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a b s t r a c t
In this paper, the Nr hybrid version of the Kedem–Katchalsky–Peusner (K-K-P) formalism for con-
centration polarization conditions is developed. For ternary non-electrolyte solutions, this formal-
ism includes the hybrid Peusner coefficients (Nr

ij, i, j ∈ {1, 2, 3}, r = A, B), which determine the trans-
port properties of the membrane, the nr

ij coefficients which determine the degree of coupling, and 
the energy conversion efficiency coefficient (er

ij). Besides, K-K-P formalism is the basis for a method 
to evaluate the conversion of internal energy (U-energy) into free energy (F-energy) and dissi-
pated energy (S-energy) in a membrane system containing ternary non-electrolyte solutions sep-
arated by a polymer membrane. Moreover, it is shown that the Peusner coefficients are proposed 
as a flux-induced version of the modified Péclet number for concentration polarization conditions. 
The present paper is a continuation of several previous papers, of which the Lr, Rr, Hr, Kr versions of 
the Kedem–Katchalsky–Peusner formalism are presented. The formalism using the Nr form of the 
hybrid Kedem–Katchalsky–Peusner equations can be a useful tool to study the transport properties 
of artificial membranes for environmental engineering.

Keywords: �Membrane transport; Concentration polarization; Peusner’s network thermodynamics; 
Nr hybrid form of the Kedem–Katchalsky–Peusner equations; Entropy; Péclet number

1. Introduction

Energy conversion and transports of mass, energy and 
information are among the many phenomena that ensure 
the continuity of life under Earth’s gravity. These phenom-
ena occur in various types of nano-, micro- and macrosys-
tems, including artificial membrane systems (e.g., water 

treatment systems, microcapsules containing drugs or in 
hemodialyzers) and biological cells. The study of membrane 
transport and energy conversion processes is both cognitive 
and applied in science, in various disciplines of technology, 
bioenergetics and biomedicine [1–3]. Cognitive research 
aims to understand the molecular mechanisms of fluid 
and solute exchange through biological and/or synthetic 
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membranes [4]. In living systems, membranes act, among 
other things, as regulators of mass and energy transport 
ensuring the maintenance of metabolic activity, pressure 
balance or structural integrity. Moreover, knowledge of 
membrane transport mechanisms plays an important role 
in water technology and wastewater technology, the food 
industry, biorefineries and renewable energy [5], and in med-
icine for drug carriers such as liposomes, nanomicelles or 
dendrimers [6] or active membrane dressings [7].

Many materials are used as membrane-forming mate-
rials. The first material developed in the 1960s for seawa-
ter desalination by reverse osmosis was cellulose acetate. 
Today, membrane separation processes are performed 
by reverse osmosis and ultrafiltration. They cover a wide 
range of technological activities such as seawater desali-
nation, wastewater treatment, food processing or medical 
and biotechnological applications [8,9]. Currently, the most 
popular option due to its stability over wide pH ranges, 
higher temperatures and harsh chemical conditions is the 
thin-film polyamide composite membrane [10,11]. With a 
view to increasing the efficiency of membrane separation 
processes, the current trend in polymer-based membrane 
research is the development of nanocomposite membranes 
that use nanofillers such as single-walled carbon nanotubes, 
multi-walled carbon nanotubes, graphene, graphene oxide, 
silica or zeolite. The performance of membrane separation 
processes depends on many factors including the mem-
brane structure and the size, shape and number of pores. 
The optimal membrane performance can be predicted 
from the average pore size and pore size distribution that 
characterize a given membrane surface [8].

All processes in physical and chemical systems, includ-
ing living systems, require the supply of mass and energy. In 
living systems, the supply of mass and energy is carried out 
through the intake of specific nutrients, in which chemical 
potential energy, which is one of the form of solar energy, 
is stored. The direction of isothermal-isochoric processes is 
determined by free energy (F-energy), and isothermal-iso-
baric processes by free enthalpy (G-energy). F-energy is 
part of the internal energy (U-energy). These two energies 
are related to each other by the expression dF  = dU  – TdS, 
in which T is the absolute temperature and S is the ther-
modynamic entropy. In turn, the direction of isother-
mal-isobaric processes is determined by the free enthalpy 
(G-energy), which is a component of enthalpy (H-energy). 
Its part called free enthalpy (G) satisfies the equation 
dG = dH – TdS. The product of TdS is a measure of degraded 
energy (S-energy) [12,13].

In physical and chemical systems, including biological 
systems, F-energy and/or G-energy are converted into vari-
ous types of work. The transformations of energy into useful 
work can occur by thermal, osmotic–diffusion, electrical and/
or mechanical forms. They are determined by corresponding 
gradients (thermodynamic forces) of: temperature (T), con-
centration (C), electrical potentials (V) and/or mechanical 
pressure (P). A specific thermodynamic stimulus can induce 
specific transports: diffusive and/or osmotic transports of 
substances, heat, electrical charges, etc. [12,13].

The following models are used to describe transport 
processes in membrane systems: diffusion [14,15], frictional 
[16–18], statistical [19,20] models based on non-equilibrium 

Onsager thermodynamics [4,12,21] and network ther-
modynamics [22–35]. Derivation of membrane transport 
models within the framework of Onsager thermodynam-
ics is based on the following procedure: (i) find the dissi-
pation function, (ii) transform the dissipation function to 
account for the relevant thermodynamic forces and flows, 
and (iii) use practical forces and flows to give macroscopic 
phenomenological equations [4,12]. In the systems close to 
equilibrium, that is, those in which the rate of energy dis-
persion is small, the linearity of the relationship between 
fluxes and driving thermodynamic forces can be assumed. 
The Kedem–Katchalsky (KK) model, developed in accor-
dance with these principles, takes into account the interac-
tion between the solvent and solutes and is characterized 
by appropriate sets of phenomenological membrane coeffi-
cients (e.g., Lp, σ, ω), which can be determined experimen-
tally independently [12]. Therefore, the KK equations belong 
to the group of basic research tools for membrane transport 
in both biological and artificial systems. Several versions of 
these equations are used: classical Kondepudi and Prigogine 
[13], Cheng and Pinsky [21], and Kedem, Katchalsky 
and Peusner [22–35], Kargol’s [36], Elmoazzen et al. [37].

The first attempts to formulate the principles of net-
work thermodynamics (NT) appeared in the work of 
Meixner [38], who was the first to note the relationship 
between irreversible transport systems and electrical net-
works. The idea of NT was developed by Peusner [22] in 
his Doctoral Thesis (1970), using non-equilibrium thermo-
dynamics, symbolism and analog theory of electric circuits 
(Kirchhoff’s current and voltage laws, Tellegen’s princi-
ple, etc.) [28]. A year later, the work of Oster et al. [23] was 
published, which applied the bond graph method in NT to 
describe membrane transport. Peusner applied his ideas 
to energy conversion systems [24], membrane systems 
and processes [24], Brownian motions [26] and chemical 
reactions with diffusion [27]. He also proposed a method 
for hybrid transformation of linear Onsager equations 
[24,25,28] and showed ways to derive L, R, H and P ver-
sions of the Kedem–Katchalsky–Peusner (K-K-P) equations 
for homogeneous solutions by means of series of network 
transformations, and introduced the “super Q” coupling 
parameter. The L and R versions of the K-K-P equations 
contain symmetric Peusner coefficients Lij and Rij, respec-
tively. In turn, the H and P versions contain asymmetric 
(hybrid) Peusner coefficients Hij and Pij. In addition, he 
demonstrated the relationship between geometric and net-
work formulations of Onsager’s principle using the con-
cept of differential geometry metrics [28–30]. The Peusner’s 
idea of NT (Peusner Network Thermodynamics, PNT) 
was developed by Ślęzak et al. for concentration polariza-
tions conditions of binary [31–34] and ternary [35,39–41] 
non-electrolyte solutions separated by polymeric mem-
brane. For binary solutions, we have four versions of the 
equations K-K-P: Lr, Rr, Hr and Pr. The Lr and Rr, versions 
of the K-K-P equations contain symmetric Peusner coeffi-
cients Lr

ij and Rr
ij (i, j ∈ {1, 2}, r = A, B), respectively. In turn, 

the Hr and Pr versions – asymmetric (hybrid) Peusner coef-
ficients Hr

ij and Pr
ij (i, j ∈ {1, 2}, r = A, B). In turn, for ternary 

solutions, we have eight versions of the equations K-K-P: 
Lr, Rr, Hr, Kr, Nr, Sr, Wr and Pr. The Lr and Rr, versions of the 
K-K-P equations contain symmetric Peusner coefficients Lr

ij 
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and Rr
ij (i, j ∈ {1, 2, 3}, r = A, B). In turn, the Hr, Kr, Nr, Sr, Wr 

and Pr versions – hybrid Peusner coefficients Lr
ij, Rr

ij, Hr
ij, Kr

ij, 
Nr

ij, Sr
ij, Wr

ij and Pr
ij (i, j ∈ {1, 2, 3}, r = A, B). Versions of Lr, Rr, 

Hr and Kr of K-K-P equations have been used in previous 
papers [35–37,41]. The hybrid description developed by 
Peusner provides a more elegant physical interpretation 
of membrane transport processes than that implied by the 
Kedem–Katchalsky equations [20]. The present paper is a 
continuation of previous papers [35,39–41] in which the Lr, 
Rr, Hr and Kr versions of the Kedem–Katchalsky–Peusner  
formalism were presented.

This paper presents another hybrid version of the 
Kedem–Katchalsky–Peusner (K-K-P) formalism for ternary 
non-electrolyte solutions, which is denoted by Nr. This 
formalism includes the Peusner coefficients Nr

ij, Nr
det (i,  j 

∈ {1, 2, 3}, r = A, B), and defining the transport properties of 
the membrane. On their basis, the energy conversion effi-
ciency coefficient (er

ij) and the degree of coupling between 
the transport processes (nr

ij) were calculated. To evalu-
ate of F-energy, we propose a new Nr form of the K-K-P 
equations, which include the Peusner coefficients Nr

ij (i,  j 
∈  {1, 2, 3}, r = A, B) and an equation for the global source 
of S-energy ( �S

r

Nr
� � ). The coefficients Nr

ij and Nij, matrix 
coefficients Nr

det  =  det[Nr] and Ndet  =  det[N] can be calcu-
lated using the experimentally determined coefficients 
Lp, σ and w. To determine �S

r

Nr
� � , we use the experimen-

tally determined volume (Jr
v), glucose (Jr

s1) and/or ethanol 
(Jr

s2) fluxes. We calculate �S
r

Nr
� �  for concentration polariza-

tion conditions of solution. In addition, we introduce the 
energy conversion efficiency coefficient eij

r

Nr
� � , which is 

necessary to determine the F-energy. The results presented 
here improve our understanding of membrane transport 
under concentration polarization conditions. In this paper, 
a cellulose membrane (Nephrophan) was used. But our 
method for determining F-energy can be adapted to other 
types of membranes and membranous processes. It can 
also be used to understand the molecular mechanisms of 

membrane transport in order to improve the energy prop-
erties of new membrane systems. In turn on the basis of 
(er

ij)R and (Φr
S)R the flux of free energy (F-energy) ((Φr

F)R) 
and the flux of internal energy (U-energy) ((Φr

U)R) were 
calculated. The relationship between Peusner coefficients 
and the modified Péclet number were also demonstrated.

2. Materials and methods

2.1. Membrane system

Similarly to previously published papers [35,39–41], 
membrane transport was studied in a system containing 
two non-electrolyte ternary solutions separated by a poly-
mer membrane, shown schematically in Fig. 1a. In this sys-
tem, the membrane (M) separating compartments (h) and 
(l) is isotropic, symmetric, electrically inert and selective 
for solvent and solutes. The concentrations of solutes fill-
ing compartments (h) and (l) at the initial moment (t  =  0) 
are defined as Chk and Clk (Chk > Clk, k = 1, 2). For a horizon-
tally oriented membrane (perpendicular to the gravity vec-
tor), the solutions were set in configurations A or B (r  = A 
or B). In configuration A, the solution with a concentration 
Clk was placed in the compartment above the membrane, 
while the solution with a concentration Chk was placed in 
the compartment below the membrane. In configuration 
B, the locations of the solutions relative to the membrane  
were reversed.

