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a b s t r a c t
Toxic pollutants, especially dyes, are the main source of chemical pollutants and pose a major chal-
lenge to conventional water treatment systems such as activated sludge. Therefore, there is a need 
to develop appropriate techniques to eliminate these toxic dyes from different media. There are 
several limitations to using different techniques such as coagulation, chemical oxidation, membrane 
separation process, electrochemical and aerobic and anaerobic microbial degradation to remove 
these pollutants from wastewater. Adsorption is a promising method for removing dyes due to 
its high efficiency and selectivity, simplicity, low cost and recyclability of the adsorbents. It has 
recently been demonstrated that using activated carbon is a highly efficient technology in remov-
ing dyes from wastewater. However, its extensive use is restricted because of its relatively high 
cost encouraging researchers to investigate alternative sources of unconventional, efficient, low-
cost and environmental-friendly adsorbents. Agricultural waste materials are the most widely used 
bio-sorbents for removing dyes. These materials were characterized by different techniques such 
as adsorption–desorption of nitrogen at 77 K, Fourier-transform infrared spectroscopy, X-ray dif-
fraction, scanning electron microscopy-energy-dispersive X-ray spectroscopy etc, and it was found 
that they have a loose and porous structure and contain many functional groups in addition to 
being low-cost, high adsorption capacity as well as efficiency and low energy demand. This made 
them materials capable of adsorption of various contaminants. But one of their main drawbacks 
is that they present a small surface area, often less than 50  m2/g. The dye adsorption efficiency 
of these adsorbents varies depending on the pH of the solution, initial dye concentration, adsor-
bent dosage and process temperature. It was found that the most efficient agricultural wastes for 
the adsorption of Methylene Blue and Malachite Green were papaya seeds (555.56  mg/g; ~80%) 
and orange peels (483.63  mg/g), respectively. This review highlights the evaluation of the use of 
various agricultural waste materials as low-cost adsorbents for dye removal from wastewater, 
which is a safer alternative to traditional adsorbents. Some of the fundamental principles of dye 
adsorption were also outlined. These adsorbents are recommended for removing dyes from real 
wastewater under a continuous design to achieve commercial objectives.
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1. Introduction

Although about 70% of the Earth’s surface is covered by 
water [1], only 2.5% is useable as freshwater [2]. Freshwater 
demand increases with population density, urbanization, 
agriculture, and industrialization [3–13]. Freshwater scarcity 
has become a worldwide concern [14]. The World Health 
Organization estimates that 1.8 billion people will be under 
water stress by 2025 [15] and may reach 6  billion by 2050 
[16]. Water pollution is a highly controversial issue on a 
global scale due to its long-term consequences [17]. Dyes are 
one of the most important water pollutants in effluents from 
various industrial activities such as textile, pesticide, food, 
pharmaceutical, paints, rubber, paper, varnish, tanning and 
cosmetics [18–38]. Among these industries, the textile indus-
try ranks first as producing the largest amount of wastewa-
ter, beyond 56% [39–41]. According to recent estimates, the 
annual production is 106 tons of more than 100,000 commer-
cial dyes [42–45]. During the dyeing process, 10%–15% of the 
dye is lost, and approximately 20% of the lost dye is found 
in industrial wastewater [45,46]. The colour concentration 
in the wastewater can exceed 1 mg/L [47,48]. In addition to 
high toxicity, many dyes are highly carcinogenic [49], such 
as acid dyes (e.g., Acid Blue 25), azo dyes (e.g., Methyl Red), 
direct dyes (e.g., Congo Red), reactive dyes (e.g., Reactive 
red 120), nitro dyes (e.g., Martins yellow), sulfur dyes 
(e.g., Sulfur Brilliant) etc. Dissolved in the water, the pres-
ence of dyes reduces the dissolved oxygen, which greatly 
affects aquatic plants and species [50]. Conventional phys-
ical and chemical methods cannot destroy these dyes and 
are difficult to degrade using biological methods [21]. The 
aromatic structure of the dye molecules makes them more 
stable and difficult for biodegradation. However, during 
decomposition, synthetic dyes can create toxic secondary 
chemicals that are destructive to the aquatic environment 
[51–53] and can cause serious damage to the aquatic envi-
ronment and the health of living organisms if left untreated 
[54–56]. Therefore, remediation of the dyeing wastewater 
poses challenges to researchers and requires them to meet 
the laws imposed by the current legislation related to the 
quality of the treated water before discharging it into the 
environment [57]. Various physical, chemical and biolog-
ical techniques, such as adsorption, ion-exchange, solvent 
extraction, liquid–liquid extraction, membrane separation, 
chemical oxidation, precipitation, ozonation, coagulation, 
electrochemical, biological degradation, etc. are used for 
the removal of dyes from wastewater [33,41,58–70]. Most of 
these technologies are associated with disadvantages such 
as toxicity, by-products, energy consumption, smelly, long 
processing period, high cost, and secondary sludge produc-
tion [71–85]. Unlike other technologies, adsorption can be 
considered as a promising and effective physico-chemical 
method and an attractive alternative for wastewater treat-
ment. This process has some advantages compared to other 
methods, such as cost-effectiveness, high removal efficiency 
and selectivity, high adsorption capacity, simple operation 
process, easy operation technique, sludge-free process, high 
quality of the treated wastewater, reversibility, recyclabil-
ity of the adsorbents, low energy consumption. It does not 
produce deleterious substances [13,14,21,86–95]. Adsorption 
is affected by many factors, such as the type of adsorbent 
and its functional groups, surface area, adsorbent particles 

