degrading mechanisms. Improved process control algo-
rithms based on artificial intelligence (AI) technologies 
have received a lot of attention as a result of growing envi-
ronmental and economic concerns [1].

According to the literature, three different adaptive net-
work-based fuzzy inference systems (ANFIS) and artificial 
neural networks (ANN) were used to forecast suspended sol-
ids (SSeff) and chemical oxygen demand (CODeff) in the efflu-
ent from a hospital wastewater treatment facility. In terms of 
effluent prediction, the results show that ANFIS statistically 
outperforms ANN [2]. The ANFIS model is used to forecast 
the pH quality of effluent. As a comparison, the artificial 
neural network is used [3].



53H.Y.H. Alnajjar, O. Üçüncü / Desalination and Water Treatment 286 (2023) 52–63

In another study, an adaptive neuro-fuzzy inference 
system (ANFIS) was described in another study to predict 
the effluent chemical oxygen demand load from a full-scale 
expanded granular sludge bed reactor (EGSBR) treating 
corn processing wastewater using five process variables: 
influent chemical oxygen demand, influent flow rate, influ-
ent total Kjeldahl nitrogen, effluent volatile fatty acids, and 
effluent bicarbonate. The proposed ANFIS model was cre-
ated using a hybrid learning approach, and its performance 
was assessed using a set of test data drawn at random from 
the experimental domain. To validate the ANFIS-based pre-
dictions, various descriptive statistical measures such as 
root-mean-square error, index of agreement, a factor of two, 
fractional variance, the proportion of systematic error, and 
so on were used [4]. Using daily data, feed-forward neu-
ral network (FFNN), support vector regression (SVR), and 
ANFIS black box artificial intelligence models (AI) were 
used to estimate the Tabriz wastewater treatment plant’s 
effluent biological oxygen demand (BODeff) and chemical 
oxygen demand (CODeff). Furthermore, the BOeff and CODeff 
parameters were predicted using the autoregressive inte-
grated moving average (ARIMA) linear model to compare 
the abilities of linear and non-linear models in complicated 
process prediction [5]. In another research, ANFIS and gen-
eralized linear model (GLM) regression were used to iden-
tify the nonlinear system of an industrial wastewater treat-
ment plant’s activated sludge process. Predictive models of 
effluent chemical and 5-day biochemical oxygen demands 
were developed based on previously assessed inputs and 
outputs. From a set of candidates, the least absolute shrink-
age and selection operator (LASSO) and a fuzzy brute force 
search were used to select the best combination of regres-
sors for the GLMs and ANFIS models, respectively [6] code. 
Furthermore, ANFIS provides direct inverse control of the 
substrate in an activated sludge system. The performance 
of the proposed controller is demonstrated by tracking the 
substrate setpoints. The simulation results show that the 
proposed controller can effectively and precisely control the 
substrate concentration level. The proposed inverse control-
ler could be a useful control method for the WWTP [3]. In 
another prior study, a full-scale aerobic biological wastewa-
ter treatment plant’s removal efficiency of Kjeldahl nitrogen 
was evaluated using support vector machine (SVM) and 
adaptive neuro-fuzzy inference system (ANFIS) models. 
Input variables used during modeling include pH, COD, 
total solids (TS), free ammonia, ammonia nitrogen, and 
Kjeldahl nitrogen. The model work focused on developing 
an adaptive, functional, real-time, and alternative method 
for simulating Kjeldahl nitrogen removal efficiency [7]. 
Many studies have successfully employed ANFIS to increase 
the output of anaerobic digesters [8]. Also, for carbon and 
nitrogen removal, the ANFIS model was utilized. A feed-for-
ward neural network is utilized as a comparison. The ANFIS 
model was found to have improved prediction power in 
all of the variables studied, including COD, suspended 
solids (SS), and ammonium nitrogen (NH4–N) [9].

ANFIS model was created that could be used to calcu-
late the effectiveness of pollutants being removed from the 
effluent of different primary and secondary treatment meth-
ods in a wastewater treatment plant (WWTP), including 
biological oxygen demand (BOD), total nitrogen (TN), total 

phosphorus (TP), and total suspended solids (TSS). Future 
WWTP design and pollutant removal efficiency forecasting 
might both be done using the ANFIS.