We have investigated isothermal and stationary trans-
port processes trough the membrane, characterized by vol-
ume (Jr

v) and solute fluxes (Jr
sk) (k = 1, 2 and r = A, B). These 

fluxes can be described for ternary non-electrolyte solutions 
and concentration polarization conditions by means of the 
KK equations [31–35,39–41]. As is known [42–48], solute 
molecules diffusing through the membrane under concen-
tration polarization conditions form concentration boundary 
layers (CBLs) on both sides of the membrane. These CBLs 
are denoted by lr

h and lr
l and their thicknesses by δr

h and δr
l, 

respectively [44,45]. Creation of lr
h and lr

l results in a decrease 

M

Configuration A  Configuration B 

Clk Chk 

Chk 
Clk JvB 

 Ph 

Pl Ph 

Pl 

llA  

lhA 

lhB 

llB 

 

JvA

(l) 

(h) (l) 

(h) g 

ClkA 

ChkA 

ChkB 

ChkB 

JskA 

JskB 

Fig. 1. Model of single-membrane system: M – membrane, g – gravitational acceleration, lA
l and lA

h – the concentration boundary layers 
in configuration A, lB

l and lB
h – the concentration boundary layers in configuration B, (the blue and red dotted lines refer to the stable 

state of lr
l and lr

h, r = A or B, while the red and blue broken lines refer to the unstable state of lr
l and lr

h, r = A or B), Ph and Pl – mechan-
ical pressures, Ckh and Ckl – global solutes concentrations (Chk  > Clk), CA

lk, CA
hk, CB

lk and CB
hk – local (at boundaries between membrane 

and CBLs) solutes concentrations, JA
sk and JA

v – solute and volume fluxes in configuration A, JB
sk and JB

v – solute and volume fluxes in 
configuration B, (k = 1 or 2).
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of solute concentration at the membrane-solution interface 
from Chk to Cr

hk and an increase from Clk to Cr
lk. This means 

that for t > 0 the following relationships are satisfied: Cr
hk > Cr

hk, 
Cr

lk  >  Clk and Chk  >  Cr
hk (k  =  1,  2) [33]. The solution densities 

denoted by the symbols ρr
l and ρr

h refer to the densities of 
the solutions at the boundary of the layers lr

l/M and M/lr
h as 

well as ρl and ρh refer to the densities of the solutions out-
side the layers. The following relationships are possible 
between suitable solutions densities: ρl < ρh or ρl > ρh, ρr

l > ρl 
or ρr

l < ρr
h, ρr

l > ρr
h or ρr

l < ρr
h and ρr

h > ρh or ρr
h < ρh. The relations 

between densities and concentrations of solutions can be 
described by ρh = ρl(1 + α1Ch1 + α2Ch2), where α1 = ρl

–1∂ρ/∂C1 
and α2 = ρl

–1∂ρ/∂C2 (for glucose in aqueous ethanol solutions 
α1 > 0 and α2 < 0) [43]. If the solution with lower density is in 
the compartment above the membrane, the lr

h/M/lr
l complex is 

hydrodynamically stable. If, on the other hand, the solution 
with lower density is in the compartment below the mem-
brane, the lr

h/M/lr
l complex may lose hydrodynamic stability 

and gravitational (convective) instabilities appear near the 
membrane [38,42,43]. The tests were performed for a situa-
tion in which compartments (h) and (l) contained solutions 
of glucose (index 1) in an aqueous ethanol solution (index 
2) of different concentrations. The solutions were separated 
by a Nephrophan membrane (Orwo VEB Filmfabrik, Wolfen, 
Germany) made of cellulose acetate, with hydrophilic pores 
(averaged pore diameter of 2.4  nm and total thickness of 
14–15 µm) [49,50]. The electron microscope image of surface 
and cross-section of this membrane was presented in [43]. 
Nephrophan has been used as a hemodialyzer and ocular 
drug delivery system [49,51]. In this and our previous papers 
[18,31–35,39–48], the Nephrophan membrane was treated as 
a “black box” for solvent and solutes. Compartment (l) con-
tained a solution in which the concentrations of both com-
ponents were constant: Cl1  = Cl2  =  1 mol·m–3. Compartment 
(h) contained glucose in an aqueous ethanol solution. The 
concentration of glucose was changed from 1 to 71 mol·m–3 

and the concentration of ethanol was fixed at 201  mol·m–3. 
This means that the osmotic pressure difference of the aque-
ous glucose solutions (Δπ1) was in the range of 0–171.6 kPa. 
The difference of osmotic pressure for ethanol (Δπ2) was 
constant and equal to 490.2 kPa. The transport properties of 
this membrane were determined by the following param-
eters: hydraulic permeability (Lp), reflectivity (σ) and dif-
fusion permeability (ω) [8]. The values of these coefficients 
for glucose (index 1) and ethanol (index 2) for Nephrophan 
membrane are: Lp = 4.9 × 10–12 m3·N–1·s–1, σ1 = 0.068, σ2 = 0.025, 
ω11  =  0.8  ×  10–9  mol·N–1·s–1, ω12  =  0.81  ×  10–13  mol·N–1·s–1, 
ω22 = 2.0 × 10–9 mol·N–1·s–1 and ω21 = 1.63 × 10–12 mol·N–1·s–1 [46]. 
Besides, experimentally measured a1  =  6.0  ×  10–5  kg·mol–1 
and a1 = –0.90 × 10–5 kg·mol–1 were also used. A measure of 
concentration polarization are the concentration polariza-
tion coefficients (ζr

v, ζr
k, k = 1, 2; r = A, B), which for ternary 

solutions depend on both the concentration and compo-
sition of the solutions separated by the membrane and 
the configuration of the membrane system. The values 
of these coefficients were determined in previous paper 
[41] for Nephrophan membrane and glucose solutions in 
aqueous ethanol solution and are summarized in Table 1.

2.2. Nr form of Kedem–Katchalsky–Peusner equations for 
non-electrolyte solutions

As is known [42–46], the creation of concentration 
boundary layers (CBLs) occurs on both sides of a mem-
brane separating two solutions of different concentration 
and/or composition. The process of CBLs creation is called 
concentration polarization. Concentration polarization leads 
to a reduction in membrane transport, involving a decrease 
in volume and solute fluxes from Jv and Jsk (for homoge-
neous solution) to Jr

v and Jr
sk, respectively (under conditions 

of concentration polarization). The fluxes Jr
v and Jr

sk depend 
on the configuration of the membrane system, and the con-
centration characteristics of Jr

v and Jr
sk for ternary solutions 

are nonlinear [41,46]. These fluxes can be described by the 
Kedem–Katchalsky equations for ternary non-electrolyte 
solutions, and the concentration polarization conditions can 
be described by the equations:

J L P Lv
r

p
r

p p
r

p v
r

v v
r

v� � �� �� � � � � � � �� � �1 1 1 2 2 2 	 (1)

J C Js
r

s
r

s
r

a
r

a v
r

1 11 11 1 12 12 2 1 1 11� � � �� �� � � � � � � �� � 	 (2)

J C Js
r

s
r

s
r

a
r

a v
r

2 21 21 1 22 22 2 2 2 21� � � �� �� � � � � � � �� � 	 (3)

where Jr
v – volume flux, Jr

s1 and Jr
s2 – fluxes of dissolved sub-

stances “1” and “2”, respectively, Lp – hydraulic permea-
bility coefficient, σv1 and σv2 – membrane reflection coeffi-
cients for substances “1” and “2” and volume flux, σs1 and 
σs2 – membrane reflection coefficients for substances “1” and 
“2” and solute flux, σa1 and σa2 – membrane reflection coef-
ficients for substances “1” and “2” and advective flux, ω11 
and ω22 – membrane permeability coefficients for substances 
“1” and “2” generated by osmotic pressure with indexes 
“1” and “2”, respectively, and ω12 and ω21 – solute permea-
bility coefficients for substances “1” and “2” generated by 
osmotic pressures with the indices “2” and “1”, respectively, 

Table 1
Values of concentration polarization coefficients 
(ζr

v,  ζr
k,  k  =  1,  2;  r  =  A,  B), for Nephrophan membrane and 

glucose in aqueous ethanol solution [41]

Δπ (kPa) ζA
v ζA

1 ζA
2 Δπ (kPa) ζB

v ζB
1 ζB

2

–171.57 0.031 0.028 0.03 6.13 0.031 0.028 0.029
–159.31 0.031 0.028 0.03 12.25 0.031 0.028 0.028
–147.06 0.031 0.028 0.03 24.51 0.031 0.028 0.029
–134.05 0.032 0.028 0.03 36.76 0.031 0.028 0.028
–122.55 0.037 0.028 0.032 49.02 0.041 0.028 0.03
–110.29 0.067 0.058 0.06 61.27 0.055 0.038 0.048
–98.04 0.15 0.18 0.16 73.53 0.095 0.062 0.082
–85.78 0.42 0.3 0.31 85.78 0.16 0.163 0.163
–73.53 0.29 0.44 0.44 98.04 0.295 0.306 0.304
–61.27 0.47 0.46 0.45 110.29 0.38 0.405 0.4
–49.02 0.49 0.48 0.487 122.55 0.435 0.45 0.44
–36. 76 0.495 0.485 0.487 134.05 0.468 0.475 0.47
–24.51 0.5 0.497 0.491 147.06 0.485 0.49 0.48
–12.25 0.5 0.497 0.492 159.31 0.496 0.496 0.496
–6.13 0.5 0.497 0.495 171.57 0.5 0.5 0.5
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ζr
p – hydraulic concentration polarization coefficient, ζr

v1 and 
ζr

v2 – osmotic concentration polarization coefficients, ζr
s11, ζr

s12, 
ζr

s21 and ζr
s22 – coefficients of diffusive concentration polar-

ization and ζr
a1 and ζr

a2 – coefficients of advective concentra-
tion polarization. ΔP = Ph – Pl is the difference of hydrostatic 
pressures on the membrane (Ph and Pl means higher and 
lower hydrostatic pressure value). Δπk  = RT(Ckh  – Ckl) is the 
difference of osmotic pressures on the membrane (RT is the 
product of the gas constant and the absolute temperature, 
while Ckh and Ckl are the concentrations of the solutions, 
Chk > Clk, k = 1, 2. Ck  = (Chk – Clk)[ln(ChkClk

–1)]–1 (k = 1, 2) is the 
average concentration of solutes in the complex lr

l/M/lr
h, lr

l 
and lr

h – concentration boundary layers, M – membrane. For 
Δπk = 0(Ckh = Ckl) the Eqs. (1)–(3) take the form: Jr

v = ζr
pLpΔP, Jr

s1 = 
C1 (1 – ζr

a1σa1) Jr
v and Jr

s2 =  C2 (1 – ζr
a2σa2)Jr

v. After simple algebraic 
transformations we get Jr

ak = Ck (1 – ζr
akσak)ζr

pLpΔP, (k = 1, 2).
On the basis of Eqs. (1)–(3), the phenomenological coef-

ficients for homogeneous solutions (ζr
p = ζr

v = ζr
s = ζr

a = 1) are 
defined as follows:

L
J
Pp
v

C

�
�

�
� 0

	 (4)

�vk
J k

P
RT C

vk

�
� �

�
� 0 1 2, or

	 (5)

�ak
ak

p C C C k

J
cL P

hk lk

� �
� � �

1
0 1 2

�
� , , or

	 (6)

�sk
sk

J s k

J
RT C

v

�
� �

� 0 1 2, , ,

	 (7)

The set of membrane transport parameters (Lp, σvk, σak, 
ωsk) play the role of proportionality coefficients between 
thermodynamic forces and fluxes. The coefficients ζr

p, 
ζr

vk, ζr
s and ζr

ak play a similar role. The products Lpζ
r
p, σvkζ

r
vk, 

ωskζ
r
sk and σakζ

r
ak, determine the transport properties of the 

complex: membrane and concentration boundary layers.
Using the principles of network thermodynamics, 

Eqs. (1)–(3) can be transformed to a hybrid form:
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Using Eq. (9) in Eqs. (8) and (10), the Nr form of the 
Kedem–Katchalsky–Peusner equations are obtained can be 
presented as:
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Eqs. (11)–(22), represent the form of Nr Kedem–
Katchalsky–Peusner equations. These equations can also 
be written in the matrix form:
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where [Nr] is a matrix of Peusner coefficients Nr
ij (i, j ∈ {1, 2, 3}) 

for ternary non-electrolyte solutions and concentration 
polarization conditions.