size, the type and size of the pores, adsorbate–adsorbent 
interactions, contact time, agitation speed, temperature, and 
pH [14,96–101]. Accordingly, this work reviews the chal-
lenges and opportunities of the adsorption methodology 
available as the current state of the art in removing dyes 
from wastewater. Adsorbents usually used to remove vari-
ous pollutants, particularly dyes, from wastewater include 
activated carbon, biochar, fly-ash, clays, silica gel, chitin, 
chitosan, zeolites, ion-exchange resins, agricultural waste 
materials (AWM), industrial by-products, and biological 
and polymeric materials [102–112]. The adsorbent selection 
is the most important step in the adsorption process, which 
depends on many factors such as cost-effectiveness, accessi-
bility, non-toxicity and high efficiency [113]. Activated car-
bon is one of the most widely used adsorbents due to its 
large active surface area, high porosity, various functional 
groups on the surface, and high adsorption capacity when 
removing dyes from wastewater. However, it is not appli-
cable for removing dyes in a large scale due to its high cost 
[13,14,21,86–89,114–116]. Therefore, researchers are always 
focused on finding an alternative to activated carbon with 
effective and low-cost sorbents. Since almost two decades 
ago, various non-traditional and cost-effective alternative 
adsorbents derived from natural materials and industrial 
transformation are explored [117–119]. AWM are con-
sidered as very effective bio-adsorbents when applied to 
remove dyes. The advantages of these materials lie in their 
inexpensive, eco-friendly, high efficiency and have high 
adsorption capacity and low energy consumption. They 
are also accessible in everywhere, considered as sustainable 
sources, can be used as a mixture of inorganic and organic 
substances and present different functional groups (such as 
hydroxyl, carboxyl, carboxyl, amino, nitro, etc.) and porous 
and loose structures [120–125]. The adsorption process for 
dye removal from wastewater is an ideal and effective alter-
native to other expensive treatment methods, especially 
when the adsorbent is low-cost, such as AWM. Low energy 
consumption and cost are the most important reasons for 
favouring adsorption. Several examples of case studies of 
agricultural waste materials, including coir pith, orange 
peel, banana peel, rice husk, straw, date pit, oil palm trunk 
fibre etc. were considered [109,111,112,118,126–155].

