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a b s t r a c t
Geostatistics is the knowledge of manifestations that vary in space and time. The analysis of spa-
tial data is currently of great interest in statistical modeling. Various parametric and non-paramet-
ric kriging techniques are widely used for modeling and prediction of spatially reference data. In 
this article, we have applied and compared the parametric and non-parametric kriging techniques 
to model groundwater quality parameters. The data used in this study consists of 366  water sam-
ples collected from major cities of Pakistan by the Pakistan Council of Research in Water Resources 
(PCRWR) survey. The water quality parameters are grouped by spatial variation using cluster 
analysis and principal component analysis. In order to generate prediction maps and evaluate the 
probability of groundwater quality parameters, parametric and non-parametric kriging techniques 
are used. Non-parametric kriging techniques showed better performance than parametric kriging 
techniques when the normality assumption of kriging is violated.
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1. Introduction

Water is playing an important role for nourishing life 
and development on earth. Groundwater play a key role 
in nourishing agricultural, human and industrial activities 
[1]. Water quality decreases day by day due to the access 
of anthropogenic activities alike wastewater expulsion 
and nutrient access [2]. The use of contaminated water 
cause many health problems in the developing countries 
[3]. Pakistan is listed as water stressed state and threat of 
water scarcity in nearby future [4]. It was observed that 
30% of all the diseases and 40% of all deaths were because 
of contaminated water [5]. Various contaminants and other 
metals were found in the drinking water of major cities of 
Pakistan [6–10].

The presence of significant quantities of physiochemi-
cal pollutants and their impact on health were used to eval-
uate the quality of drinking water [11]. The Environmental 
Protection Agency (EPA) had investigated the presence of 
more than 200 organic chemicals in drinking water [12]. It 
was found that seawater intrusion has contaminated some 
of the coastal groundwater aquifers [13]. The World Health 
Organization had warned that dangerous hydrogen (PH) 
levels could lead to numerous skin and eye illnesses. Water 
polluted with arsenic can lead to cancer of the lungs, blad-
der, and membrane. Additionally, skin pigmentation and 
thickness may result from it [14]. Bone disorders and stom-
ach troubles are caused by drinking water with a high 
total dissolved solids (TDS) level [15].

Geographic Information System (GIS) and multivar-
iate statistical techniques are applied for the assessment 



Z. Javed et al. / Desalination and Water Treatment 300 (2023) 107–114108

of water quality parameters. Adhikary et al. [16] applied 
non-parametric kriging methods to assess the spatial vari-
ation in water quality parameters in New Delhi, India. In 
order to determine the spatial distribution of groundwater 
depth and quality parameters in the Ardabil plain in north-
west of Iran, Talaee [17] applied parametric kriging method 
(ordinary kriging). The groundwater quality was assessed 
by using parametric and non-parametric kriging techniques 
in Iran and it was found that the non-parametric kriging 
methods perform better than parametric when assumptions 
of parametric kriging are not fulfilled [18]. Principal compo-
nent analysis (PCA) and cluster analysis (CA) were used for 
identification of the highly correlated and significant water 
quality parameters [19]. In literature various parametric 
and non-parametric kriging techniques were used for the 
evaluation and extrapolation of spatial variation of water 
quality parameters and it was reported that non-paramet-
ric kriging techniques provide better prediction in the case 
of non-normal data [20,21]. In this study, we have made a 
comparison between parametric and non-parametric krig-
ing techniques. Non-parametric kriging techniques showed 
better performance than parametric kriging techniques 
when the normality assumption of kriging is violated.

The main objective of this study is to assess, model 
and predict the water quality by applying parametric and 
non-parametric kriging techniques. For this purpose, we 
have considered a case of groundwater quality parame-
ters for which the assumption of normality does not hold. 

Several geo-statistical non-parametric methods as indica-
tor kriging, probability kriging and CDF kriging are used 
for the purpose of prediction at ungauged locations. Rest 
of the paper unfolds as follows: in Section 2, material and 
methods are provided. While Section 3 provides the results 
and discussion. Finally, the paper is concluded in Section 4.