261A. Ślęzak et al. / Desalination and Water Treatment 301 (2023) 256–276

Eqs. (14)–(22) shows that for non-diagonal coefficients 
the relations Nr

12  ≠ Nr
21, Nr

13 ≠ Nr
31 and Nr

23 ≠ Nr
32 are satisfied. 

Moreover, it can be shown that the determinant of the 
matrix [Nr] is equal to:
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The superscript “r” in Eqs. (11)–(22) means that the fluxes 
Jr

v, Jr
1, Jr

2, the coefficients Nr
ij (i,  j ∈  {1,  2,  3}; r  = A,  B) and the 

matrix [Nr] of these coefficients, relating to concentration 
polarization conditions, are dependent on the configuration 
of the membrane system. For solution homogeneity condi-
tions, the conditions ζr

v1 = ζr
v2 = ζr

a1 = ζr
a2 = ζr

s11 = ζr
s12 = ζr

s22 = ζr
s21 = 

ζr
p = 1, Jr

v = Jv, Jr
1 = J1, Jr

2 = J2, and Nr
ij = Nij are fulfilled.

2.3. Mathematical model of energy conversion in the membrane 
system

In thermodynamic systems, also in membrane systems, 
the internal energy (U-energy) can be converted into free 
energy (F-energy) and the dissipated energy (S-energy) 
[4,12,13]. The fluxes of these quantities satisfy the fol-
lowing equation:
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where �U
r

Nr
� �   =  A–1dUr/dt is the flux of U-energy, 

�F
r

Nr
� �   = A–1dFr/dt is the flux of F-energy, �F

r

Nr
� �   = TA–1diSr/

dt – is the flux of dissipated energy (S-energy), diS/dt – is the 
rate of entropy creation in the membrane system by irre-
versible processes (flux of cumulative entropy creation), T 
– absolute temperature, and A – the membrane surface area.

If the solutions contain a solvent and two dissolved 
substances, then the Nr version of dissipated energy for the 
concentration polarization conditions denoted by �S

r

Nr
� �  is 

described by the equation.
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where �S
r

Nr
� �  is the Nr version of dissipated energy for the 

concentration polarization conditions, �S
r

Jv
r� �  is the dis-

sipated energy produced by Jr
v, �S

r

Jsk
r� �  is the dissipated 

energy produced by Jr
s1, Jr

v and Jr
s2 – the volume and solute 

fluxes, respectively, for the concentration polarization con-
ditions of the solutions, r = A or B means the configuration 
of the membrane system, k = 1, 2).

Using Eqs. (11)–(13), Eq. (15) can be transformed to 
the form:
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where αr
1 = Nr

11, αr
2 = Nr

12 + Nr
21 – Nr

23Nr
31Nr

33
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Eq. (27) shows the Nr version of the S-energy dissipation 
for the concentration polarization conditions. The �S

r

Nr
� �  

is the flux of dissipated energy, that is, the time change of 
energy per unit area of the membrane expressed in W·m–2. 
We can calculate the �F

r

Nr
� �  and �U

r

Nr
� �  for the concentration 

polarization conditions, using the equation:
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By transforming Eq. (28), we get:
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where eij
r

Nr
� ��
�

�
�max

 is the energy conversion efficiency 
defined by means of Kedem–Caplan–Peusner coefficients 
[28,52,53] and can be presented in the following form.
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The values of the coefficients eij
r

Nr
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�
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�max

 are limited by 
the relation 0 ≤  eij

r
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 ≤ +1. Taking into account Eq. (30) 
in (29) we get:
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To obtain the equation for �U
r

Nr
� �  it is necessary to take 

into consideration Eq. (29) in Eq. (25). After performing the 
necessary transformations, we get:
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Using Eq. (30), Eq. (32) can be transformed to the form:
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From the above procedure, based on Eqs. (31)–(33), we 
can calculate the amount of available F-energy that can be 
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converted into useful work and the total internal U-energy. 
It should be noted that in order to obtain Eqs. (11)–(22) for 
the conditions of homogeneity of solutions, it is sufficient 
to omit the superscript “r” in these equations.

3. Results and discussion

3.1. Calculations of the coefficients Nij, Nr
ij and Nr

det

The values of the coefficients Nij, Nr
ij, Nr

det (i,  j ∈  {1, 2, 3}, 
r = A, B) were calculated based on Eqs. (7)–(9) and (12) for 
glucose in aqueous ethanol solutions and Nephrophan 
membrane. Eqs. (7)–(9) and (12) show the practical coeffi-
cients describing the transport properties of the membrane 
(Lp, s1, s2, ω11, ω22, ω21 and ω12), the average concentrations 
of substances “1” and “2” in the membrane ( C1 , C2 ) and 
the concentration polarization coefficients (ζr

p, ζr
a1, ζr

a2, ζr
v1, ζr

s11, 
ζr

s12, ζr
v2, ζr

s22 and ζr
s21). The values of these coefficients were 

determined using the following conditions: ζr
p = 1, ζr

ak = 1, ζr
v, 

ζr
s11 = ζr

s12 = ζr
1 and ζr

s22 = ζr
s21 = ζr

2 [23,24]. Dependencies ζr
v = f(Δπ1), 

ζr
k = f(Δπ1) and ζr

ak = f(Δπ1) (k = 1, 2 and r = A, B) are presented 
in Table 1. The dependencies Nr

ij =  f(Δπ1) for Δπ2 = 490.2 kPa 
and {i,  j}  Ì  ({1,  1},  {2,  1},  {1,  3},  {2,  2}) are presented  
in Fig. 2.

Fig. 2a shows the dependence Nr
11  =  f(Δπ1) for 

Δπ2  =  490.2  kPa. From this figure it results that for homo-
geneous solution, the value of Nr

11 is linearly dependent on 
Δπ1 and independent of the membrane system configuration. 

This case is illustrated by curves 1A and 1B. For concentra-
tion polarization conditions, the value of the Nr

11 coefficient 
is nonlinearly dependent on both Δπ1 and the configura-
tion of the membrane system, as is illustrated by curves 2A 
and 2B. Curve 2A shows that for increase of Δπ1, the value 
of NA

11 decreases nonlinearly from 0.82  ×  1012  N·s·m–3 (for 
Δπ1 = –171.57 kPa) to 0.22 × 1012 N·s·m–3 (for Δπ1 = –72.2 kPa) 
and then from Δπ1  > –72.2 kPa it decreases more slowly to 
a value of NA

11  =  0.2  ×  1012  N·s·m–3. This can be caused by 
the fact that for Δπ1 lower than –73.5 kPa (|Δπ1| > 73.5 kPa) 
we observe instability region in CBLs, while for Δπ1 higher 
than –73.5  kPa (|Δπ1|  <  73.5  kPa) stability region of CBLs. 
Curve 2B, on the other hand, shows that as the value of Δπ1 
increases, the value of Nr

11 initially increases and reaches the 
maximum value of NB

11 = 0.51 × 1012 N·s·m–3 (for Δπ1 = 37.5 kPa), 
and then decreases to the value of NB

11  = 0.22 × 1012 N·s·m–3 
(for Δπ1  =  101.2  kPa) and then increases linearly to the 
value Nr

11  =  0.24  ×  1012  N·s·m–3, (for Δπ1  >  171.57  kPa). For 
Δπ1 lower than 73.5  kPa and greater than zero we observe 
the region of hydrodynamic stability of CBLs while for 
Δπ1 greater than 73.5  kPa the CBLs can be hydrodynam-
ically instable. It means that in addition to diffusion, con-
vective Rayleigh–Benard movements may occur in CBLs, 
which may significantly affect the conditions of transport 
through the membrane. Disregarding the minus sign for 
Δπ1 (i.e., for |Δπ1|), curves 2A and 2B intersect at the coor-
dinates |Δπ1| = 78.75 kPa and NA

11 = NB
11 = 0.26 × 1012 N·s·m–3. 

This is approximately in the transition region between the 

 

 

(a)                                 
           (b) 

 (c)                                  

      (d) 

Fig. 2. Coefficients Nr
ij (i,  j ∈  {1,  2,  3}, r  =  A,  B) as functions of glucose osmotic pressure difference (Δπ1) for constant ethanol 

osmotic pressure difference (Δπ2 = 490.2 kPa): Nr
11 (a), Nr

12 and Nr
21 (b), Nr

13 (c), and Nr
22 (d).
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stable and unstable range for a given configuration and it 
means that for this point the value of Nr

11 is independent 
of the configuration of the membrane system.

Fig. 2b shows the dependencies Nr
12 = f(Δπ1) and Nr

21 = f(Δπ1) 
for Δπ2 = 490.2 kPa. Curves 1A, 1B, 2A and 2B were obtained 
for homogeneous solution conditions and are symmetric 
about the vertical axis passing through the point Δπ1 = 0. On 
the other hand, curves 3A, 3B, 4A and 4B, which illustrate the 
relationships Nr

12 = f(Δπ1) and Nr
21 = f(Δπ1) for Δπ2 = 490.2 kPa 

and for polarization concentration conditions, are character-
ized by asymmetry about the vertical axis passing through 
the point Δπ1 = 0. The values of the coefficients Nr

12 and Nr
21 

are negative for both solutions: homogeneous and under con-
centration polarization conditions. Similarly, to the NA

11 and 
NB

11 coefficients (for |Δπ1|), curves 3A, 3B, 4A and 4B inter-
sect at the point with coordinates |Δπ1| = 78.75 kPa and NA

12 
= NB

12 = NA
21 = NB

21 = –7.28 × 109 N·s·mol–1. This means that for 
this point, the values of Nr

12 and Nr
21 do not depend on the 

configuration of the membrane system.
Fig. 2c shows the dependencies Nr

13  =  f(Δπ1) for 
Δπ2  =  490.2  kPa. For the homogeneity conditions, the coef-
ficient Nr

13 does not depend on the glucose concentration 
and configuration of the membrane system and is equal to 
Nr

13  =  –36.76  mol·m–3. This case is illustrated in this figure 
by curves 1A and 1B. For the conditions of concentra-
tion polarization, the values of the coefficient Nr

13 are non-
linearly dependent on both Δπ1 and the configuration of 
the membrane system, as is illustrated by curves 2A and 

2B. These graphs show that as the value of Δπ1 increases, 
the values of Nr

13 are initially constant and amount to 
Nr

13  =  –37.6  mol·m–3, and then for Δπ1  ≥  –99.37  kPa and 
Δπ1 ≥ 50.62 kPa increases to Nr

13 = –37.3 mol·m–3. It should be 
noted that the coefficient Nr

13 is negative. The curves 1A and 
1B intersect at the point with coordinates |Δπ1| = 78.75 kPa 
and NA

13  =  NB
13  =  –37.4  mol·m–3. This is the osmotic pressure 

of glucose in the range between the stable and unstable 
conditions of CBLs. For this point the values of NA

13 and NB
13 

are the same for configurations A and B of the membrane  
system.