As a result, the primary purpose of this study is to 
apply, predict, and develop the pollutant removal efficiency 
for primary and biological treatment in WWTPs using the 
ANFIS model. For training, testing, and predictions, this 
modeling employed data from the urban coastal in Ordu 
City, Altnordu District – Durugöl Advanced Biological 
Wastewater Treatment Plant in Turkey, together with the 
conditions provided in the rules. The parameters studied 
were BOD, TN, TP, and TSS. For this study, wastewater sam-
ples were taken twice a month from the inlet and outlet of 
wastewater treatment plants in urban coastal towns in 2018. 
The data was standardized before running the simulation 
for prediction. The ANFIS model’s output was compared to 
real-world training data and ANN data, and the error was 
minimized to produce the best operating points.

2. Materials and methods

Intelligent technology includes probabilistic reasoning, 
fuzzy logic, neural networks, and evolutionary computa-
tion. As can be observed, each of these technologies has its 
own set of benefits and drawbacks, and in many real-world 
applications, researchers will need to mix several intelligent 
technologies and learn from other sources. Hybrid intelli-
gent systems have emerged as a result of the requirement 
for such a combination [10].

A system that includes at least two intelligent tech-
nologies is referred to as a “Hybrid Intelligent System”. 
Combining a neural network with a fuzzy system, for exam-
ple, produces a hybrid neuro-fuzzy system. Soft computing 
(SC) is a new method for building hybrid intelligent sys-
tems that can reason and learn in an uncertain and impre-
cise environment. It combines probabilistic reasoning, fuzzy 
logic, neural networks, and evolutionary computation.

At the end of the information and fuzzy rule base inter-
action, the output unit generates variables. Fig. 1 depicts 
the general ANFIS process for developing the ANFIS pre-
diction model.

2.1. Fuzzy logic and fuzzy inference system

Fuzzification, fuzzy rule base, fuzzy output engine, 
and defuzzification are the four steps of a fuzzy system, 
as depicted in Fig. 2 [11]. The input unit contains the input 
variables, as well as any information about the input vari-
ables that will affect the scenario under investigation [12]. 
The information with respect to the input variables is gen-
erally referred to as a database. The variables in the input 
can be numerical or textual [13]. Fuzzification is a method of 
assigning numerical values to linguistic adjectives and cal-
culating the number of membership functions in fuzzy sys-
tem sets. The fuzzy rule base is made up of all logical rules 
that connect the input and output variables, as well as any 
possible intermediary connections. The input variables are 
converted to their appropriate outputs by the fuzzy output 
engine. This is accomplished by considering the numerous 
relationships established in the fuzzy rule base. Finally, 
defuzzification is the process of converting the fuzzy sys-
tem’s language outputs into numerical values.
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2.2. Model architecture and components

When a neural network and a fuzzy system are coupled, 
a powerful hybrid system capable of addressing complex 
problems is generated. The behavior of this hybrid system 
may be described in terms similar to human rules, making 
it a reliable tool for modelling non-linear functions [14]. 
ANFIS uses a hybrid learning technique to specify how the 
weights should be updated to reduce the error between the 
actual and desired output, while also altering the param-
eters and structure of the fuzzy inference system (FIS). 
The structure of ANFIS, which is a Sugeno fuzzy model, 
is shown in Fig. 3.

The Sugeno model’s structure is constructed so that 
the input is mapped to the input membership function, 
the input membership function is then mapped to the rule, 
the rule is then mapped to the output membership function, 
and finally, the output membership function is mapped to 
the output. The system, therefore, requires five levels. A 
membership grade is generated by each node in the top layer. 
The firing strength of the rule is calculated by each node in 
the second layer. The firing strength of the ith rule about 
the sum of all firing strengths is calculated by each node 
in the third layer. The fourth layer’s nodes are all adaptive 
nodes that correspond to the output membership functions. 
The node in the fifth layer gives the overall output [15].

