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a b s t r a c t
Small-area urban water areas play an important role in the human ecological environment and 
as a source of drinking water. Most such urban water bodies are long and narrow, so ordinary 
remote-sensing data sources are not suitable for monitoring. To address this problem, we use 
the four water-quality metrics of total nitrogen, total phosphorus, turbidity, and algal density as 
detected from unmanned aerial vehicle (UAV) remote-sensing images. We apply an improved least 
squares model to evaluate and invert the water quality in the complex freshwater environments of 
Longhu Lake, which is a tributary of the Yangtze River. These environments combine the polymor-
phism characteristics of urban rivers. The results show that (1) the band-ratio model is appropri-
ate to estimate the water-quality parameters, and inversion by band combination is more accurate 
than inversion with a single band. (2) Comparison of the unary linear function, polynomial func-
tion, and exponential function with the least squares model shows that the latter produces the best 
inversion results and the smallest error. In addition, data from different periods are summed to 
verify the applicability of the model. The inversion results indicate that the elements responsible 
for polluting city rivers must be further explored by comparing point source pollution with non-
point source pollution. The results show that the UAV multispectral estimation model based on 
the least squares method is accurate and stable and can provide strong support for water-qual-
ity monitoring in small areas. This method has important practical significance for improving 
intelligent and automated water-monitoring technology.
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1. Introduction

Water is one of the most important factors in the natu-
ral environment and an indispensable resource for human 
civilization [1]. The increasingly serious problem of water 

pollution necessitates a timely, accurate, and comprehen-
sive understanding of the water pollution status of spe-
cific water bodies, which is vital to solve the water-pollu-
tion problem [2]. The main factors affecting water quality 
include suspended solids (turbidity), algae, and chemicals 
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such as nutrients, pesticides, metals, and dissolved organic 
substances. Water-quality monitoring is the main basis for 
water-quality evaluation and prevention of water pollution 
[3]. Conventional water quality monitoring usually takes the 
form of fixed-point monitoring, which is easily affected by 
many external factors such as manpower, material resources, 
and weather, resulting in many restrictions on the time, fre-
quency, and quantity of water sampling that can be done 
[4,5]. Based on these monitoring data, it is difficult to recre-
ate the actual situation of the entire water body [6]. However, 
in the 1960s, remote-sensing technology was developed, 
bringing with it the advantages of low monitoring cost and 
a large monitoring range, thereby overcoming the limita-
tions of conventional water-quality monitoring. Applying 
remote-sensing technology to monitor water quality involves 
detecting spectral signals and then linking these signals to 
water-quality parameters through experience or by applying 
a model. Quantitative remote sensing of water quality can 
be implemented if the data correlate with pollutant concen-
tration. A previous study reported that neither total nitrogen 
nor total phosphorus directly affect the spectral reflectance, 
whereas the spectral reflectance correlates statistically with 
chlorophyll a and suspended matter [7]. At present, the main 
methods for monitoring water-quality parameters using 
remote-sensing data include analytical methods, empirical 
and semi-empirical methods, and water-quality inversion 
by machine-learning methods. The data source required by 
the analysis method is difficult to obtain, so the quantitative 
remote-sensing inversion based on this method is difficult 
to implement [8]. Thus, the empirical and semi-empirical 
methods may not be the optimal solution [9]. In contrast, 
the machine-learning algorithm does not depend on a spe-
cific model and improves the complex relationship between 
independent and dependent variables through the algo-
rithm itself, providing an effective method for inverting 
water-quality parameters [10].

In addition, machine-learning methods can be used for 
rapid inversion of water-quality factors [11]. In previous 
work, an autoregressive neural network was used to predict 
the water level of Lake Jablanica; the results demonstrated 
that a single water level datum can be used to accurately 
predict the water level [12]. Machine learning (such as sup-
port vector machines, random forests, and backpropagation 
neural networks) was applied to construct water-quality 
inversion models [13–15]. This method has been used in var-
ious water quality parameter-inversion models. However, 
these inversion methods are suitable for single, large-area 
water bodies. Some researchers have also tried to reverse 
water quality in micro water areas [16].