Studies on using agricultural waste as low-cost adsor-
bents have been ongoing for over two decades. In this 
review, a wide list of low-cost sorbent has been collected. 
The review evaluates different agricultural waste mate-
rials as inexpensive adsorbents for removing dyes from 
wastewater. The review also outlines some of the essential 
principles of dye adsorption onto adsorbents. The present 
review is expected to be useful in identifying cost-effective 
and efficient adsorption methods for the remediation of 
dyeing wastewater. Finally, the current review also targets 
various research gaps and their possible solution.

2. Classification of dyes

Dyes are mainly derived from natural (plants and ani-
mals) and synthetic (in which organic and inorganic com-
pounds are included). Synthetic dyes are classified based 
on their chemical structure, application, and particle charge. 
They can be classified classically according to the Color Index 
(CI) number, where each dye is given a unique number of 
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five digits depending on their chemical structure. However, 
due to the colour nomenclature’s difficulties, the application 
classification is often preferable [156]. Depending on the 
application, synthetic dyes can be divided into acid, basic, 
azo, direct, reactive, disperse, nitro, fluorescent bleach, mor-
dant, food, grain, pigment, natural, oxidation base, reagent, 
solvent, sulphur and vat dyes [156,157]. According to the 
chemical composition, synthetic dyes can be classified as, 
anthraquinone, azo, triarylmethane, basic, acidic, formazan, 
oxazine, phthalocyanine, stilbene, cyanine, diphenylmeth-
ane, xanthenes, diazahemicyanine, azine, acridine, hemicy-
aninem, indigoids, benzodifuranone, nitro, nitroso, and sty-
ryl [89,158,159]. Moreover, dyes can be classified based on 
their particle charge into cationic, anionic, and non-ionic. All 
basic dyes such as Methylene Blue (MB), Malachite Green 
(MG), Crystal Violet, Original Red 29 (OR29), Blue Base 
159 (BB159), Yellow Base 28 (YB), Rhodamine B etc. are cat-
ionic dyes. These dyes are used in paper, paint, nylon and 
polyester industries. Anionic dyes can also be divided into 
direct, acidic, and reactive dyes. Congo Red (CR), Methyl 
Orange, Direct Red 23 (DR23), Reactive Black 5 (RB5), etc. 
are among the most common anionic dyes. In addition, non-
ionic dyes include dispersed dyes such as Direct Green 97 
(DG97) [158,160,161]. The classification, chemical structure, 
applications, and eco-toxicological effects of some com-
mon dyes are shown in Table 1.

3. Dye removal techniques

Each dye has three parts: chromophore, chromogen and 
auxochrome. Chromophore is an unsaturated group that 
provides colour, and chromogen holds chromophore. It 
plays an important role in determining the final colour and 
its stability. While auxochromes are acidic or basic substi-
tuted groups that intensify the colour of the dye molecules 
and increase their water solubility, thus, it increases their 
ability to adhere to the fibres [179].

Current dye removal treatment techniques involve bio-
logical, physical, physico-chemical, and chemical processes 
(Fig. 1). However, these techniques have advantages and 
disadvantages. Most of these traditional methods are not 
widely applicable due to the high costs and large quantities 
of sludge formed at the end of the treatment processes [180].

•	 Biological processes: may involve the use of microor-
ganisms under aerobic (in the presence of oxygen) or 
anaerobic (without oxygen) conditions to reduce dilute 
organic dyes [13].
◦◦ Advantages: Remove several types of dyes at 

once, cheap and no foam formation, environmen-
tal-friendly and cost-competitive, less sludge pro-
duction, non-dangerous product, less consumption 
of water, and the ability of enzymes to degrade 
dyes [79,88].

◦◦ Disadvantages: Low reliability, long duration times, 
large land area, not effective for all dyes such as azo 
dyes, not eliminate all dye particles, and low biode-
gradability of recalcitrant chemicals [88,179,181–183].