ANFIS is an adaptable network that, like the Takagi–
Sugeno fuzzy inference system, employs supervised 
learning as a learning mechanism [16]. The model’s five 
primary components are inputs and outputs, database and 

pre-processor, fuzzy system generator, fuzzy inference sys-
tem, and adaptive neural network [17]. In most cases, the 
input and output parameters are chosen or derived from 
the parameters of the system description. Model generation 
necessitates the use of a database and pre-processor, both of 
which include information regarding system performance. 
This data is often acquired by collecting data on parameters 
that the system continuously monitors. MATLAB R2021b 
[18] is a useful tool for this research, and it is used to gen-
erate system performance data. An adaptive network-based 
fuzzy inference system, as well as a Sugeno fuzzy inference 
system and associated adaptive networks, are used (ANFIS). 
The input and output variables are selected or generated 
from the variables commonly used to describe the system. 
The construction of a database containing system perfor-
mance data is required for model building. Most of the time, 
it’s made by pulling parameters from Durugöl Advanced 
Biological Wastewater Treatment Plant. The training data-
base must be of good quality for the model to produce reli-
able information on the system. For the model to effectively 
define the system, the database must include adequate and 
reliable information about it. In contrast, a raw database is 
likely to contain some duplicated and inconsistent data. As 
a result, it’s possible that the raw training database will need 
to be pretreated to eliminate duplicates and data conflicts. 
A fuzzy system generator is required since the ANFIS is 
often launched with a prototype fuzzy system. The software 
MATLAB R2021b (Matworks Inc.) provides this function. 

Fig. 1. Flow chart of ANFIS test step [8].

 

Fig. 2. Basic structure of the fuzzy logic controller.  

Fig. 3. ANFIS structure.
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The model was programmed in MATLAB R2021b by Jang 
[17], indicating that the language is suitable for model 
programming.

The model will be used to determine the relationship 
between the real data obtained from WWTP and the ANFIS 
model to achieve the lowest possible error.

ANFIS is a multilayer feed-forward network that maps 
inputs into outputs with the use of neural network learning 
techniques and fuzzy reasoning. It’s an adaptable neural-net-
work-based fuzzy inference system (FIS). The architecture 
of a typical ANFIS for the first order Sugeno fuzzy model, 
with two inputs, two rules, and one output (MFs). For a 
first order Sugeno fuzzy model (Wan et al. [20]), the follow-
ing is an example of a rule set containing four fuzzy if–then  
rules:

• Rule 1: If x is A1 and y is B1 then f1 = p1x + q1y + r1
• Rule 2: If x is A2 and y is B2 then f2 = p2x + q2y + r2

where A1, A2, B1 and B2 are the MFs for the inputs x and y, 
respectively, pij, qij and rij (i,j = 1, 2) are consequent param-
eters [19].

The architecture of a typical ANFIS, as shown in Fig. 3, 
consists of five levels, each of which performs a different 
function in the ANFIS.

Layer 1: This layer’s nodes are all adaptive nodes. 
They assign membership scores to the inputs. This layer’s 
outputs are determined by:

O U x iAi Ai
1 1 2� � � � ,  (1)

O U x jBj Bj
1 1 2� � � � ,  (2)

where x and y are crisp inputs, and Ai and Bj are fuzzy sets 
characterized by appropriate MFs, which could be trian-
gular, trapezoidal, Gaussian function, or other shapes, and 
Ai and Bj are fuzzy sets characterized by appropriate MFs, 
which could be triangular, trapezoidal, Gaussian function, 
or other shapes. The generalized bell-shaped MFs [Eqs. (3) 
and (4)] defined below are used in this investigation.
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where {ai, bi, ci} and {aj, bj, cj} are the parameters of the MFs, 
governing the bell-shaped functions. Parameters in this 
layer are referred to as premise parameters or antecedent 
parameters.

Layer 2: The nodes in this layer are fixed nodes with the 
number 2 next to them, indicating that they act as a simple 
multiplier. This layer’s outputs are expressed as:

O w U x U y i jij ij Ai Bj
2 1 2� � � � � � �, , ,  (5)

which represents the firing strength of each rule. The 
degree to which the antecedent element of the rule is satis-
fied is referred to as firing strength.

Layer 3: The nodes in this layer are also fixed nodes 
with the label, indicating that they play a role in network 
normalization. This layer’s outputs can be expressed as:

O w
w

w w w w
i jij ij

ij3

11 12 21 22

1 2� �
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�, , ,  (6)

which are called normalized firing strengths.
Layer 4: The output of each node in this layer is just the 

product of the normalized firing strength and a first-order 
polynomial (for a first order Sugeno model). As a result, 
Eq. (7) gives the outputs of this layer.

O w f w p q y r i jij ij ij ij ij ij ij
4 1 2� � � �� � �, , ,  (7)

Subsequent parameters refer to the parameters in this 
layer.