Fig. 2d shows the dependence Nr
22  =  f(Δπ1) for 

Δπ2  =  490.2  kPa. Curves 1A and 1B illustrate this depen-
dence for homogeneous solution and for configurations 
A and B of the membrane system. Curves 1A and 1B are 
symmetrical, and curves 2A and 2B are asymmetrical 
with respect to the vertical axis passing through the point 
Δπ1 = 0. Curve 2A shows that NA

22 reaches a maximum value 
at the Δπ1  =  –135.9  kPa point. For Δπ1  >  –135.9  kPa, Nr

22 
decreases nonlinearly up to 0.4  ×  109  N·s·m3·mol–2. Curve 
2B, on the other hand, shows that Nr

22 decreases nonlin-
early from 27.94 × 109 N·s·m3·mol–2 to 0.83 × 109 N·s·m3·mol–2. 
For Δπ1 > 78.75 kPa the coefficient Nr

22 is constant.
Fig. 3a shows the dependencies Nr

23  =  f(Δπ1) for 
Δπ2  =  490.2  kPa. The figure shows that for homogeneous 
solutions and concentration polarization of the mem-
brane, the Nr

23 coefficients are concentration-dependent but 
do not dependent on the configuration of the membrane 

    

   

 

(a)                                                                                          (b) 

(c)                                                                          (d)

Fig. 3. Coefficients Nr
ij and Nr

det (i,  j ∈  {1,  2,  3}, r  =  A,  B) as functions of glucose osmotic pressure difference (Δπ1) for constant 
ethanol osmotic pressure difference (Δπ2 = 490.2 kPa): Nr

23 (a), Nr
31 (b), Nr

33 (c), and Nr
det (d).
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system. This case is illustrated by the overlapping nonlin-
ear curves 1A and 2A and 1B and 2B suitably. These curves 
are symmetric with respect to the vertical axis passing 
through the point Δπ1  =  0. Unlike the Nr

23 coefficient, the 
value of the Nr

32 coefficient is constant and equal 2.04 × 10–3.
Fig. 3b shows the relationship Nr

31  =  f(Δπ1) for 
Δπ2  =  490.2  kPa. For homogeneous solutions, the value of 
Nr

31 decreases nonlinearly with increase of Δπ1 and does 
not depend on the configuration of the membrane system. 
This case is illustrated in Fig. 3b by curves 1A and 1B. For 
concentration polarization conditions, the Nr

31 coefficients 
are slightly dependent on Δπ1 and do not depend on the 
configuration of the membrane system, as is illustrated 
by curves 2A and 2B. The Nr

31 coefficient is positive over 
the entire range of studied Δπ1. Both curves 1A and 1B 
and curves 2A and 2B are symmetrical with respect to the 
vertical axis passing through Δπ1 = 0.

Fig. 3c shows the relationship Nr
33  =  f(Δπ1) for 

Δπ2  =  490.2  kPa. For homogeneous solutions, Nr
33 coeffi-

cients do not depend on the glucose concentration and 
configuration of the membrane system and are constant, 
Nr

33 = 53.9 × 109 m3·N·s·mol–2 (Fig. 3c, curves 1A and 1B). For 
concentration polarization conditions, the Nr

33 coefficients 
depend nonlinearly on both Δπ1 and the configuration of 
the membrane system, as is illustrated by curves 2A and 
2B. Curve 2A shows that as Δπ1 increases, the value of Nr

33 
is initially constant, Nr

33 = 1. 67 × 109 m3·N·s·mol–2, and then 
for Δπ1 > –106.7 kPa, Nr

33 increases to 26.9 × 109 m3·N·s·mol–2 
(for Δπ1 ≥ –6.13 kPa). Similarly, it can be seen from curve 2B 
that as Δπ1 increases, the value of Nr

33 is initially constant, 
Nr

33  =  1. 67  ×  109  m3·N·s·mol–2, and then for Δπ1  >  59.05  kPa 
Nr

33 increases to the value 26.96  ×  109  m3·N·s·mol–2 (for 
Δπ1 ≥ 134.05 kPa). The Nr

33 coefficients are positive. In addi-
tion, curves 2A and 2B intersect at a point with coordinates 
|Δπ1| = 78.75 kPa and Nr

33 = 12.14 × 109 m3·N·s·mol–2. For this 
value of the osmotic pressure difference of glucose, the den-
sities of solutions on both sides of the membrane are simi-
lar (rl » rh). For this point, the values of Nr

33 are the same for 
configurations A and B of the membrane system.

Fig. 3d shows the relationship Nr
det  =  f(Δπ1) for 

Δπ2  =  490.2  kPa. Curves 1A an 1B illustrating this relation-
ship for homogeneous solutions are nonlinear curves and 
Nr

det does not depend on the configuration of the mem-
brane system. Curves 2A and 2B for concentration polar-
ization conditions are asymmetric with respect to the axis 
passing through the point Δπ1  =  0. These curves also show 
that the value of Nr

det depends nonlinearly on both Δπ1  = 0, 
as well as on the configuration of the membrane system. 
Curves 2A and 2B intersect at the point with coordinates 
|Δπ1|  =  73.04  kPa and NA

det  =  NB
det  =  2.85  ×  1012  N·s·m–3. This 

means that for this point the values of NA
det and NB

det are the 
same for configurations A and B of the membrane system.

3.2. Calculations of the energy dissipation (S-energy) �S
r

Nr
� �

Eq. (27) shows that the knowledge of the Nr
ij coefficients 

and Jr
s1, Jr

v and Jr
s2 fluxes is required to calculate �S

r

Nr
� � . Fig. 4a 

shows the dependencies �S
r

Nr
� �  = f(Δπ1) for Δπ2 = 490.2 kPa, 

calculated on the basis of this equation. The dependencies 
Nr

ij  =  f(Δπ1) for Δπ2  =  490.2  kPa, (i,  j ∈  {1,  2,  3}, r  = A,  B) are 

shown in Figs. 2a–d and 3a–c. The experimentally deter-
mined values of Jr

s1, Jr
v and Jr

s2 are summarized in Tables 2  
and 3.

Curves 1A and 1B illustrate the dependence 
�S
r

Nr
� �  = f(Δπ1) for Δπ2 = 490.2 kPa and for the homogeneity 
conditions of the solutions and configurations A and B of 
the membrane system.

Curves 1A and 1B indicate that �S
r

Nr
� �  is concentra-

tion-dependent and configuration-independent, and the 
value of �S

r

Nr
� � , in the range of studied Δπ1, increases from 

0.02 to 1.41  W·m–2. For the concentration polarization con-
ditions, the �S

r

Nr
� �   =  f(Δπ1) is nonlinear and depends on 

both Δπ1 and configuration of the membrane system, what 
is illustrated by the curves 2A and 2B. Curves 2A and 2B 
are asymmetrical with respect to the vertical axis passing 
through the point Δπ1  =  0. Moreover, for the same values 
of Δπ1, the �S

A

Nr
� �  and �S

B

Nr
� �  values illustrated by curves 

2A and 2B are much smaller in comparison to curves 1A  
and 1B.

3.3. Osmotic pressure dependencies of eij
r

Nr
� ��
�

�
�max

Fig. 4b–d show the dependencies eij
r

Nr
� ��
�

�
�max

  =  f(Δπ1) 
for Δπ2  =  490.2  kPa (i,  j ∈  {1,  2,  3}, r  = A,  B) calculated on 
the basis of Eq. (19) and data presented in Figs. 2a–d and 
3a–c. It can be seen from Fig. 4b that the values of the coef-
ficients eA

Nr12� ��
�

�
�max

 and eA
Nr21� ��

�
�
�max

 illustrated by curves 
3A and 4A for concentration polarization conditions and 
configuration A, decrease nonlinearly with Δπ1 increase. 
On the other hand, the values of coefficients eA

Nr12� ��
�

�
�max

 
and eA

Nr21� ��
�

�
�max

 for homogeneous solutions decrease 
linearly with the increase of Δπ1.

For the conditions of concentration polarization and 
configuration B of the membrane system, the values of the 
coefficients eB

Nr12� ��
�

�
�max

 and eB
Nr21� ��

�
�
�max

 initially increase 
nonlinearly with increase of Δπ1 and reach maximal values: 
eB

Nr12� ��
�

�
�max

 = 0.39 (curve 3B) and eB
Nr21� ��

�
�
�max

 = 0.34 (curve 
4B) for Δπ1  =  50.6  kPa. Next, they decrease to a constant 
and minimal values. Graphs 1A, 1B, 2A and 2B obtained 
for homogeneity of solutions are symmetrical with respect 
to the vertical axis passing through the point Δπ1  =  0 and 
eA

Nr12� ��
�

�
�max

= eB
Nr21� ��

�
�
�max

= eB
Nr12� ��

�
�
�max

= eB
Nr21� ��

�
�
�max

=
eB

Nr12� ��
�

�
�max

= e
Nr21� ��� ��max

. On the other hand, graphs 3A and 
3B and 4A and 4B obtained for the concentration polariza-
tion conditions of the solutions are asymmetric about the 
vertical axis passing through the point Δπ1 = 0, eA

Nr12� ��
�

�
�max

> 
eA

Nr21� ��
�

�
�max

> e
Nr12� ��� ��max

= e
Nr21� ��� ��max

 and eB
Nr12� ��

�
�
�max

>
eB

Nr21� ��
�

�
�max

> e
Nr12� ��� ��max

= e
Nr21� ��� ��max

.
From curves 1A, 1B, 2A and 2B shown in Fig. 4c, it 

can be seen that for homogeneous solutions, the values 
of the coefficients eA

Nr13� ��
�

�
�max

, eA
Nr31� ��

�
�
�max

, eB
Nr13� ��

�
�
�max

,  
eB

Nr31� ��
�

�
�max

 do not depend on Δπ1 and configurations A 
and B of the membrane system. Moreover, the condition 
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(a)                                              (b) 

            (d) 
(c)

Fig. 4. Energy dissipation �S
r

Nr
� �  (r = A, B), S-energy) as function of glucose osmotic pressure difference (Δπ1) for constant ethanol 

osmotic pressure difference Δπ2 = 490.2 kPa (a), eij
r

Nr
� ��
�

�
�max

 coefficients (r = A, B) as functions of glucose osmotic pressure difference 
(Δπ1) for Δπ2 = 490.2 kPa and for (i, j) = {(1, 2) and (2, 1) (b), (1, 3) and (3, 1) (c) and (2, 3) and (3, 2) (d)}.