2. Material and methods

Pakistan is a country in South Asia that borders with 
Iran to the west, China to the northeast, India to the east and 
Afghanistan to the northwest (Fig. 1). According to the 2017 
census, Pakistan has a total area of 881,913 km2 and a pop-
ulation of 220 million. In Pakistan, the rivers, groundwater, 
and rainfall are the main sources of water. The Indus, Sutlej, 
Chenab, Beas, Jhelum, Sindh, and Kabul are the major rivers. 
The majority of the territory has a dry climate, although a 
small portion of the north has a humid climate. The raini-
est area in Pakistan is Murree (Rawalpindi), with an average 
of 1,484 mm of rainfall annually. The majority of the area in 
Pakistan has less than 250 mm of rainfall annually. Pakistan 
has four different seasons: a cool, dry winter (December 
to February); a dry spring (March to May); a rainy sum-
mer (June to September); and an autumn (October to 
November). The water resources of Pakistan are dependent 
on monsoon precipitation, which occurs from July through 
September during the summer. According to its topogra-
phy, Pakistan can be split into six primary regions: the Indus 

 
Fig. 1. Study site and sampling locations of major cities of Pakistan.
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river plain, the desert regions, the northern highlands, the 
western mountains, the Baluchistan plateau, the Pothohar 
plateau, and salt range [22].

2.1. Groundwater samples

Pakistan Council of Research in Water Resources 
(PCRWR) had conducted a water quality monitoring sur-
vey in 2015–16 in 25 main cities of Pakistan including 
Lahore, Faisalabad, Multan, Gujranwala, Karachi, Peshawar, 
Rawalpindi, Islamabad, Quetta, Sargodha, Kasur, Sialkot, 
Bahawalpur, Mardan, Hyderabad, Badin, Loralai, Sukkur, 
Gujrat, Sheikhupura, Abbottabad, Ziarat, Mingora, Gilgit 
and Muzaffarabad [23]. Water quality parameters were mea-
sured from 366 water samples in the major cities of Pakistan. 
Samples were taken from a few chosen wells, hand pumps, 
taps, streams, and water supply systems. The distance 
between the two monitoring stations was kept between 1 
and 16 km. The permanent public locations were preferred, 
and 0.5 and 1.5 L clean, sterile plastic bottles were used to 
collect the water samples. Bottles were carefully washed 
before samples were taken. As a preservative, nitric and 
boric acids were added to the sampling bottles for trace 
elements. While being transported to the laboratory, the 
samples were kept refrigerated and in the dark. The phys-
iochemical parameters are very essential and important to 
test the water for drinking, domestic, agricultural or indus-
trial purpose. Thus, the role of these parameters is import-
ant in determining quality of water. Eleven physiochemical 
parameters are evaluated in groundwater samples, includ-
ing (electric conductivity, power of hydrogen, bicarbonate, 
calcium, magnesium, hardness, sodium, potassium, sulfate, 
total dissolved solid, and arsenic).

2.2. Variogram and variogram models

Variogram is used to measure the spatial dependency 
among the spatial neighboring locations. It has three 
parameters; sill, range and nuggets (Fig. 2) which are 
used in further prediction techniques.
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where γ(h) is denotes for spatial correlation and h be the 
lag distance between the locations. N(h) represents the total 
number of pairs separated by range h and Z(xi) indicates the 
observation at the measured location. Variogram models 
are fitted because the spatial prediction (kriging) requires 
the estimates of variogram. The matern model is also called 
Whittle–Matern model after the name of Whittle [24]. It is 
used to define the spatial covariance between two points.

� � �h
h

k
h

v

v� � � � �
� �
�

�

�

�
�

�

�

�
� �

�

�
��

�

�
��

2 2 1 	 (2)

where |ℎ| > 0 and t2, σ2, v and Ø ≥ 0 where kv is bassel func-
tionality of order v. This particular variogram model is an 
intermediate option among Gaussian and exponential 
model [25].

The exponential method for spatial correlation is:
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for |ℎ| > 0 and t2, σ2 and Ø ≥ 0 where, where t2 + σ2 is 
the sill and t2 is called the real nugget effect of the model 
[26]. The mathematical model of the spherical family is 
described as:
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for t2, σ2 and Ø ≥ 0. Spherical model gradually increases 
from the nugget effect t2 to sill quantity t2  +  σ2 when 
the spatial lag quantity ℎ ≥ Ø [26].

2.3. Spatial prediction techniques

We have applied the parametric spatial techniques for 
the prediction spatial data. The ultimate goal of these tech-
niques is to model and test the significance of the envi-
ronmental data and prediction of ungauged locations. 
The primary gateway for spatial statistical development 
is kriging [27]. There are mainly two types of kriging, that 
is, parametric and non-parametric kriging. Parametric 
kriging requires the normality of data along with (spatial 
dependence and spatial continuity). If these assumptions 
are violated then it is recommended to use non-parametric 
kriging techniques [21]. Several geo-statistical non-para-
metric methods as indicator kriging, probability kriging 
and CDF kriging are used for the purpose of prediction at 
ungauged locations. It is important to highlight the impor-
tance of correct choice of kriging method to obtain efficient  
prediction.