Layer 5: This layer’s single node is a fixed node 
labelled ∑ that computes the total output as the sum of all 
incoming signals, that is:
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When the values of the premise parameters are fixed, 
the result is a linear combination of the subsequent param-
eters. The ANFIS design may be seen to have two adaptive 
layers: layers 1 and 4 to the input MFs. Layer 4 has modifi-
able parameters {pij, qij, rij}. Layer 1 has modifiable parameters 
{ai, bi, ci} and {aj, bj, cj} related pertaining to the first-order 
polynomial. The learning algorithm for this ANFIS architec-
ture’s task is to tune all the changeable parameters to match 
the training data in the ANFIS output. The hybrid learning 
algorithm is a two-step procedure for learning or altering 
certain adjustable parameters. The premise parameters are 
held constant in the forward pass of the hybrid learning 
algorithm, node outputs advance till layer 4, and the sub-
sequent parameters are determined using the least squares 
approach. The subsequent parameters are held constant in 
the backward pass, the error signals flow backward, and the 
premise parameters are updated using the gradient descent 
algorithm. Wan et al. [20] provides a detailed algorithm 
and mathematical basis for the hybrid learning approach.

The model is trained until results are produced with the 
least amount of inaccuracy. The settings for the training pro-
cess must be chosen carefully to construct an ANFIS system 
for real-world challenges. Proper training and testing data 
sets are crucial. The testing data set will not validate the 
model if the datasets are improperly chosen. The model can-
not capture any of the properties of the testing data if the 
testing data set is entirely different from the training data set. 
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The first epoch can thus attain the lowest testing error. The 
testing error lowers for the right data set while training con-
tinues up until a jump point. When the training goes above 
that level, overfitting happens. The optimization techniques 
are employed to gain knowledge of the training data. The 
membership parameters are changed as learning takes place. 
The two ANFIS parameter optimization techniques available 
in MATLAB are background and hybrid (default: mixed least 
squares and backpropagation) (backpropagation). As a train-
ing-stopping criterion, error tolerance—which is correlated 
with error size—is applied. Once the training data error is 
still within this tolerance, the training will end [5].

To evaluate the prediction power of ANFIS and ANN 
trained by each data set, performance indices such as mean 
square error (MSE), root mean square errors (RMSE), mean 
absolute percentage error (MAPE), and correlation coef-
ficient (R) are utilized. The MSE performance index was 
established as follows:
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The RMSE performance index was defined as:
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where y is the measured values, y∧  the corresponding 
predicted values and n is the number of samples.

Mean absolute percentage error (MAPE):
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The smaller RMSE and MAPE mean better performance.
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MBE (mean bias error) = 1
1n
P Oi ii

n
�� ���  (11) where Oi is 

the observation value and Pi is the forecast value.

2.4. Plant description

Durugöl Advanced Biological Wastewater Treatment 
Plant construction has been designed according to physical 
(coarse screen, fine screen and primary settler units) and 
biological treatment project (anaerobic tanks, aeration tanks 
and secondary settler) and has a capacity of 212.000 per-
son/d. Durugöl Advanced Biological Wastewater Treatment 
Plant is located in Ordu City, Turkey, whose location is given 
in Fig. 4. The treated wastewater is discharged to the Black 
Sea. It has been designed in 2 stages according to population 
growth.

• Phase 1 (2025): It will serve a population of 213,000 
(34,000 m3 flow rate).

• Phase 2 (2045): It will serve a population of 292,000 
(43,000 m3 flow rate).

The grits contained in the influent wastewater are 
removed in the grit chamber to avoid causing damage to 
the system. A large percentage of BOD, COD, SS and other 
pollutants are removed during the primary treatment. The 
effluent from the primary settler flows to the secondary 
treatment unit which consists of anaerobic tanks, aeration 
tanks and secondary settler as shown in Fig. 5. In the aera-
tion tanks, favorable condition is provided for the microor-
ganisms responsible for degrading the remaining dissolved 
organic pollutants in the wastewater to grow and form 
sludge. The sludge is separated from the treated water in 
the secondary settler by gravity sedimentation. A portion 
of the sludge is returned to the aeration unit to maintain 

 

Fig. 4. Location of Durugöl Advanced Biological Wastewater Treatment Plant.
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the microorganisms’ concentration, and the waste sludge 
is removed and transferred to the sludge treatment facil-
ity. A suitable model could be useful in the application of 
control strategy or optimization technique to the plant to 
increase the treatment efficiency.