In this paper, we study the water-quality parameters 
and unmanned aerial vehicle (UAV) multispectral images 
of surface-water samples collected from Longhu Lake, Yidu 
City, in the middle and lower reaches of the Yangtze River. 
We use the least squares method and construct an inversion 
model based on four water-quality parameters: total nitrogen 
(TN), total phosphorus (TP), turbidity (TUB), and algae den-
sity (ACD). The results of the model map the water-quality 
distribution of the study area.

The main contributions of this paper are as follows: 
(1) Because the study area involves the middle and lower 
reaches of the Yangtze River, which finally flow into the 

Yangtze River, the results provide a theoretical basis for 
water-quality inversion of the Yangtze River. (2) The combi-
nation of UAV remote-sensing data and the machine-learn-
ing algorithm provide a basis for evaluating the water qual-
ity of small water bodies. (3) Finally, the results provide a 
reference for selecting the sensitive bands for estimating the 
water-quality parameters from small areas of water without 
involving significant optical characteristics (e.g., total nitro-
gen and total phosphorus).

2. Data and technique

2.1. Study area

The study area is Longhu (30°23’N,111°30’E), which is 
in Yidu City, Hubei Province, China. In 2019, this area was 
included in the pilot project for ecological protection and res-
toration of the Three Gorges area of the middle and lower 
reaches of the Yangtze River. Two typical areas of Longhu 
Lake labeled A and B (Fig. 1c and d, respectively (serve as 
the research areas). The environments of these two areas 
differ: Area A consists of two continuous water areas with a 
narrow water surface surrounded by aquatic plants, mostly 
reeds. Area B consists of seven continuous ponds, with a 
wide water surface and no aquatic plants but with surround-
ing orchards. The entire area is under a strong anthropo-
morphic influence (Fig. 1).

2.2. Data treatment

2.2.1. Acquisition and pre-processing of UAV images

The study used a multirotor UAV Ely 4RTK produced by 
the Dajiang Company (Shenzhen, China) and equipped with 
six semiconductor sensors (FC6310R) [17]: one visible-light 
sensor for true-color imaging and five monochromatic sen-
sors for multispectral imaging. These sensors captured five 
bands, namely, the blue band, green band, red band, red-
edge band, and near-infrared band. Table 1 lists the parame-
ters of the multispectral sensors. The bandwidth of each band 
was 32, 32, 32, 32, and 52 nm, respectively, and was mainly 
determined by the geometric size of the incident slit of the 
spectral instrument. The multispectral light intensity sensor 
on the top of the fuselage detected the real-time incident light 
intensity in the five bands, thus allowing the imaging to be 
compensated and obtaining more accurate spectral infor-
mation [18]. The water areas studied were approximately 
6 km long. Due to limitations imposed by battery life, a sin-
gle mission could fly 1 km. Multiple flight missions were 
required to obtain complete UAV images of the study area. 
UAV images were collected from 10:00 to 15:00 from an alti-
tude of 200 m under a clear sky and with low wind speeds 
[19]. The sensor was set to continuous shooting mode and 
the data were saved to a SD card. The exposure time was set 
according to the light intensity.

We used DJI GS Pro ground station software for tra-
jectory planning. By tapping the interactive design on the 
screen and planning the route mission, the UAV could fly 
automatically to the waypoint according to the flight mis-
sion. The UAV usually flew 1.1 km on each flight while pho-
tographing at equal intervals. The flight speed was 14.5 m/s, 
the flight altitude was 200 m [20], and the route overlap rate 
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and side overlap were both 75% [17,21,22]. The main course 
angle was usually obtained automatically by the UAV’s per-
ception of the local sunlight and wind speed. After com-
pleting the flight mission, the UAV automatically returned 
to the take-off point.