•	 Advanced oxidation processes: this is one of the phys-
ico-chemical treatment processes for the degradation 
of synthetic dyes that has attracted the attention of 

researchers in recent years. The photocatalysis process 
is one of the most important because of its high effi-
ciency and short treatment time. The mechanism of this 
method is based on the generation of hydroxyl radicals 
(OH•) to oxidize the pollutants present in the wastewa-
ter. Hydroxyl radicals are strong, highly reactive oxi-
dizing agents (E° = 2.8 V) that attack organic pollutants 
and convert them to simpler organic compounds or fully 
mineralize in CO2 and H2O. A disadvantage of hydroxyl 
radical is that it has a short half-life and is non-selec-
tive in nature, in addition to being only effective in 
the acidic pH range 2–5 [186–191].
◦◦ Advantages: Effective decolourisation of both sol-

uble and insoluble dyes, in situ reactive radical 
development, little to no chemical intake, pollutant 
mineralization, and effective for molecules recal-
citrant (drugs, dyes, etc.) [88,184].

◦◦ Disadvantages: Long time, sludge generation, eco-
nomically unsustainable for small and medium 
enterprises, and technical limitations [88,184].

•	 Ion-exchange method: involves removing undesirable 
ionic contaminants from the water by exchanging them 
with another ionic substance.
◦◦ Advantages: Produce high-quality water, ion-ex-

changers can be regenerated, no loss of adsorption 
after regeneration, and low maintenance cost.

◦◦ Disadvantages: Effective to a limited number of dyes, 
very sensitive to pH, conventional non-selective res-
ins, limited selective commercial resins, and long-
time of regeneration [88–91].

•	 Membrane filtration method: is an assessment of water 
quality through a special filter, that is, membrane filter, 
to trap the microorganisms. Membranes also concentrate 
and purify many types of dye from their aqueous solu-
tions. It is now used extensively in process industries 
to concentrate, purify and improve the finished product.
◦◦ Advantages: Removes all dye types, effective for 

water recovery and reusing, small space, easy, fast, 
practical, and suitable even at high concentrations 
levels, products with high quality, effluent care and 
low solid waste output.

◦◦ Disadvantages: Concentrated sludge production, 
high cost, high energy demands, different design 
of membrane filtration systems, high maintenance, 
rapid membrane obstruction, fouling with high 
concentrations [88,185].

•	 Nanofiltration and ultrafiltration processes: 
Nanofiltration is a filtration process using a nanoporous 
membrane that is used in waters with low total dis-
solved solids. Ultrafiltration is a membrane technique 
that removes the dissolved and colloidal material in 
low transmembrane pressure.
◦◦ Advantages: Remove any dye, separation of low 

molecular organics and divalent ions and environ-
mental-friendly membrane.

◦◦ Disadvantages: High cost, high energy consumption, 
and high pressure [88–90,185].

•	 Electrochemical process: The electrochemical treatment 
of wastewater is considered as one of the advanced oxi-
dation processes, potentially a powerful pollution control 
method.



Table 1
Characteristics and application of some common dyes

Types of 
dye

Examples of dyes Chemical structure Applications Toxic effects References

Acid dye

Acid Blue 25
Acid Yellow 132
Acid Blue 25
Acid Violet
Acid Brilliant Blue

Acid Blue 25

Textile, wool, 
silk, leather, 
pharmaceutical, 
nylon, and mod-
ified acrylics

Vomiting, nausea, 
diarrhoea, cancer

[162–170]

Basic 
dye

Methylene Blue
Malachite Green
Methyl Violet
Rhodamine B
Basic Red 1
Basic Yellow 2
Crystal Violet 
Original Red 29
Blue Base 159
Yellow Base 28

Methylene Blue

Paper, nylon, 
polyacrylo-
nitrile, and 
polyesters

Agitation, 
bluish-coloured 
lips, confusion, 
dark urine, fever, 
difficulty breath-
ing, headache and 
dizziness

[162,163,166,170]

Azo dye

Methyl Red
Methyl Orange
Trypan Blue
Direct Black 22
Acid Orange 20

Methyl Red

Textile and food 
industries

Carcinogenic 
human and 
animal tumours, 
it has effects on 
the eyes, skin and 
digestive system

[37162,164,168–
171]

Direct 
dye

Congo Red
Direct Red 28
Direct Black 38
Brilliant Yellow
Direct Blue 151
Direct Dark Green NB
Direct Brown 44