Table 2
Values of volume (JA

v, JB
v ), glucose (JA

1, JB
1 ) and ethanol (JA

2, JB
2 ) fluxes of homogeneity solutions for Nephrophan membrane [41]

Δπ1 (kPa) Homogeneous solutions

JA
v (nm·s–1) JA

1 (µmol·m–2·s–1) JA
2 (µmol·m–2·s–1) Δπ1 (kPa) JB

v (nm·s–1) JB
1 (µmol·m–2·s–1) JB

2 (µmol·m–2·s–1)

–171.57 –117.2 –137.3 –701.1 0 60.0 – –
–159.31 –113.1 –127.5 –701.1 6.13 62.1 4.9 701.1
–147.06 –109.0 –117.7 –701.1 12.25 64.1 9.8 701.1
–134.05 –105.0 –107.9 –701.1 24.51 68.2 19.6 701.1
–122.55 –100.9 –98.0 –701.1 36. 76 72.3 29.4 701.1
–110.29 –96.8 –88.2 –701.1 49.02 76.4 39.2 701.1
–98.04 –92.7 –78.4 –701.1 61.27 80.5 49.1 701.1
–85.78 –88.6 –68.6 –701.1 73.53 84.5 58.8 701.1
–73.53 –84.5 –58.8 –701.1 85.78 88.6 68.6 701.1
–61.27 –80.5 –49.1 –701.1 98.04 92.7 78.4 701.1
–49.02 –76.4 –39.2 –701.1 110.29 96.8 88.2 701.1
–36. 76 –72.3 –29.4 –701.1 122.55 100.9 98.0 701.1
–24.51 –68.2 –9.6 –701.1 134.05 100.5 107.9 701.1
–12.25 –64.1 –9.8 –701.1 147.06 109.0 117.7 701.1
–6.13 –62.1 –4.9 –701.1 159.31 113.1 127.5 701.1
0 –60.0 – – 171.57 117.2 137.3 701.1



A. Ślęzak et al. / Desalination and Water Treatment 301 (2023) 256–276266

eA
Nr13� �  =  eA

Nr31� �  =  eB
Nr13� ��

�
�
�max

 =  eB
Nr31� ��

�
�
�max

 is satisfied. On 
the other hand, for concentration polarization conditions and 
configuration A, the coefficients eA

Nr13� ��
�

�
�max

, eA
Nr31� ��

�
�
�max

,  

eB
Nr13� ��

�
�
�max

, eB
Nr31� ��

�
�
�max

 initially increase to the maximal 

value eA
Nr13� ��

�
�
�max

, e eA

N

A

Nr r31 31 0 19� � � ��
�

�
� � ��

�
� �

max max
.  for 

Δπ1  =  –134.1  kPa. Then, for Δπ1  >  –134.1  kPa, the values of 
eA

Nr13� ��
�

�
�max

 and eA
Nr31� ��

�
�
�max

 decrease to the minimal value 
e eA

N

A

Nr r13 31 0 029� ��
�

�
� � � ��

�
�
� �

max max
. . For configuration B, the val-

ues of eB
Nr13� ��

�
�
�max

 and eB
Nr31� ��

�
�
�max

 decrease nonlinearly to a 
constant and minimum value e eB

N

B

Nr r13 31 0 05� � �
�

�
� ��

�
�
� � � �
max max

. .  
It can be shown that curves 3A and 3B and 4A and 4B 
intersect at the point with coordinates Δπ1  =  ±80.6  kPa and 
eA

Nr13� ��
�

�
�max

  =  eA
Nr31� ��

�
�
�max

  =  eB
Nr13� ��

�
�
�max

  =  eB
Nr31� ��

�
�
�max

. 
This point is in a range of Δπ1 between the areas of hydro-
dynamic stability and instability of the CBLs. In this 
point, the coefficients eA

Nr13� ��
�

�
�max

 =  eA
Nr31� ��

�
�
�max

 =  eB
Nr13� ��

�
�
�max

  
=  eB

Nr31� ��
�

�
�max

 for concentration polarization conditions, do 
not depend on the configuration of the membrane system.

Fig. 4d shows the dependencies er
Nr23� ��

�
�
�max

 = f(Δπ1) and 
er

Nr32� ��
�

�
�max

 = f(Δπ1) for Δπ2 = 490.2 kPa (r = A, B), respectively. 
Curves 1A and 1B in this figure illustrate this dependence 
for homogeneous solutions. For concentration polarization 
conditions, the value of the coefficient er

Nr23� �  is nonlinearly 
dependent on Δπ1, and do not depend on the configura-
tions A and B of the membrane system, as is illustrated by 
curves 1A, 1B, 2A and 2B. In addition, all graphs are pair-
wise symmetric, with respect to the vertical axis passing 

through the point Δπ1 = 0, and independent of the configu-
ration of the membrane system.

3.4. Calculations of F-energy and U-energy in the membrane 
system

Fig. 5 shows the relationship �F
r

N ij
r� ��

�
�
�   =  f(Δπ1) for 

Δπ2  =  490.2  kPa, calculated from Eq. (18). Curves 1 and 2 
shown in Fig. 5a illustrate the dependencies �F

r

Nr
� ��
�

�
�12

 = f(Δπ1 
and �F

r

Nr
� ��
�

�
�21

 = f(Δπ1) for Δπ2 = 490.2 kPa, for homogeneous 
solutions and configurations A (left branches of the curve) 
and B (right branches of the curve). The aforementioned 
relations for homogeneous solutions are symmetric non
linear curves independent on the configuration of the  
membrane system.

For concentration polarization conditions, the depen-
dencies �F

r

Nr
� ��
�

�
�12

  =  f(Δπ1) and �F
r

Nr
� ��
�

�
�21

  =  f(Δπ1) for 
Δπ2  =  490.2  kPa, are the curves 3A and 4A, with the curve 
4A located above the curve 3A. In contrast, the relations 
�F
B

Nr
� ��
�

�
�12

 = f(Δπ1) and �F
B

Nr
� ��
�

�
�21

 = f(Δπ1) for Δπ2 = 490.2 kPa, 
are complex curves 3B and 4B with distinct two extremes. 
The maximum of curve 3B has coordinates Δπ1 = 50.6 kPa and 
�F
B

Nr
� ��
�

�
�21

 = 0.034 W·m–2 and the maximum of curve 4B has 
coordinates Δπ1 = 46.9 kPa and �F

B

Nr
� ��
�

�
�21

 = 0.046 W·m–2. On 
the other hand, the minimum of curve 3B has coordinates 
Δπ1 = 117.2 kPa and �F

B

Nr
� ��
�

�
�21

 = 0.019 and minimum of curve 4B 
has coordinates Δπ1 = 114.4 kPa and �F

B

Nr
� ��
�

�
�21

 = 0.021 W·m–2. 
From above data it follows, that curves 3A and 3B and 4A and 
4B are asymmetric and that the values of �F

r

Nr
� ��
�

�
�12

 =  f(Δπ1 
and �F

r

Nr
� ��
�

�
�21

  =  f(Δπ1 for Δπ2  =  490.2  kPa are dependent 

Table 3
Values of volume (JA

v, JB
v ), glucose (JA

1, JB
1 ) and ethanol (JA

2, JB
2 ) fluxes of non-homogeneity solutions for Nephrophan membrane [41]

Δπ1 (kPa) Non-homogeneous solutions

JA
v (nm·s–1) JA

1 (µmol·m–2·s–1) JA
2 (µmol·m–2·s–1) Δπ1 (kPa) JB

v (nm·s–1) JB
1 (µmol·m–2·s–1) JB

2 (µmol·m–2·s–1)

–171.57 –3.6 4 –22.7 0 1.91 – –
–159.31 –3.5 0.25 –21.7 6.13 1.92 0.1 21.7
–147.06 –3.4 –3.95 –21.7 12.25 1.93 0.3 21.7
–134.05 –3.2 –3.65 –22.4 24.51 2.11 0.6 21.7
–122.55 –4.1 –3.34 –25.9 36.76 2.31 0.9 21.7
–110.29 –5.3 –4.02 –47.0 49.02 2.82 1.4 28.7
–98.04 –8.4 –4.85 –105.2 61.27 5.39 3.2 38.5
–85.78 –14.2 –7.14 –203.3 73.53 12.7 8.8 63.8
–73.53 –24.9 –10.98 –294.4 85.78 25.7 19.9 112.2
–61.27 –30.6 –17.36 –329.5 98.04 38.9 32.9 206.8
–49.02 –32.9 –18.64 –343.5 110.29 43.5 41.5 206.4
–36. 76 –33.8 –17.06 –347.0 122.55 49.0 48.1 305.0
–24.51 –33.1 –13.77 –349.8 134.05 51.9 53.4 328.0
–12.25 –31.8 –9.51 –349.8 147.06 54.6 58.8 340.0
–6.13 –31.1 –4.86 –349.8 159.31 56.6 63.7 347.7
0 –30.2 –2.45 – 171.57 58.65 68.6 350.5
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on the configuration of the membrane system. Curves 1A 
and 1B shown in Fig. 5b illustrate the linear dependencies 
�F
r

Nr
� ��
�

�
�13

  =  f(Δπ1) for Δπ2  =  490.2  kPa for homogeneous 
solutions and configurations A and B. The aforementioned 
relations for homogeneous solution are symmetric straight 
lines independent of the configuration of the membrane 
system. For concentration polarization conditions, the rela-
tions �F

r

Nr
� ��
�

�
�13

 =  f(Δπ1 for Δπ2 = 490.2 kPa take the form of 
curves 2A and 2B and are complex curves with distinct two 
extremes. It follows that curves 2A and 2B are asymmetric 
and dependent on the configuration of the membrane system.

The maximum of curve 3B has coordinates Δπ1 = 50.6 kPa 
and �F

B

Nr
� ��
�

�
�21

 = 0.034 W·m–2 and maximum of curve 4B has 
coordinates Δπ1  =  46.9  kPa and �F

B

Nr
� ��
�

�
�21

  =  0.046  W·m–2. 
On the other hand, the minimum of curve 3B has coor-
dinates Δπ1  =  117.2  kPa and �F

B

Nr
� ��
�

�
�21

  =  0.019 and min-
imum of curve 4B has coordinates Δπ1  =  114.4  kPa and 
�F
B

Nr
� ��
�

�
�21

  =  0.021  W·m–2. The curves 3A and 3B and 4A 
and 4B are asymmetric and the values of �F

r

Nr
� ��
�

�
�21

 =  f(Δπ1 
and �F

r

Nr
� ��
�

�
�21

  =  f(Δπ1) for Δπ2  =  490.2  kPa are dependent 
on the configuration of the membrane system. Curves 1A 
and 1B shown in Fig. 5b illustrate the linear dependencies 
�F
r

Nr
� ��
�

�
�13

  =  f(Δπ1) for Δπ2  =  490.2  kPa for homogeneous 

solutions and configurations A and B of the membrane 
system. The aforementioned relations for homogeneous 
solutions are symmetric straight lines independent on the 
configuration of the membrane system. For concentration 
polarization conditions, the relations �F

r

Nr
� ��
�

�
�13

 =  f(Δπ1) for 
Δπ2 = 490.2 kPa take the form of curves 2A and 2B and are 
complex curves with distinct two extremes. The curves 2A 
and 2B are asymmetric and depend on the configuration 
of the membrane system.

Curves 1A and 1B shown in Fig. 5c illustrate the depen-
dence �F

r

Nr
� ��
�

�
�13

  =  f(Δπ1) for Δπ2  =  490.2  kPa for solution 
homogeneity conditions and configurations A (left branch 
of the curve) and B (right branch of the curve). The aforemen-
tioned relations for homogeneous solutions are symmetric 
nonlinear curves and do not depend on the configuration 
of the membrane system. For concentration polarization 
conditions, the relations �F

r

Nr
� ��
�

�
�13

 = f(Δπ1) for Δπ2 = 490.2 kPa 
take the form of curves 2A and 2B and are complex curves 
with distinct two extremes. The maximum of curve 2A has 
coordinates Δπ1 = 76.9 kPa and �F

r

Nr
� ��
�

�
�13

 = 0.013 W·m–2, and 
maximum of the curve 2B has coordinates Δπ1  =  69.4  kPa 
and �F

r

Nr
� ��
�

�
�13

 = 0.046 W·m–2, while the minimum of curve 
2A has coordinates Δπ1 = –133.1 kPa and �F

A

Nr
� ��
�

�
�31

 = 0.007, 

 

    

(a) (b) 

(c)       
(d) 

Fig. 5. Total production of free energy �F
r

N ij
r� ��

�
�
� , for (i, j) = {(1, 2) and (2, 1) (a), (1, 3) (b) (3, 1) (c), (2, 3) and (3, 2) (d)} and r = A, B, 

as functions of osmotic pressure difference of glucose (Δπ1) with a constant osmotic pressure of ethanol Δπ2 = 490.3 kPa and ΔP = 0.
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and minimum of the curve 2B has coordinates  =  106.9  kPa 
and �F

B

Nr
� ��
�

�
�31

  =  0.028  W·m–2. It follows that the curves 
2A and 2B are asymmetric and depend on the membrane 
system configuration.