2.5. Model implementation

The ANFIS editor of the Fuzzy Toolbox in MATLAB was 
used to create a model in Sugeno structure (R2021 Version, 
The MathWorks Inc., USA). The membership functions were 
extracted from the Durugöl Advanced Biological WWTP’s 
data set, which had been standardized and divided into 
training and testing data. The model’s parameters were 
estimated using a hybrid learning method, and the model 

was validated using WWTP data effluent parameters like 
output BOD, TN, TP, and TSS.

Fig. 6a and b show the topology of the ANFIS net-
work that was employed. In the creation of a fuzzy system, 
ANFIS structures with varying input correlation (Fig. 6a) 
and consisted of five layers were established (Fig. 6b). The 
following are the meanings of each layer in Fig. 6b, as well 
as their counterpart in the ANFIS structures:

Input layer: In the ANFIS inputs layer, state variables 
are nodes: There are three input variables in total: hydrau-
lic retention time (HRT), T, and dissolved oxygen (DO) 
(from the influent).

Layer with the membership function: Each state vari-
able’s term sets are nodes in the ANFIS values layer, 
which compute the membership value.

Fig. 5. Schematic of Durugöl Advanced Biological Wastewater Treatment processes.
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For each input variable:

Membership: Triangle MF or gauss MF membership 
number.

Rules layer: Each rule in the fuzzy class is a node in the 
ANFIS rules layer, with the rule matching factor xi com-
puted using soft-min or product. Layer of the output mem-
bership function: In the function layer, each weighs the 
result of its linear regression fi, resulting in the rule output.

Normalization layer:
Each xi is scaled into the normalization layer 

normalization.
Normalization is performed with the equation:

x x x x xnorm value� �� � �� �min max min  (13)

Output layer: Each rule output is added to the output 
layer.

Outputs: BOD, TN, TP and TSS (effluent).
The measured data for WWTP of the ANFIS and ANN 

models is shown in Table 1.

3. Results and discussion

As a modeling method, the ANFIS tool from MATLAB 
R2021’s Fuzzy Logic Toolbox (The MathWorks, Inc.) was 
employed. To build the fuzzy rule basis sets, subtractive 
clustering and grid division methods of fuzzy inference 
systems were used. To attain the minimal RMSE and max-
imum R2, a maximum of 100 epochs were used for training. 
Predicted values and observed data were evaluated using 
the following statistical measures (RMSE and R2), which 
have been used by numerous studies to quantify model 
performance [21].

In this study, the ANFIS modelling has been applied to 
predict some important parameters in WWTP. In the mod-
elling, influent parameters such as influent T, HRT and 
DO were used as input parameters to predict the efflu-
ent removal efficiency of BOD, TN, TP and TSS. Then the 
results of ِ ANFIS model were compared with the results of 
the ANN model. This data set was divided randomly into 
two subsets for training and for testing purposes. More data 
were used in the training phase because ANFIS is more 
adapted nonlinear functional dependency between input 

 

Fig. 6. Schematic diagram of (a) ANFIS models with all input variables and (b) input–output mapping structure of ANFIS 
models with input variables.
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and output variables. To identify a suitable ANFIS model, 
the types and numbers of MFs in ANFIS were investigated, 
including Gaussian, generalized bell-shaped, triangular, and 
trapezoidal-shaped functions, as well as the parameters. The 
values of RMSE and R between the model output values 
and observed values were used as selection criteria for the 
optimal final architecture. All ANFIS models with general-
ized bell-shaped MFs for each input variable showed the best 
results with diverse input variables. BOD, TN, TP, and TSS 
were all predicted using these models. Thus, monitoring the 
BOD, TN, TP, and TSS dynamics for the l wastewater treat-
ment process, which was optimized by trial and error during 

the training phase, was adequate. The hybrid approach was 
used to train the network after selecting the initial value 
of the premise parameter and the design of the predictive 
model. The network’s premise and associated parameters 
were then trimmed. After obtaining the premise parameter, 
membership functions for the variables were drawn.