2.2.2. Collection and detection of water-quality parameters

On-site sampling was implemented with the UAV in 
flight. The sampling sites were evenly distributed 100 to 
150 m apart on both sides of the river. The sampling points 
in the two study areas totaled 48; Fig. 1 shows the distribu-
tion of the sampling points. During sampling, we used the 
mobile phone software Jiyin Footprint to record the position 

of the sampling sites. Following the technical guidelines for 
water-quality sampling, the water samples were collected 
0.5 m below the water surface [23]. Once the water sam-
ples were collected, their water-quality parameters were 
obtained in the laboratory within 3 d.

Four water-quality parameters were collected in this 
experiment: total nitrogen, total phosphorus, turbidity, and 
algae density. The total phosphorus was determined as 
per the Water Quality Determination of Total Phosphorus 
Ammonium Molybdate Spectrophotometry (CB 11893-
1989). First, under neutral conditions, the sample was 
digested by potassium persulfate, and all the phosphorus 
contained was oxidized to orthophosphate. Next, in an 
acidic medium, orthophosphate was reacted with ammo-
nium molybdate to form phosphomolybdate heteropoly 
acid in the presence of antimony salt, which was immedi-
ately reduced by adding ascorbic acid to form a blue com-
plex. At a specific wavelength, combined with color reaction, 
we determined the absorbance and made a calibration curve 
to obtain the phosphorus content [24]. The determination of 
total nitrogen was done following the Determination of Total 
Nitrogen in Water Quality by Alkaline Potassium Persulfate 
Digestion Ultraviolet Spectrophotometry (HJ 636-2012). 
The nitrogen-containing substances contained in the water 
sample were converted at the temperature of the experi-
mental system, which was between 120°C and 124°C. After 

 
Fig. 1. Study area.

Table 1
Parameters of multispectral sensors

Unmanned aerial vehicle band Wavelength

B (blue) 450 ± 16 nm
G (green) 560 ± 16 nm
R (red) 650 ± 16 nm
RE (red edge) 730 ± 16 nm
NIR (near infrared) 840 ± 26 nm
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adding alkaline potassium persulfate solution, it converted 
into nitrate substances, and the converted test solution was 
placed in the ultraviolet spectrophotometer for determina-
tion. The measurement was made at 220 and 275 nm and 
judged according to the relative fraction of total nitrogen 
in the water body and the corrected absorbance, which 
was measured by using the standard curve method [25]. 
Turbidity was measured directly by a turbidimeter accord-
ing to standard HJ 1075-2019 [26], and algae density was 
measured by using spectrophotometry [27].

2.2.3. Multispectral data processing

Compared with satellite remote-sensing images, the 
images obtained by multispectral sensors are relatively sim-
ple to process, notably because the complex and tedious 
atmospheric correction process is avoided. The software 
exported images from the multispectral sensors and per-
formed band operations. The spectral reflectance data are 
available in [28,29].

We first used Pix4DCapture to splice and crop the mul-
tispectral images (Fig. 2), then imported the cropped images 
into ENVI5.3. Finally, the sampling points on the water 
surface were found from the latitude and longitude coor-
dinates, allowing us to construct 5 × 5 matrices centered 

on the sampling points as the region of interest. Three 5 × 5 
regions of interest were drawn for each sampling point, and 
we took the average spectral reflectance of all points in the 
region as the spectral reflectance of that point.

2.3. Selection and modeling of spectral parameters

To reduce the interference of background information, 
effective spectral information was extracted. After obtain-
ing from each band the spectral information at the sam-
pling point, we tried a variety of combinations, and then 
applied a correlation analysis with the measured water body 
parameters to find the band or band combinations that met 
the requirements. Table 2 lists the formulas used to com-
bine the bands.

The inversion model of water-quality elements was 
constructed by combining spectral data and water-quality 
parameters. Four functional models were established by 
using MATLAB software: a linear regression model, a power 
function model, a polynomial model, and a least squares 
model. The spectral data finally determined after process-
ing and selection were fit with the measurement data, and 
the corresponding models were generated in each case. The 
optimal prediction model was selected based on the evalu-
ation criteria of the model. Finally, the optimal model was 

 

Fig. 2. Stitching unmanned aerial vehicle images.