Curves 1 and 2 shown in Fig. 5d illustrate the dependencies 
�F
r

Nr
� ��
�

�
�23

 = f(Δπ1) and �F
r

Nr
� ��
�

�
�32

 = f(Δπ1) for Δπ2 = 490.2 kPa 
for of homogeneous solutions and configurations A (left 
branches of the curves) and B (right branches of the curves). 
The aforementioned relations for homogeneous solutions 
are symmetric nonlinear curves independent of the config-
uration of the membrane system. Moreover, for the same 
values of Δπ1, �F

r

Nr
� ��
�

�
�23

  =  �F
r

Nr
� ��
�

�
�32

. For concentration 
polarization conditions, the dependencies �F

r

Nr
� ��
�

�
�23

 = f(Δπ1) 
and �F

r

Nr
� ��
�

�
�32

 = f(Δπ1) for Δπ2 = 490.2 kPa are shown by the 
curves 3B and 4B, which are complex curves and curves 
3A and 4A which have maxima at points with coordinates 
Δπ1  =  56.2  kPa and �F

A

Nr
� ��
�

�
�23

  =  4.1  ×  10–7  W·m–2 (curve 

3A), and Δπ1  =  52.5  kPa and �F
A

Nr
� ��
�

�
�32

  =  4.1  ×  10–7  W·m–2 
(curve 4A). From the above, it is clear that curves 3A and 
3B and 4A and 4B are asymmetric and that the values 
�F
r

Nr
� ��
�

�
�23

 = f(Δπ1) and �F
r

Nr
� ��
�

�
�32

 = f(Δπ1) for Δπ2 = 490.2 kPa 
depend on configuration of the membrane system.

Using the dependencies Nr
ij  =  f(Δπ1) and Nr

det  =  f(Δπ1) for 
Δπ2 = 490.2 kPa (i, j ∈ {1, 2, 3}, r = A, B) shown in Figs. 2 and 3, the 
dependencies nr

ij = f(Δπ1) for Δπ2 = 490.2 kPa (i, j ∈ {1, 2, 3}, i ≠ j, 
r = A, B), Qij

r

Nr
� �  = f(Δπ1) for Δπ2 = 490.2 kPa (i, j ∈ {1, 2, 3}, i ≠ j, 

r = A, B) and �ij Nr� �  = f(Δπ1) for Δπ2 = 490.2 kPa (i, j ∈ {1, 2, 3}, i ≠ j 
or i, j ≡ det) were calculated. Besides, the relationships between 
the Peusner coefficients (Nr

ij, Nr
det i ≠  j ϵ {1, 2, 3}, r = A, B) and 

modified Péclet coefficients (℘r
vk, ℘r

ak, k = 1 or 2) will be shown 
in the next part of the article. The classic Péclet coefficient is 
expressed by the ratio: the rate of advection and the rate of  
diffusion [50,51].

3.5. Osmotic pressure dependencies of nij
r

Nr
� �

The coefficients nr
12 and nr

21 are measures of the degree 
of coupling between the processes (Jr

ν(ΔP  – Δπ1  – Δπ2)) and 

J
CS

r
1

1

1

,
���

�
��

�

�
�� . In turn, the coefficients nr

13 and nr
31 are measures 

of the degree of coupling between the processes (Jr
ν(ΔP – Δπ1 – 

Δπ2)) and J
CS

r
2

2

2

,
���

�
��

�

�
��

 and the coefficients nr
13 and nr

31 are mea-

sures of the degree of coupling of the processes J
CS

r
1

1

1

,
���

�
��

�

�
��

 

and J
CS

r
2

2

2

,
���

�
��

�

�
��

. The values of the nr
ij coefficient:

n
N

N N
i j r A Bij

r ij
r

ii
r

jj
r

� � �� �, , { , , }, ,1 2 3 	 (34)

can be calculated using above formula and dependen-
cies Nr

ij  =  f(Δπ1) for Δπ2  =  490.2  kPa presented in Figs. 2a–d 
and 3a–c.

Klinkman et al. study shows [49] that for homoge-
neous solutions these coefficients should satisfy the relation 
–1 ≤ nr

ij = nij ≤ +1. If nij = 0, then the processes (Jr
ν(ΔP – Δπ1 – Δπ2)), 

J
CS

r
1

1

1

,
���

�
��

�

�
�� , (Jr

ν(ΔP  – Δπ1  – Δπ2)), J
CS

r
2

2

2

,
���

�
��

�

�
�� , J

CS
r
1

1

1

,
���

�
��

�

�
��  and 

J
CS

r
2

2

2

,
���

�
��

�

�
��  are not coupled. If nij  >  0 the coupling of the 

processes under consideration leads to a decrease of the 
fluxes with decrease of coupled stimuli. If nij < 0, then with 
an increase in the value of the stimulus of one process there 
is observed a decrease in the flux of the process coupled 
to it. The value nij = ±1 is reached only for full coupling of 
processes. Fig. 6a shows the dependence �U

r

Nr
� ��
�

�
�13

  = Δπ1) 
for Δπ2  =  490.2  kPa calculated from the Eq. (34). Curves 
1 illustrate this relationship for homogeneous solutions 
and configurations A and B.

From curves 1A and 1B, it can be seen that �U
r

Nr
� ��
�

�
�13

 
depend on solutions concentration and do not depend on 
the configuration of the membrane system, and the values 
of �U

r

Nr
� ��
�

�
�13

, in the range of studied Δπ1, increase from 0.02 
to 1.44  W·m–2. For concentration polarization conditions, 
the values of �U

r

Nr
� ��
�

�
�13

 is nonlinear and depends on Δπ1 
and the configuration of the membrane system, as is illus-
trated by curves 2A and 2B. Curves 2A and 2B are asym-
metrical with respect to the vertical axis passing through 
the point Δπ1 = 0. Moreover, for the same values of Δπ1, the 
values of �U N

A
r� ��

�
�
�13

 and �U N

B
r� ��

�
�
�13

 illustrated by curves 
1A and 1B are much smaller in comparison to curve 1. 
Very similar results were obtained from calculation for 
the relationships �U

r

Nr
� ��
�

�
�13

  =  f(Δπ1), �U N

r
r� ��

�
�
�31

  =  f(Δπ1), 

�U N

r
r� ��

�
�
�23

  =  f(Δπ1), �U N

r
r� ��

�
�
�32

  =  f(Δπ1), �U N

r
r� ��

�
�
�12

  =  f(Δπ1) 

and �U N

r
r� ��

�
�
�21

 = f(Δπ1), in all cases Δπ2 = 490.2 kPa.
Fig. 6b shows that the values of the coefficients 

n nA

N

A

Nr r12 21� � � �and  for homogeneous solutions and con-
figurations A and B, illustrated by curves 1A, 1B, 2A and 
2B, decrease nonlinearly with increasing values of |Δπ1|, 
and are negative. The curves 1A and 1B and 2A and 2B 
for homogeneous solutions are symmetrical with respect 
to the vertical axis passing through the point Δπ1  =  0 and 
n nA

N

A

Nr r12 21� � � �=  and n nB

N

B

Nr r12 21� � � �= . On the other hand, 
graphs 3A and 3B and 4A and 4B obtained for concentration 
polarization conditions are complex curves. They are asym-
metric with respect to the vertical axis passing through the 
point |Δπ1| = 0. The curves 3A and 4A satisfy the relations 
n nA A

N Nr r12 21� � � � �  and the curves 3B and 4B satisfy the rela-
tions n nB B

N Nr r12 21� � � � � . For the conditions of concentration 
polarization and configuration B, the values of the coeffi-
cients nB

Nr21� �  initially decrease nonlinearly and reach min-
imal values nB

Nr12� �   =  –0.88 (curve 3B) and nB
Nr21� �   =  0.81 

(curve 4B) for Δπ1 = 45.5 kPa, after which they increase.
Fig. 6c shows the dependencies n nr r

N Nr r13 31� � � �and  on Δπ1 
for Δπ2 = 490.2 kPa. For homogeneous solutions, the values 
of these coefficients are independent on the concentration 
and configuration of the membrane system. The values of 
these coefficients are n nA B

N Nr r13 13� � � �=  = –0.34 (Fig. 6c, curves 
1A and 1B) and n nA B

N Nr r31 31� � � �=  = 0.34 (Fig. 6c, curves 2A and 
2B). For concentration polarization conditions, the values 
of the coefficients n nr r

N Nr r13 31� � � �and  depend nonlinearly 
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on both Δπ1 and configuration of the membrane system, as 
is shown in curves 3A and 3B. Curve 3A shows that as Δπ1 
increases, the value of nA

Nr13� �  initially decreases from –1.02 
to a minimal value (–1.16 for Δπ1  >  –122.5  kPa) and then 
increases to –0.5 for Δπ1 > –36.8 kPa. On the other hand, curve 
3B shows that as Δπ1 increases, the value of nB

Nr13� �  increases 
nonlinearly from –1.92 to –0.46.

Similarly, the values of the coefficients n nr r

N Nr r13 31� � � �and  
depend nonlinearly on both Δπ1 and the configuration of 
the membrane system, as is illustrated by the curves 4A and 
4B. Curve 4A shows that as Δπ1 increases, the value of nA

Nr13� �  
initially increases from 0.99 to a maximum value (1.134 for 
Δπ1 > –122.5 kPa) and then decreases to 0.5 for Δπ1 > –36.8 kPa. 
For Δπ1  ≥  –36.8  kPa nA

Nr13� �  is constant. On the other hand, 
from curve 4B it can be seen that as Δπ1 increases, the value 
of nB

Nr13� �  decreases nonlinearly from 1.87 to 0.46. In addi-
tion, curves 1A, 2A and 1B, 2B are symmetrical about the 
horizontal axis passing through the point n nr r

N Nr r13 31� � � ��  = 0 
and vertical axis passing through the point Δπ1  =  0. On 
the other hand, curves 3A, 4A and 3B, 4B are symmetri-
cal with respect to the horizontal axis passing through the 
point n nr r

N Nr r13 31� � � ��   =  0 and asymmetrical with respect 
to the vertical axis passing through the point Δπ1 = 0.

Fig. 6d shows the dependencies nr
Nr23� �   =  f(Δπ1) and 

nr
Nr32� �   =  f(Δπ1) for Δπ2  =  490.2  kPa (r  = A,  B), respectively. 

Curves 1A, 1B, 2A and 2B illustrate these dependencies 
for homogeneous solutions. Curves 1A and 2A are sym-
metrical about the vertical axis passing through the point 
Δπ1  =  0. For concentration polarization conditions, the val-
ues of the coefficients n nr r

N Nr r23 32� � � �and  are nonlinearly 
dependent on Δπ1 and do not depend on the configuration 
of the membrane system, as is illustrated by curves 3A, 3B, 
4A and 4B. In addition, all graphs are pairwise symmetric, 
with respect to the vertical axis passing through the point  
Δπ1 = 0.

From the results shown in Fig. 6b–d, it can be seen that 
for homogeneous solutions nr

Nr12� �   =  nr
Nr21� �   <  0, nr

Nr13� �   = 
nr

Nr31� �  < 0 and nr
Nr23� �  =  nr

Nr32� �  > 0. If nr
Nr12 0� � � , then as 

the stimulus (ΔP  – Δπ1  – Δπ2) of one process increases, the 
flux Jr

s1 of the process coupled to it decreases. Similarly, if 
nr

Nr13 0� � � , then as the value of stimulus (ΔP  – Δπ1  – Δπ2) 
increases, the flux Jr

s2 of the process coupled with it decreases, 
etc. On the other hand, if nr

Nr23 0� � � , then the coupling of 
the processes under consideration leads to an increase in 
fluxes (the values of fluxes increase with increase of suitable  
stimuli).