Following the training of the model, inference was done 
using fuzzy language rules (Fig. 7a). After the network had 
been trained, those rules were obtained. In terms of compar-
ing output values to input values, several additional heuris-
tic criteria were also introduced. Defuzzified findings and 
graphical outputs can also be generated. Fig. 8 shows an 

(a) 

 

  

(b)

Fig. 7. (a) Rule editor of MATLAB R2021b Fuzzy Logic Toolbox and (b) rule viewer screen to obtain defuzzified results.
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example of a Surface Viewer screen generated by the Fuzzy 
Logic Toolbox. Variable outcomes can be plotted and com-
pared in two or three dimensions. According to the mass 
center of variables, Fig. 7b displays the outcomes of applied 
rules and their related outputs. Defuzzified values for output 
variables can be determined manually using the interface by 
changing input values. The Rule Viewer can produce a vari-
ety of output values depending on the input data. Using the 
interface to acquire defuzzified output values for all of the 
genuine input values is not flexible. As a result, a program 
using MATLAB codes is built to drive defuzzified output 
outcomes in line with real-world input values.

All R-square and RMSE values for the removal effi-
ciency of BOD, TN, TP and TSS are also shown in Table 2. 
When training, R-square value was 0.9137 using ANFIS But 
when comparing the ANFIS and ANN, the value of R2 was 
0.5116 for BOD, which indicates that the efficiency of the 

ANFIS model is higher in predicting the efficiency of pol-
lutant removal in wastewater treatment plants (more details 
in Table 2).

The influence of the ANFIS model inputs (temperature, 
dissolved oxygen, and hydraulic retention time) on the 
model outputs is also shown in Fig. 8 (BOD, TN, TP and TSS).

The ANFIS model, for example, indicates that raising the 
temperature and lengthening the hydraulic retention time 
improves the efficiency of pollutant removal in wastewater.

The RMSE value of 1.9558 using ANFIS was also lower 
than that of 3.7375 using ANN when predicting for TN. 
Fig. 9 shows the training and predicting results using ANFIS 
and ANN models.

To overcome the constraints of standard neural net-
works, such as the risk of becoming trapped in a local min-
imum and model architecture selection, and to increase 
predicting performance, ANFIS’ architecture incorporates 

 

  
Fig. 8. 3D response surface graph.

Table 2
Determination of the appropriate ANFIS and ANN models

Outputs Training 
data

Testing 
data

Number of 
input MF

Number of 
rules

ANFIS ANN-ANFIS

R2 RMSE MBE R2 RMSE MBE

BOD 12 4 3.3 27 0.9137 1.4816 –0.192 0.5116 2.4068 0.083
TN 12 4 3.3 27 0.9204 1.9558 0.148 0.7264 3.7375 0.07
TP 12 4 3.3 27 0.9865 0.2299 –0.005 0.7461 0.8372 –0.056
TSS 12 4 3.3 27 0.9231 0.4733 0.045 0.4731 0.9819 –0.143
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Fig. 9. Prediction results of BOD, TN, TP and TSS for the ANFIS and ANN models.
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ANN and fuzzy logic, as well as linguistic expressions of 
MFs and if–then rules. As a result, ANFIS is a fantastic tool 
for simulating wastewater treatment efficiency. ANN is 
also a black box in nature, with difficult to grasp relation-
ships between inputs and outputs, but ANFIS is transparent, 
with simple to understand and interpret if–then rules.

4. Conclusions

ANFIS was used to predict the removal efficiency of 
BOD, TN, TP and TSS S from Durugöl Advanced Biological 
Wastewater Treatment Plant in Turkey. The ANN was also 
adopted for comparison. According to the results, ANFIS 
could predict the effluent variation. The minimum RMSEs 
of 1.4816, 1.9558, 0.2299 and 0.4733 for effluent BOD, TN, 
TP and TSS could be achieved using ANFIS. The maximum 
R-square values for BOD, TN, TP and TSS were 0.9137, 
0.9204, 0.9865 and 0.9231, respectively. It also revealed that 
the influent indices could be applied to the prediction of 
effluent quality. After obtaining good predicting results 
using ANFIS, it is advised that the ANFIS be employed as 
the objective function or constraints in optimization for the 
optimal design or operation in future studies. Given the high 
level of complexity in the wastewater treatment process, the 
significant amount of variable information dispersed across 
the dataset, and the wide concentration ranges, ANFIS mod-
els’ excellent prediction results for both effluent parameters 
are particularly relevant. As a result, the ANFIS modeling 
approach could serve as a generic foundation for modeling 
different treatment procedures. Furthermore, the ANFIS 
modeling approach could be used to anticipate and control 
the performance of treatment processes in treatment plants.
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