Table 2
Formulas for combining multispectral bands

Water-quality parameters Band combination

Total phosphorus G/RE, R/RE, R/NIR, RE/NIR, (B+G)/NIR, (B+G)/RE, (B+R)/NIR, (B+RE)/G
Total nitrogen NIR/R, B/R, (B+G)/R, G/R, RE/R, (B+RE)/R, (B+G+RE)/(R+NIR)
Turbidity B, B+RE, B+NIR, B+RE+NIR, B+R+NIR, G/R, RE/R, NIR/R, (RE+NIR)/(B+G+R)
Algae density RE/R, B/R, G/R, (B+G)/R, R/B, (B+RE)/R, (B+G+RE)/(R+NIR)
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used to invert TN, TP, TUB, and ACD in ENVI5.3 using 
the acquired multispectral images, and spatial distribution 
maps were made.

3. Least squares method

3.1. Least squares method

The least squares method is a mathematical optimization 
technique that finds the best fit to data by minimizing the 
sum of the squares of the errors [30]. Given n sets of obser-
vations (X1, Y1), (X2, Y2), …, (Xn, Yn) for n points, the sample 
regression function fits this set of values as best as possible. 
The criteria for selecting the best-fit curve minimizes the 
total fitting error (i.e., the total residual). Sample regression 
is done as follows:
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A linear fit is determined by minimizing Q. The quan-
tities β0 and β1 are variables and are considered to be 
functions of Q, which creates a problem for finding the 
extreme value, which is obtained by differentiating. Next, 
we calculate the partial derivatives of Q with respect 
to the two variables:
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The objective-function solution is:
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3.2. Dataset construction and accuracy evaluation

3.2.1. Basic properties of water from two sampling points

Table 3 lists the specific water-quality parameters. We 
measured and counted the maximum, mean, normal devia-
tion, and coefficient of deviation of the water-quality param-
eters. The mean is a measure of the central tendency of a 
dataset, and the standard deviation is estimated based on 
the sample and reflects the degree of dispersion in the val-
ues relative to the mean. The coefficient of variation (CV) 
is the dimensionless fraction of the normal deviation of the 
original information with respect to the mean of the original 
data. The three metrics are calculated as follows:

x
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CV Stdev� �� ��x 100%  (8)

3.2.2. Model evaluation criteria

The experiment involved 48 water-quality samples, with 
75% chosen at random as the training set and the remain-
ing 25% as the validation set. The training set was used to 
find the best fit and the validation set was used to check 
the accuracy of the model.

The root mean square error (RMSE), mean absolute error 
(MAE), and mean absolute percentage error (MAPE) were 
used to determine the accuracy of the most commonly used 
water-quality inversion models. The range of values of the 
three rating indicators of the regression model is [0, +∞), 
and the RMSE indicates the variation between the pre-
dicted value and the quantified value [31]. The smaller the 
value, the higher the accuracy of the model. The smaller 
the MAE, the better the model. MAPE is commonly used 

Table 3
Basic water properties at two sampling points

Sampling point Parameter Max. Min. Average Std. Dev. Coefficient of variation

Area A

Total nitrogen (mg/L) 0.179 0.031 0.061 0.035 0.564
Total phosphorus (mg/L) 0.12 0.02 0.055 0.029 0.527
Turbidity (NTU) 29.2 16 21.666 3.338 0.154
Algae density (×106 cells/L) 1.071 0.236 0.508 0.262 0.516

Area B

Total nitrogen (mg/L) 0.149. 0.04 0.065 0.024 0.372
Total phosphorus (mg/L) 0.093 0.016 0.058 0.018 0.316
Turbidity (NTU) 20.4 9.9 15.123 2.485 0.164
Algae density (×106 cells/L) 2.182 0.325 0.838 0.415 0.495
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to measure prediction accuracy: the smaller the MAPE, the 
better the model (greater than 100% indicates a poor model). 
The three evaluation indicators are calculated as follows:
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In addition, the association coefficient between fore-
cast and actual value is used to access the forecast results. 
The closer the correlation coefficient is to unity, the better 
the correlation between the two data sets. The coefficient of 
determination R2 is calculated as follows:
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where n is the number of samples, yi is the actual value, ŷi 
is the predicted value, and y  is the average of the actual 
values.