Congo Red

Cotton, paper, 
leather, wool, 
silk and nylon. 
They are also 
used as pH 
indicators and as 
biological stains

Respiratory tract 
irritation and 
cancer

[162,163,172–174]

Reactive 
dye

Reactive red 120
Reactive Red 147
Reactive Black 5
Reactive Blue 19

Reactive red 120

Textile, wool, 
silk, cotton

Skin irritation, 
skin cancer, geno-
toxicity, mutagen-
icity, cytotoxicity, 
high and unde-
sired levels of 
dissolved solids in 
the effluent. Aller-
gic reaction in 
eyes, skin, mucous 
membrane, 
and the upper 
respiratory tract

[162,163]

Disperse 
dye

Disperse Red 9
Disperse yellow 26
Disperse Violet 1
Disperse Red 60

Disperse yellow 26

Coloring syn-
thetic fibres such 
as polyester, 
nylon, acrylic, 
and acetate 
rayon

Sensitization and 
elicitation to the 
body

[162,163,175]

Table 1 (Continued)
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Types of 
dye

Examples of dyes Chemical structure Applications Toxic effects References

Nitro 
dye

Martins yellow
Palatine Orange 
Nitroso Green  

Martins yellow

Dyeing of 
human hair, 
dye wool

Decreases light, 
penetration and 
photosynthetic 
activity, carcino-
genic and muta-
genic

[162,163,176]

Mordant 
dye

Mordant Red 11
Mordant yellow 10
Mordant Black 17

 
Mordant yellow 10

Textile fibres 
such as wool, 
silk, and leather

Allergic reactions [162,163,177,178]

Sulfur 
dye

Sulfur Brilliant Green
Sulfur blue 10
Sulfur Black 1
Leuco Sulfur Black 1
Phthalic  
anhydride

 
Sulfur blue 10

Dyeing cellu-
losic fibres and 
cotton

Skin irritation, 
itchy or blocked 
noses, sneez-
ing, sore eyes, 
carcinogenic

[162,163,166]

Table 1

 

Fig. 1. Various wastewater treatment techniques for dyes 
removal.

◦◦ Advantages: No chemicals, no produce of sludge, 
direct or indirect oxidation flexibility, space saving, 
high efficiencies, environmental-friendly.

◦◦ Disadvantages: High cost of electricity, ferrous 
oxide sludge [88,185–192].

•	 Flocculation and coagulation process: Coagulation is the 
destabilization of colloidal particles brought about by 
adding a chemical reagent called coagulant. Flocculation 
is the agglomeration of destabilized particles into 
microfloc and after into bulky floccules which can be 
settled called floc.
◦◦ Advantages: Significant reduction in biochemical 

oxygen demand (BOD), chemical oxygen demand 
(COD), and a wide range of commercial chemicals.

◦◦ Disadvantages: Addition of non-reusable chemical 
substances (coagulants, flocculants, aid chemicals), 
production a large volume of sludge, high residual 
aluminium concentration [88].

•	 Irradiation method: reduces or eliminates pests and 
the risk of food-borne illnesses and prevents or slows 
spoilage and plant maturation or sprouting.
◦◦ Advantages: Effective at laboratory scale, adsorbent 

loss, effective laboratory oxidation.
◦◦ Disadvantages: Expensive, the need for a lot of 

dissolved O2 [88].
•	 Biodegradation process: consists of three stages: 

bio-deterioration, bio-fragmentation, and assimilation.
◦◦ Advantages: Reusable, high efficiency, nontoxic, 

elimination of various types of azo dyes at once, and 
short time (maximum of 30 h).
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◦◦ Disadvantages: Producing sludge, unreliable enzyme 
production, needs nitrogen, confined area to grow, 
effective to a limited number of dyes (suitable only 
for azo dye removal) [88].