 

                                        

(a)                                                                                        (b) 

(c)                                                                                                            (d) 

Fig. 6. (a) Total production of U-energy �U
r

Nr
� ��
�

�
�13

 as a function of osmotic pressure difference of glucose (Δπ1) with a con-
stant osmotic pressure of ethanol (Δπ2  = 490.3 kPa) and ΔP  = 0. The coefficients nij

r

Nr
� �  as functions of glucose osmotic pressure 

difference (Δπ1) for Δπ2 = 490.2 kPa and i, j = {1, 2 or 2, 1 (b), 1, 3 or 3, 1 (b) and 2, 3 or 3, 2 (d)} and r = A, B.
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For concentration polarization conditions of solutions 
n nr r

N Nr r12 21 0� � � �� � , n nr r

N Nr r13 31� � � ��  and nr
Nr13 0� � �  and 

nr
Nr31 0� � � , n nr r

N Nr r23 32 0� � � �� � . If nr
Nr12 0� � � , then as the 

value of the stimulus (ΔP – Δπ1 – Δπ2) of one process increases, 
the flux Jr

s1 of the process coupled to it decreases. Similarly, 
if nr

Nr13 0� � � , then as the stimulus (ΔP – Δπ1 – Δπ2) increases, 
the flux Jr

s2 of the process coupled with it decreases. On the 
other hand, if n nr r

N Nr r31 230 0� � � �� �and , then the coupling 
of the processes under consideration leads to an increase  
in fluxes.

The results presented in Fig. 6c show that for concentra-
tion polarization conditions (curves 3A, 3B, 4A and 4B) the 
relations � � � � � �1 163 0 513. .nA

Nr
, � � � � � �1 917 0 46313. .nB

Nr
,  

0 493 1 13431. .� � � �nA
Nr

, 0 46 1 8731. .� � � �nB
Nr

 are fulfilled. 
This means that for concentration polarization conditions 
Caplan’s relations are not satisfied.

3.6. Osmotic pressure dependencies of the Peusner’s coupling 
parameter Qij

r

Nr
� �

The Qij
r

Nr
� �  parameter can be calculated using Eq. (36) 

and dependencies Nr
ij = f(Δπ1) for Δπ2 = 490.2 kPa presented in 

Figs. 2a–d and 3a–c.
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N N N N
i j r A Bij
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N
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r
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r
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r
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r
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r

ji
rr� � �

�
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2
4 2

1 2 3, , { , , }, , 	 (35)

Fig. 7a shows the dependence Q Qr

N

r

Nr r12 13� � � �and  on Δπ1 
for homogeneous solutions, the values of these coefficients 
do not dependent on the glucose concentration and config-
uration of the membrane system. The values of these coef-
ficients are Q QA

N

B

Nr r12 12 0 025� � � � �= .  (Fig. 7a, curves 1A and 
1B) and Q QA

N

B

Nr r13 13 0 05� � � � � �= .  (Fig. 7a, curves 2A and 2B). 
For concentration polarization conditions, the coefficients 
Q Qr

N N

r
r r12 13� � � �and  depend nonlinearly on both Δπ1 and con-

figuration of the membrane system, as is shown in curves 
3A, 3B, 4A and 4B.

Curve 3A shows that as Δπ1 increases, the value of QA

Nr12� �  
initially decreases from 0.6 to a minimal value 0.004. On the 
other hand, curve 4A shows that as Δπ1 increases, the value 
of QA

Nr12� �  decreases from –0.34 to minimal value –0.4 (for 
Δπ1 = –110.29 kPa). For Δπ1 > –110.29 kPa QA

Nr12� �  increases 
to maximal value –0.11. Similarly, the value of the coeffi-
cients Q QB

N

B

Nr r12 13� � � �and  depend nonlinearly on Δπ1 and 
on configuration of the membrane system, as is illustrated 
by curves 4A and 4B. Curve 4A shows that as Δπ1 increases, 
the value of QA

Nr13� �  initially decreases from –0.34 to mini-
mal value –0.4 (for Δπ1  =  –122.5  kPa) and then increases to 
value –0.11 (for Δπ1 > –36.8 kPa). For Δπ1 ≥ –36.8 kPa QA

Nr13� �  
is constants. On the other hand, from the curve 4B it can be 
seen that as Δπ1 increases, the value of QB

Nr13� �  decreases 
nonlinearly from –0.64 to –0.1. In addition, curves 1A and 2A 
and 1B and 2B are symmetrical with respect to the horizon-
tal axis passing through the point Q nr r

N Nr r12 13 0� � � �� �  and 
the vertical axis passing through the point Δπ1  =  0. On the 
other hand, curves 3A and 4A and 3B and 4B are symmet-
rical with respect to the horizontal axis passing through the 
point Q Qr r

N Nr r12 13 0� � � �� �  and asymmetrical with respect to 
the vertical axis passing through the point Δπ1 = 0.

Curves 1A and 1B shown in Fig. 7b illustrate the non-
linear dependence Qr

Nr23� �   =  f(Δπ1) for Δπ2  =  490.2  kPa, for 
homogeneous solutions and configurations A and B of 
the membrane system. The aforementioned relations for 
homogeneous solutions are symmetric curves independent 
on the configuration of the membrane system.

For concentration polarization conditions, the dependen-
cies Qr

Nr23� �  = f(Δπ1) for Δπ2 = 490.2 kPa are illustrated by straight 
line 2A and nonlinear curve 2B. This means that graphs 2A and 
2B are dependent on the configuration of the membrane sys-
tem and are asymmetric with respect to the vertical line pass-
ing through the point Δπ1 = 0. The coupling parameters satisfy 
the relations 0 0 61112� � � �Qr

Nr
. , � � � � � �0 642 0 0613. .Qr

Nr
,  

and 0 641 10 2 085 106
12

6. .� � � � � �� �Qr

Nr
. Peusner’s cou-

pling parameter Qij
r

Nr
� �  can be rearranged by Caplan’s 

 

(a)
                                                                                  (b) 

Fig. 7. Coefficients Qij
r

Nr
� �  (r = A, B) as functions of glucose osmotic pressure difference (Δπ1) for Δπ2 = 490.2 kPa and (i, j) = {(1, 3) 

and (1, 2) (a) and (2, 3) (b)}.
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coupling coefficients (nr
ij, nr

ji). Considering Eq. (34) in Eq. (35),  
we get:

Q
n n
n n

i j r A B n nij
r

N

ij
r
ji
r

ij
r
ji
r ij

r
ji
r

r� � �
�

� � � �� �2
1 2 3 2, { , , }; , ; 	 (36)

Considering the results of the calculations shown 
in Fig. 6b–d in Eq. (36), we get the following relation 
�� � � � � ��Qij

r

Nr
.

3.7. Osmotic pressure dependencies of χij

The values of the χij and χdet coefficients:

�ij
ij ji
A

ij ji
B

ij ji

N N

N
i j�

�
�� �� �� � � �

� �
, , , ,1 2 3 	 (37)

�det
det det

det

�
�N N
N

A B

	 (38)

can be calculated using the formulas and depen-
dencies Nr

ij  =  f(Δπ1) for Δπ2  =  490.2  kPa and Nr
det  =  f(Δπ1) 

for Δπ2  =  490.2  kPa presented in Figs. 2a–d and 3a–d. 
The calculated coefficients χij and χdet are shown in Fig. 8a–c.

Fig. 8a shows the dependence χ11 = f(Δπ1) for Δπ2 = 490.2 kPa 
(curves 1A and 1B) χ33  =  f(Δπ1) for Δπ2  =  490.2  kPa (curves 
2A and 2B) and χdet  =  f(Δπ1) for Δπ2  =  490.2  kPa (curves 3A 
and 3B). From this figure it results that χ11  =  χ33  =  χdet  =  0 
for Δπ1  =  78.75  kPa. In contrast, χ11  >  0 and χdet  >  0 for 
Δπ1 < –78.75 kPa and for Δπ1 > 78.75 kPa. Besides, χ33 > 0, for 
Δπ1 > –78.75 kPa and for Δπ1 < 78.75 kPa. On the other hand, 
χ11 < 0, χdet < 0 for Δπ1 > –78.75 kPa and for Δπ1 < 78.75 kPa 
and χ33 < 0 for Δπ1 < –78.75 kPa and for Δπ1 > 78.75 kPa.

Fig. 8b shows the dependence χ12 = f(Δπ1) (curves 1A and 
1B), χ21  =  f(Δπ1) (curves 2A and 2B) and χ22  =  f(Δπ1) (curves 
3A and 3B) for Δπ2  =  490.2  kPa. This figure shows that 
χ12  = χ21  = 0 for Δπ1  = 78.75 kPa. In turn χ11  > 0, χ33  > 0 and 
χdet > 0 for Δπ1 < –78.75 kPa and for Δπ1 > 78.75 kPa. On the 
other hand, χ11 < 0, χ33 < 0 and χdet < 0 for Δπ1 > –78.75 kPa 
and for Δπ1 < 78.75 kPa.

Fig. 8c shows the dependence χ13 = f(Δπ1) (curves 1A and 
1B) and χ31 =  f(Δπ1) (curves 2A and 2B) for Δπ2 = 490.2 kPa. 
This figure shows that χ13  =  0, for Δπ1  =  78.75  kPa. In con-
trast, χ13  >  0 for Δπ1  <  –78.75  kPa and for Δπ1  >  78.75  kPa. 
Whereas χ31 > 0, for Δπ1 < –97.5 kPa and for Δπ1 > 97.5 kPa. 
In contrast, χ33  <  0, for Δπ1  >  –97.5  kPa and for 
Δπ1 < 97.5 kPa. It should be noted that χ23 = χ32 = 0.

   

 

(a)                                                                                          (b) 

(c)                                                                            (d)

Fig. 8. Coefficients: χij  =  f(Δπ1) and χdet  =  f(Δπ2) as functions of glucose osmotic pressure difference (Δπ1) for Δπ2  =  490.2  kPa and 
(i,  j)  =  {(1,  1), (3,  3) and det (a), (1,  2), (2,  1) and (2,  2) (b), (1,  3) and (3,  1) (c)}. Thickness of CBLs as a function of time of CBLs 
rebuilding δ = f(t) (d).
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Fig. 8d shows the temporal dependence of CBL thick-
ness (d) for Δπ1 = 78.45 kPa and Δπ2 = 490.3 kPa. Experimental 
studies were carried out using the measurement set described 
in the previous papers [7,55–57]. This measurement set 
consisted of a membrane system, a Mach–Zehnder interfer-
ometer, a TV-CCD camera, and a computerized data acqui-
sition system. Interferograms, obtained for the Nephrophan 
membrane, which was located in a horizontal plane and 
separated glucose solutions in an aqueous ethanol solution 
were presented in the paper [47]. The methodology for cal-
culating d  =  f(t) on the basis of data obtained by the inter-
ferometric method is presented in articles [7,55–57]. Fig. 8d 
shows that the dependencies d = f(t) for t < tcrit and configu-
rations A and B are identical (tcrit = 50 s, dcrit = 0.53 mm). For 
t  >  tcrit, d fluctuates around the critical value. Fluctuations 
are a manifestation of free convection in near-membrane  
areas [44,47].

3.8. Dependencies between Peusner coefficients (Nr
ij, Nr

det) and 
Péclet coefficients (℘r

vk, ℘r
ak)

The classic Péclet coefficient (℘) known from the liter-
ature [50,51] is expressed by the ratio of the rate of advec-
tion and the rate of diffusion. This ratio can be represented 
by the equation ℘ = (1 – σ)ℓ–1, where σ is the dimensionless 
reflection coefficient and ℓ is the transmittance coefficient 
of the solute expressed in units m·s–1. Thus, ℘ is expressed 
in s·m–1. The product of ℘ and Jv is called the Péclet num-
ber (Pe), and it is a dimensionless quantity. Due to the fact 
that ℓ = wRT, where w – membrane permeability coefficient, 
we can write ℘  =  (1  – σ)(wRT)–1. By entering the following  
notations:
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we can express the Péclet coefficients ℘r
v1, ℘r

v2, ℘r
a1 

and ℘r
a2 for concentration polarization conditions by the  

equations.
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The unit of ℘r
v1 is s·m2·mol–1, ℘r

a1 – s·m–1, ℘r
v2 – mol·N–1·m–1 

and ℘r
a2 – s·m–1.