4. Results and analysis

4.1. Spectral characteristics of multispectral image regions

Fig. 3a and b show cross-sectional spectra from the 
UAV multispectral image of areas A and B, respectively. 
The left sides of Fig. 3a and b show the five channels cap-
tured by the UAV. The curves marked by the dotted box 
on the right are the spectra corresponding to the section 
of water marked by the dotted box on the left. The mul-
tispectral images show that the spectral reflectance of 
the water body differs significantly from the reflectance 
of other types of bottom objects; that is, the water body 
has a low and relatively constant spectral reflectance, 
which corresponds to the general law of spectral charac-
teristics of bottom objects [16]. The magnitude of spectral 
reflectance of the cross section in decreasing order is B, 
G, R, RE, and NIR, so the spectral reflectance gradually 
decreases with increasing wavelength.

4.2. Data correlation analysis

4.2.1. Analysis of water-quality parameters at 
sampling points

Table 3 lists the water quality parameters, which show 
that the normal deviation of the turbidity is largest in study 
areas A and B, the relative deviation of TN is largest in area 
A, and the relative deviation of ACD is largest in area B. 
The coefficient of variation is between 0.164 and 0.564, and 
the overall variation is moderate. Of the four water-quality 

 

Fig. 3. Multispectral image of water and associated spectra.
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parameters, the coefficient of variation of TN is largest in 
area A, and the degree of variation is high, which may be 
related to the uneven distribution of water bodies in area 
A and the uneven distribution of near-shore water bodies. 
Areas with fallen leaves have a higher TN content.

4.2.2. Data correlation analysis

The independent variable is the band combination, the 
dependent variable is the corresponding water-quality 
parameter, SPSS is used for correlation analysis, and sev-
eral spectral parameters corresponding to each water-qual-
ity element index with p < 0.05 and meeting the statistical 
requirements are selected [31], as shown in Table 4. The 
results of the correlation analysis of areas A and B are given 
in Table 4. Area A has 3, 6, 6, and 3 sets of spectral parame-
ters that meet the requirements of TN, TP, TUB, and ACD, 
respectively, and 5, 6, 5, and 6 sets of spectral parameters 
in area B meet the requirements of TN, TP, TUB, and ACD, 
respectively. We select the band combination with the high-
est correlation for fitting.

4.2.3. Construction of inversion model

Taking the optimal spectral parameters as indepen-
dent variables, we established the linear function, poly-
nomial function, power function model, and least squares 

model between each water-quality parameter and band 
factor. Tables 5 and 6 list the accuracy of the water-quality 
parameter-inversion models for areas A and B, respectively. 
To more intuitively express the accuracy evaluation out-
comes of each model, the coefficient of determination and 
the error of the model are plotted as line graphs (Figs. S1  
and S2).

Table 5 shows that the determination coefficients of 
the water quality parameter inversion model in Area A 
are all greater than 0.5. The polynomial model and the 
least squares model have the same coefficient of determi-
nation. However, the RMSEs of the least squares method 
are small. This result shows that the least squares model 
is more accurate and produces better fits. Table 6 shows 
that the R2 of the inversion model of ACD and TP for area 
B are both about 0.7, in the inversion model of TN, the R2 
of the linear function is less than 0.5, and in the inversion 
model of TUB, the R2 of the linear function model and the 
power function model are both less than 0.5. The deter-
mination coefficients of the polynomial model and least 
squares model are similar, but the RMSEs of the least 
squares model are smaller. Over-fitting is better controlled, 
as illustrated more intuitively in Figs. S1 and S2. The least 
squares model produces the best results in inverting 
each water-quality parameter with the RMSE as the stan-
dard. This method represents a significant improvement 
over the traditional gradient algorithm [32].