Ordinary kriging is the extensively applied krig-
ing technique. It is a method based on the assumption of 
unknown mean and widely used in practice [28]. Ordinary 
kriging algorithm is given in Eq. (5):
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Fig. 2. Description of variogram parameters (sill, range and 
nuggets).
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where Z(xo) denotes for expected measure of unmonitored 
locations xo and m is the number of adjacent points and 
wi is the weight assigned to the calculated value z(xi).

Co-kriging is an expansion of the ordinary kriging. It 
is a very versatile technique for spatial prediction, which 
facilitates the user to analyze cross-correlation graphs 
and autocorrelation [29].
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where wil denotes the weight function and γlv(zi,zj) is the 
covariance among the variables l and v at locations zi and zj.

A binary variable is used in indicator kriging instead 
of the initial observations. The indicator variable sepa-
rates the original data based on specific threshold values 
into binary data [30].
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The number of the threshold is denoted by K and zk 
is the preferred threshold. Where wi denotes the weight 
coefficient.

Probability kriging is a non-parametric kriging method 
which is depends upon co-kriging [30]. The standard-
ized ranks are used in calculating the probability kriging 
which is defined as:
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where rank of the r’th order statistic is represented by r and 
n denotes for the total number of values. The probability 
kriging estimator is defined as:
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where wi and wui are the weight functions associated with 
I(xi,zk) and U(xi), respectively.

2.4. Evaluation of kriging methods

Cross validation was used to evaluate the predictive 
performance. Three non-parametric kriging methods were 
considered in this study and were compared for mean error, 
mean squared error (MSE) and root mean square error 
(RMSE). Cross validation can be calculated as follow [31]:
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where z(xi) is the observed value at location xi, z*(xi) is 
the predicted measure at the same location xi and n is the 
number of pairs of measured and predicted values. The 
mean error (ME) value near to zero is an indicator of better 
model. A model with minimum value of MSE and RMSE 
is considered the best-fit model among the others.

3. Results and discussions

The descriptive results of hydro chemical parameters 
are given in (Table 1). ArcGIS 10.7 and R language soft-
ware’s are used for spatial statistical analysis and descrip-
tive measures of water quality parameters. Shapiro–Wilk 
normality test is used to check the normality of the water 
quality parameters (Table 1). It is shown in the Table 1 
that, except pH, all the water quality parameters are non- 
normal based on Shapiro–Wilk normality test. Skewness 
and kurtosis also confirm these results.

3.1. Principal component analysis and cluster analysis

The PCA is applied to highlight the most signifi-
cant water quality parameters. Form Table 2, it has been 
demonstrated that the seven water quality parameters 
have larger loadings and account for 70.96% of the vari-
ation overall. Three axes were produced by the analy-
sis, and they account for 83.96% of the total variation 
(Table 2). Only 12.01% of the entire variation is explained 
by the second axis, which contains positive loadings for 
the water quality parameters Ca, Mg, SO4, and TDS. The 
third axis, which has a positive loading for HCO3, accounts 
for 10.99% of the overall variation.

Cluster analysis is used to classify objects into sim-
ilar groups. The dendrogram highlights that the first 

Table 1
Normality tests for water quality parameters EC, HCO3, Ca, 
Mg, HARD, Na, K, SO4, pH, TDS, and As

Parameters Shapiro–Wilk 
normality test

P-value Skewness Kurtosis

EC 0.26265 <0.000 8.40 80.90
pH 0.99435 0.1951 0.01 0.36
HCO3 0.82757 <0.000 2.20 7.94
Ca 0.6428 <0.000 4.43 30.11
Mg 0.43285 <0.000 6.21 47.95
HARD 0.50116 <0.000 5.86 45.10
Na 0.28338 <0.000 7.52 65.43
K 0.33507 <0.000 4.63 22.76
SO4 0.37043 <0.000 5.48 34.03
TDS 0.30842 <0.000 7.41 64.29
As 0.55021 <0.000 2.72 7.18
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cluster have seven water quality parameters as in PCA and 
the other water quality parameters are placed in different 
clusters shown in colors (Fig. 3). The K and As are placed 
in a different class according to the dendrogram, which 
demonstrates that they have a lower correlation with the 
other parameters. It is to be noted that the cluster analysis 
results support the classification of the principal component  
analysis.

3.2. Geostatistical analysis

In this section, variogram parameters of the selected 
water quality parameters are estimated on the basis of krig-
ing. Ordinary least square, weighted least square, maxi-
mum likelihood and restricted maximum likelihood esti-
mation techniques are used with the well-known variogram 
models to estimate the variogram parameters.