Using Eqs. (43)–(46), Eqs. (14)–(17), (20) and (24) can 
be written in the following forms:
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Using coefficients ℘r
v1, ℘r

v2, ℘r
a1 or ℘r

a2, we can write the 
equations for modified Péclet numbers for fluxes (Jr

1, Jr
v) 

and for thermodynamic forces (Δπ2/C2).
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3.9. Dependences between eij
r

Nr
� �  coefficients, nr

ij, nr
ji coefficients 

and Qr
ij

Using Eqs. (34) and (35), Eqs. (29), (30) and (34) can be 
converted to the form:
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The values of the coefficients eij
r

Nr
� �  are limited by the 

relation 0 1� � � � �eij
r

Nr
. Taking into account Eqs. (57) in (28) 

we get:
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To obtain the equation for �U
r

Nr
� �  it is necessary to 

include Eq. (31) in Eq. (29).
Using Eqs. (25) and (58) can be transformed to the form:
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Most of the curves illustrating the dependencies 
Nr

ij = f(Δπ1) and Nr
det = f(Δπ1) for Δπ2 = 490.2 kPa (i, j ∈ {1, 2, 3}, 

r = A, B) shown in Figs. 2 and 3 for concentration polariza-
tion conditions are nonlinear and depend on Δπ1 and mem-
brane system configuration. This dependence makes the 
mentioned curves asymmetric with respect to the vertical 
axis passing through the point Δπ1  = 0. Moreover, the non-
linearities of these dependencies are reflected in the curves, 
which illustrate the dependencies of coefficients �S

r

Nr
� � , 

eij
r

Nr
� ��
�

�
�max

, �F
r

N ij
r� ��

�
�
� , �U

r

N ij
ij
r

r
n� ��

�
�
� , Qij

r

N ijr� � � �and �  on Δπ1 
and membrane system configurations, shown in Figs. 4–8.

The curves shown in Fig. 8a–c facilitate the evaluation 
of the concentration Rayleigh number Rr

C), which controls 
the process of transition of the system from the convec-
tion-free to the convective state or vice versa. The most 
important is the critical value of this number (Rr

C)crit, which 
acts as a bifurcation point. To demonstrate the usefulness 
of the coefficient χij to determine the critical value of the 
concentration Rayleigh number (Rr

C)crit, let us consider the 
relationship χij  =  f(Δπ1) for Δπ2  =  490.2  kPa (i,  j ∈  {1,  2,  3} 
shown in Fig. 8a–c and the equation representing the con-
centration Rayleigh number for membrane transport pro-
cesses of solutions consisting of water and two solutes 
proposed in the papers [44,54].

R
g

D D RT

C
D RT

C
r

l l

�
�� �

�
�

�

�
��

�

�
�� �

�� �

�
� � � �

�
�

� � �

11

1 1 11

1
1

22 1 12

2

2
�

�� � �
�

� �
11 2 22 2

2
4

2D RT C�� �
�
�

�

�
��

�

�
��

�



�
�

�



	
	

� 	 (60)

where g – earth acceleration, D1, D2 – diffusion coef-
ficients of the first and second solute, respectively, R – 
universal gas constant, T – absolute temperature, ω11, ω22 
– permeability coefficients of the first and second solute, 
respectively, ρl – density of water, vl – viscosity coefficient of 
water, Δπ1, Δπ2 – osmotic pressure differences, ∂ρ/∂C1, ∂ρ/∂C2 
– change in density due to change in concentration of the 
first component and/or the second component, respectively, 
δ – thickness of concentration boundary layer. To calculate 
the critical value of Rr

C by means of Eq. (61), we will con-
sider the following data: g = 9.81 m·s–2, D1 = 0.69 × 10–9 m2·s–

1, D2  =  1.07  ×  10–9  m2·s–1, R  =  8.31  J·mol–1·K–1, T  =  295  K, 
ω11  =  0.8  ×  10–9  mol·N–1·s–1, ω22  =  1.43  ×  10–9  mol·N–1·s–1, 
ρl = 998 kg·m–3, vl = 1.01 × 10–6 m2·s–1, ∂ρ/∂C1 = 0.06 kg·mol–1, 
∂ρ/∂C2  =  –0.009  kg·mol–1 and Δπ2  =  490.2  kPa. In addi-
tion, from Fig. 8 we read the value of Δπ1  =  ±78.75  kPa  
(e.g., for χ12  =  0) and from Fig. 8d we read the criti-
cal value of concentration boundary layer thickness 
δcrit = 0.53 mm. The calculated critical value of the concen-
tration Rayleigh number is (Rr

C)crit = 414.2. It should be men-
tioned that the relationship δ = f(t) was determined by laser  
interferometry.

4. Conclusions

Research has shown that:

•	 The description of the transport of ternary non-electro-
lyte solutions through a horizontally oriented membrane 
using the Nr version of the Kedem–Katchalsky–
Peusner equations introduces nine Peusner coeffi-
cients Nr

ij (i, j ∈ {1, 2, 3}, r = A, B) and the coefficient Nr
det, 

which is equal to the determinant of the matrix [Nr].
•	 For Nephrophan membrane separating solutions of glu-

cose in aqueous ethanol solutions in concentration polar-
ization conditions, the values of Nr

ij (i, j ∈ {1, 2, 3}, r = A, B) 
and Nr

det coefficients are nonlinearly dependent on glu-
cose osmotic pressure difference Δπ1 (Δπ2  =  490.2  kPa) 
and membrane system configuration. The non-diago-
nal coefficients do not satisfy the alternation relation 
which means that Nr

12 ≠ Nr
21, Nr

13 ≠ Nr
31 and Nr

23 ≠ Nr
32.

•	 For homogeneous solutions, the coefficients Nr
ij 

(i,  j ∈  {1,  2,  3}, r  = A, B) and Nr
det do not depend on the 

configuration of the membrane system and the coeffi-
cients Nr

12, Nr
21, Nr

13 and Nr
33 do not depend on Δπ1.

•	 The concentration dependencies of the coefficients χij 
and χdet can be used to determine the direction of natu-
ral convection: for χij  <  0 or χdet  <  0, natural convection 
is vertically upward, and for χij > 0 or χdet > 0, it is verti-
cally downward. χij = 0, χdet = 0, refer to non-convective  
state.

•	 The Nr form of the equations of the Kedem–Katchalsky–
Peusner model is a useful tool for calculating the dissi-
pated energy (S-energy), coefficients Nr

ij and the fluxes 
Jr

v, Jr
k, used for the analysis of internal energy conversion 

(U-energy). The aim of presented method of energy con-
version analysis in membrane systems is to calculate the 
free energy (F-energy) �F

r

N ij
r� ��

�
�
�  based on an expression 

containing the production of S-energy �S
r

Nr
� �  and energy 

conversion efficiency coefficient eij
r

Nr
� ��
�

�
�max

.



A. Ślęzak et al. / Desalination and Water Treatment 301 (2023) 256–276274

•	 The energy conversion efficiency eij
r

Nr
� ��
�

�
�max

 can be 
calculated from the Nr

ij coefficients. The largest value 
of F-energy appears when the equation for �F

r

N ij
r� ��

�
�
�  

includes the coefficient er
Nr13� ��

�
�
�max

.
•	 These results may be useful for studying the transport 

properties of new polymeric membranes modified with 
nanoparticles, providing an increase in hydraulic per-
formance while maintaining high separation efficiency 
and controlling pore blockage phenomena.
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Symbols

Lr
ij, Rr

ij	 —	� Symmetric Peusner’s coefficients for 
non-homogeneous solutions for binary 
solutions (i, j ∈ {1, 2}, r = A, B)

Hr
ij, Pr

ij	 —	� Hybrid Peusner’s coefficients for non-ho-
mogeneous solutions for binary solutions 
(i, j ∈ {1, 2}, r = A, B)

Lr
ij, Rr

ij	 —	� Symmetric Peusner’s coefficients for 
non-homogeneous solutions for ternary 
solutions (i, j ∈ {1, 2, 3}, r = A, B)

Hr
ij, Pr

ij	 —	� Hybrid Peusner’s coefficients for non-ho-
mogeneous solutions for binary for ternary 
solutions (i, j ∈ {1, 2, 3}, r = A, B)

Hr
ij, Kr

ij
Nr

ij, Sr
ij

Wr
ij, Pr

ij
Lp	 —	� Hydraulic permeability coefficient, 

m3·N–1·s–1

Jr
v	 —	� Volume flux in non-homogeneous condi-

tions, m·s–1

Jr
k	 —	� Solute flux in non-homogeneous condi-

tions, mol·m–2·s–1

Chk, Clk	 —	� Concentrations of solutions in chambers of 
the membrane system, mol·m–3

Cr
hk, Cr

lk	 —	� Concentrations of solutes at interfaces: lr
h/M 

and M/lr
l, mol·m–3

Ck	 —	� Mean solute concentration in the mem-
brane, mol·m–3

lr
h, lr

l	 —	 Concentration boundary layers (CBLs), m
lr
h/M/lr

l	 —	 Complex CBL/M/CBL
RT	 —	� Product of the gas constant and thermody-

namic temperature, J·mol–1

Ph, Pl	 —	� Hydrostatic pressures (h higher and l lower 
value), Pa

ΔP	 —	 Hydrostatic pressure difference, Pa
Dk	 —	 Diffusion coefficient, m2·s–1

nr
ij	 —	� Degree of coupling for diluted and non-ho-

mogeneous solutions
Qij
r

Nr
�� �� 	 —	� Peusner’s coupling parameter for diluted 

and non-homogeneous solutions

eij
r

Nr
� ��
�

�
�max

	—	� Energy conversion efficiency for diluted 
and non-homogeneous solutions

�S
r

Nr
� � 	 —	 Flux of the S-energy, W·m–2

�F
r

N ij
r� ��

�
�
� 	 —	 Flux of the F-energy, W·m–2

�U
r

N ij
r� ��

�
�
� 	 —	 Flux of the U-energy, W·m–2

�ij Nr� � 	 —	 Convection effect
Rr

C	 —	 Concentration Rayleigh number
℘r

vk, ℘r
ak	 —	� Péclet coefficients for concentration 

polarization conditions. The unit of ℘r
v1 is 

s·m2·mol–1, ℘r
a1 – s·m–1, ℘r

v2 – mol·N–1·m–1 and 
℘r

a2 – s·m–1

(Pe)r
v1, 

(Pe)r
a1, 

(Pe)r
v2, 

(Pe)r
a2	 —	 Péclet numbers

Greek letters

Δπk	 —	 Osmotic pressure difference, Pa
σvk, σsk	 —	 Reflection coefficients
δr

h, δr
l	 —	� Thickness of concentration boundary lay-

ers in configurations A and B of membrane 
system, m

ωsk	 —	 Solute permeability coefficient, mol·N–1·s–1

ζr
p	 —	� Hydraulic concentration polarization 

coefficient
ζr

vk	 —	� Osmotic concentration polarization 
coefficient

ζr
sk	 —	� Diffusive concentration polarization 

coefficient
ζr

ak	 —	� Advective concentration polarization 
coefficient

ρl, ρh	 —	� Densities of solutions outside of CBLs, 
kg·m–3

ρr
l, ρr

l	 —	� Densities of solutions at the interfaces: lr
h/M 

and M/lr
l, kg·m–3
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