Table 4
Correlation coefficients between spectral parameters and water-quality parameters

Water-quality 
parameters

Sensitive band R2 p Sensitive band R2 p

A B

Total nitrogen

B/R 0.841 0.004 (B+G)/R 0.599 0.003
B/G 0.678 0.007 G/R 0.697 0.000
(B+G)/R 0.562 0.021 NIR/R 0.637 0.001

(B+RE)/R 0.654 0.001
(B+G+RE)/(R+NIR) 0.544 0.009

Total phosphorus

RE/R 0.789 0.012 G/R 0.768 0.000
B/R 0.782 0.013 RE/R 0.791 0.000
R/NIR 0.765 0.016 (B+RE)/R 0.674 0.001
RE/NIR 0.765 0.016 RE/(B+R) 0.611 0.003
(B+G)/NIR 0.689 0.04 (B+NIR)/(B+R) 0.671 0.001
(B+R)/NIR 0.673 0.047

Turbidity

B 0.78 0.008 G/R 0.584 0.004
B+RE 0.749 0.013 RE/R 0.661 0.001
B+NIR 0.824 0.003 NIR/R 0.596 0.003
RE+NIR 0.709 0.022 RE/(B+R) 0.58 0.005
B+RE+NIR 0.772 0.009 (RE+NIR)/(B+G+R) 0.655 0.001
(B+RE)/R 0.664 0036

Algae density

B/R 0.71 0.021 B/R 0.656 0.001
R/B −0.638 0.047 G/R 0.821 0.000
(B+G)/R 0.747 0.013 (B+G)/R 0.756 0.000

(B+RE)/G 0.553 0.008
(B+RE)/R 0.818 0.000
(B+G+RE)/(R+NIR) 0.68 0.001
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4.3. Model validation

Linear fitting is applied between the measured value of 
the validation dataset and the estimated value produced by 
the corresponding model. The results are shown in Figs. 4 

and 5. The figure panels (a)–(d) are TN, fitted plots of TP, 
algal density, and turbidity, respectively. The predicted value 
is a red dot, and the black line is the 1:1 line. The closer 
the predicted value is to the 1:1 line, the more accurate is 
the estimate [33].

 

Fig. 4. Linear fits to plots of predicted value vs. true value for area A.

Table 5
Inversion model evaluation of water quality parameters for 
area A

Water-quality 
parameters

Fitting model R2 MAE MAPE RMSE

Total nitrogen

Linear fit 0.704 0.019 0.341 0.026
Polynomial 0.910 0.011 0.218 0.016
Power 0.81 0.014 0.253 0.021
Least squares 0.910 0.011 0.218 0.013

Total  
phosphorus

Linear fit 0.588 0.017 0.314 0.024
Polynomial 0.618 0.016 0.307 0.025
Power 0.607 0.016 0.307 0.023
Least squares 0.618 0.016 0.307 0.020

Turbidity

Linear fit 0.597 1.820 0.084 2.729
Polynomial 0.600 1.828 0.086 2.904
Power 0.591 1.807 0.083 2.748
Least squares 0.600 1.828 0.085 2.430

Algae density

Linear fit 0.503 0.130 0.284 0.179
Polynomial 0.674 0.116 0.262 0.155
Power 0.572 0.129 0.292 0.167
Least squares 0.674 0.116 0.262 0.13

Table 6
Inversion model evaluation of water-quality parameters for 
area B

Water-quality 
parameters

Fitting model R2 MAE MAPE RMSE

Total 
nitrogen

Linear fit 0.490 0.014 0.219 0.020
Polynomial 0.672 0.010 0.158 0.016
Power 0.528 0.014 0.219 0.019
Least squares 0.672 0.010 0.156 0.015

Total 
phosphorus

Linear fit 0.625 0.010 0.236 0.012
Polynomial 0.701 0.008 0.202 0.011
Power 0.633 0.009 0.224 0.012
Least squares 0.701 0.008 0.201 0.010

Turbidity

Linear fit 0.234 1.529 0.103 2.169
Polynomial 0.640 1.026 0.067 1.524
Power 0.308 1.441 0.097 2.059
Least squares 0.640 1.026 0.067 1.416