Table 3 shows that the matern model with REML esti-
mation technique is best fitted to electrical conductivity 
(EC) concentration based on coefficient of determination 
(R2  =  0.92). The water quality parameter EC has the sill 
value of 2.02  ×  108 with a range of 2.50  ×  102 and nugget 
4.82 × 106. The best fitted model for the corresponding water 
quality parameters are listed in Table 3.

3.3. Comparison of kriging methods

To assess the predictive performance of theoretical mod-
els, cross-validation statistics are calculated for the water 
quality parameters. For the significant water quality param-
eters EC, Ca, Mg, HARD, Na, SO4, and TDS, ME, MSE, and 
RMSE are calculated (Table 4). It can be observed that the 
HARD, EC and TDS parameters are all have minimum value 
of RMSE and ME for indicator kriging. Probability kriging 
performed better in the cases of Mg, Na and SO4. The results 
show that the indicator kriging and probability kriging 
performed better than ordinary kriging and co-kriging.

3.4. Spatial prediction of water quality parameters

Based on the results of Table 4, the indicator and prob-
ability kriging are further used to generate the water qual-
ity prediction maps. The prediction map of parameter EC 
shows that the EC parameter has values higher towards 
south and southwestern area (Fig. 4a). It is observed from the 
Fig. 4b that Ca concentration exceeds its permissible limits 
in the south-west area. It is clearly depicted from the predic-
tion maps (Fig. 4), that the values of water quality param-
eters are higher in the southwest region of the study area. 
The higher values of these parameters may cause cancer, 
dehydration, laxative effects, and many other skin diseases.

Table 2
Principal component analysis of water quality parameters

Variable Factor 1 Factor 2 Factor 3

TDS 0.972 0.027 –0.154
EC 0.960 –0.069 –0.162
HARD 0.958 –0.034 –0.117
Mg 0.947 0.060 –0.044
Na 0.946 –0.104 –0.132
SO4 0.934 0.569 –0.095
Ca 0.838 0.188 –0.200
HCO3 0.683 –0.112 0.506
K 0.044 –0.083 0.199
pH –0.351 –0.544 –0.266
As –0.030 –0.056 –0.440
Explained variation (%) 70.960 12.010 10.990
Cumulative explained 
variation (%)

70.960 82.970 83.960

PHASKHCO3CASO4HARDMGNATDSEC

45.72

63.81

81.91

100.00

Variables

S
im
il
a
r
it
y

Fig. 3. Dendrogram for clustering the correlated water quality 
parameters.

Table 3
Variogram model and estimation technique for the water quality parameters

Groundwater 
parameter

Best-fitted model Estimation 
method

Sill (σ2) Range (φ) Nugget (τ2) R2

EC Matern REML 2.02 × 108 2.50 × 102 4.82 × 106 0.92
Ca Spherical REML 4.37 × 102 0.123 1.55 × 103 0.83
Mg Matern WLS 3.59 × 103 1.40 × 104 2.87 × 103 0.90
HARD Exponential REML 2.95 × 105 19.26 7.79 × 104 0.76
Na Matern WLS 3.80 × 105 3.86 × 104 1.33 × 105 0.87
SO4 Spherical REML 2.01 × 104 0.48 5.86 × 104 0.83
TDS Matern WLS 4.25 × 106 4.16 9.25 × 104 0.91
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Fig. 4. Prediction maps for seven water quality parameters of major cities of Pakistan.
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In general, the flow of groundwater is from east to 
west in Pakistan. The quality of groundwater is reduced 
from east to west as shown in the prediction maps given 
in Fig. 4. Out of 366 water samples, only 113 (31%) are 
suitable for drinking whereas 69% of samples are highly 
contaminated and not suitable for drinking purposes. 
It is also observed from this study that 47% in KPK, 65% 
in Punjab, and for both Sindh and Baluchistan (81%) of 
water samples are unsafe and not suitable for drinking. 
Groundwater contamination is caused by rapid population 
growth and industrialization.

4. Conclusion

This study investigated the spatial distribution of ground-
water quality parameters in the major cities of Pakistan. 
Various parametric and non-parametric kriging techniques 
are used widely for modelling and prediction of spatially 
reference data. All the water quality parameters except pH 
are non-normal. The results show that the non-parametric 
kriging techniques (i.e., indicator kriging and probability 
kriging) have performed better than the parametric krig-
ing (i.e., ordinary kriging and co-kriging). These two bet-
ter performing non-parametric kriging techniques are used 
further for generating the prediction maps for water quality 
parameters. The quality of groundwater deteriorates from 
east to west. It is found that out of 366 water samples, only 
113 (31%) are suitable for drinking whereas 69% of sam-
ples are highly contaminated and not suitable for drink-
ing purposes. This study highlights that the groundwater 
contamination is caused by rapid population growth and  
industrialization.
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