Algae density

Linear fit 0.670 0.205 0.298 0.269
Polynomial 0.741 0.181 0.240 0.244
Power 0.715 0.614 0.667 0.250
Least squares 0.741 0.181 0.240 0.227
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Fig. 4 shows that the model accuracy for ACD (TP) in 
area A is the highest (lowest), and the model accuracy of 
the ACD (TN) in area B is the highest (lowest). Except for 
a few points that are far from the 1:1 line, TN, TP, TUB, and 
ACD are all close to the 1:1 line, which is consistent with 
their determination coefficients ranging between 0.5 and 0.9 
(p < 0.01), indicating that each inversion model is stable. The 
inversion accuracy of the least squares model is close to that 
of traditional satellite remote-sensing models for the four 
water-quality parameters used herein [34]. We can there-
fore estimate the spatial distribution of the water-quality 
parameters in the Longhu area [35].

4.4. Multispectral image inversion of water-quality parameters

The least squares model estimates each pixel in the mul-
tispectral image, and the estimation results for TN, TP, TUB, 
and ACD in the East Lake area are inverted [36,37]. First, 
the water body is extracted from the multispectral image 
by drawing the region of interest; next, the optimal inver-
sion model corresponding to the four established param-
eters is inserted into the band-calculation tool to calculate 
the water quality corresponding to each pixel in the area. 
Finally, the inversion results are presented in stages for dif-
ferent concentrations, and the distribution of water-quality 
parameters in the study area is visualized. Different colors 
represent different values. The closer the color is red, the 
larger the value; the closer the color is to blue, the smaller 
the value [38] (Fig. 6, area A and Fig. 7, area B). The inver-
sion results show that the concentration of TN in the study 
area is between 0.02 and 0.2 mg/L, the concentration of TP is 

 

Fig. 5. Linear fits to plots of predicted value vs. true value for area B.

 

Fig. 6. Inversion results of region A.
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0.01–0.1 mg/L, the TUB is 8–30 NTU, and the ACD is 0.2 × 106 
to 1.5 × 106 cells/L. Among them, the content of TP in part 
of study area A is high, which may be due to the influence 
of fallen leaves in the coastal area. The turbidity of most of 
study area B is close to 30 NTU, and no value is abnormally 
high. This result may be related to the enhancement of ani-
mal and plant diversity, concentrations of suspended solids, 
and human activity involving ecological restoration [39].

4.5. Water-quality classification

Based on various inversion results for water-quality 
parameters and in accordance with GB 3838-2002 (envi-
ronmental quality standards for surface water), the two 
water-quality indicators TP and TN are assessed. Table 7 lists 
the standard limits of surface water. The results show that 
the TN (TP) concentration in the study area is basically at 
the Class I (II) water-body level.

5. Conclusion

Based on UAV multispectral images and measured 
water-quality data, this paper quantitatively inverts the four 
water-quality parameters TN, TP, TUB, and ACD of a typical 
Longhu river. The results show that the appropriate mathe-
matical transformation of reflectance improves the correla-
tion between some water-quality parameters. The band-ratio 
model can be used to estimate water-quality parameters. 
The least squares inversion model of water-quality param-
eters improves the model accuracy and controls overfitting. 
Although the number of water samples is small in this work, 
some specific band combinations correlate strongly with 
water-quality parameters and have high inversion accuracy 
and good stability, which allows the water-quality param-
eters of small areas to be predicted. This work provides a 
preliminary verification of the reliability and flexibility of 
multispectral remote-sensing monitoring of water-quality 
parameters of small water bodies, and the study of different 
types of water bodies should increase our understanding of 
river polymorphism and provide a practical starting point 
for future UAV water monitoring. Although the water-qual-
ity inversion model applied in one area is not necessarily 
suitable for other areas, water-quality inversion is consistent, 
which provides a technical route for applying this technol-
ogy in other areas. In addition, the inversion model should 
improve in follow-up work, allowing a model to be estab-
lished by considering the season and the water body and 
thereby establishing a more universal inversion model.
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Fig. S1. The accuracy comparison of each model in area A.

 

Fig. S2. The accuracy comparison of each model in area B.
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