•	 Ozonation method: is an advanced oxidation process 
using ozone, a reactive gas with low solubility, usually 
generated on-site. Once dissolved in water, it undergoes 
complex decomposition and oxidation reactions.
◦◦ Advantages: Good decolourisation, COD reduction, 

no sludge, automated already at lab and pilot scale, 
effective dye removal technique, quick reaction, 
ozone can be applied gaseously.

◦◦ Disadvantages: Very expensive, short half-life 
(20 min), unstable method [88].

As a result, many of these techniques effectively remove 
dye in the laboratory scale. However, because they are 
expensive, huge energy consumption, and long processing 
time, large amounts of sludge may be produced in some 
cases, which must be handled optimally to avoid further 
environmental contamination, making their use commer-
cially restricted [192]. Among the various treatment tech-
niques, adsorption is considered promising, attractive and 
the most efficient method [191–197].

4. Adsorption process

Adsorption is a surface phenomenon in which a mass 
transfer occurs between two immiscible forms at a biphasic 
interface, such as a gas–solid, gas–liquid, or liquid–solid. 
The solid is called adsorbent while the accumulated form is 
called adsorbate. Adsorption processes have gained impor-
tance as a viable method for wastewater treatment. Cost-
effective, eco-friendly, flexibility in design and use, revers-
ibility and recyclability, high efficiencies and simplicity 
are the most important advantages that make adsorption 
superior to other traditional methods [191–198]. Adsorption 
is a physical, chemical, or physico-chemical process. 
Table 2 and Fig. 2 show the difference between physical 
and chemical adsorption [13,21,199–202].

4.1. Agricultural waste materials as low-cost adsorbents for dyes 
removal

Activated carbon is one of the most common adsor-
bents due to its active surface and high adsorption capacity 
in removing various pollutants from aqueous solutions. 

However, it is not practical to apply to remove dyes because 
of the high cost of production [64,194]. It is known that the 
most important features of adsorbents are large surface 
area, high adsorption capacity, high adsorption efficiency, 
large porosity, stability, feasibility, compatibility, eco-friend-
liness, low cost, and easy availability [203–111]. Among the 
investigated adsorbents in dye removal that have received 
increasing attention are AWM. The advantages of utiliz-
ing these materials are low cost, high efficiency, acces-
sible in almost every part of the world, minimum energy 
consumption, can be used without treatment, simple main-
tenance, high adsorption capacity, and absence of danger-
ous by-products [112–122]. The use of AWM as adsorbents 
is very important for removing many pollutants from 
wastewater on the one hand and for the disposal of AWM 
themselves on the other hand [123]. AWM have a porous 
structure [123], and its composition can include various 
functional groups such as hydroxyl, carboxylate, amino, 
nitro, etc. [5,123–204]. The presence of such functional 
groups can enhance the removal of dyes, and can play a 
role in the selective removal of some dyes (cationic, anionic 
or non-ionic) [205,206]. The performance of AWM can also 
be improved by modifying it with some chemical reagents 
such as acids, bases, salts, oxidants, etc. [206,207].

The most common AWM to remove dyes are pistachio 
peels, rice hulls ash, coffee powder, pomelo peels, gar-
lic peels, pomegranate peels, coconut shells, orange peel, 
banana peel, tea waste, squash coal, peat bagasse, and coal 
fly ash [109,111,112,118,126–155,208–215].

Determining the physico-chemical surface properties of 
adsorbents is essential in predicting the adsorption capac-
ity. Specific surface area, particle size, pore size distribution, 
pore size, point zero charge (pHpzc), and functional groups 
on the surface of the adsorbent are the key parameters that 

Table 2
Differences between physical and chemical adsorption

Physical adsorption Chemical adsorption

Adsorbate and adsorbent bonding is weak physical 
(van der Waals forces, electrostatics, hydrogen bonds)

Adsorbate and adsorbent bonding is strong chemically (ion-exchange, 
covalent bond, electron or proton donating or receiving)

Reversible in nature Irreversible in nature
Process efficiency decreases with increasing temperature 
(exothermic process, ΔH < 0)

Process efficiency increases with decreasing temperature 
(endothermic process, ΔH > 0)

Multi-layered process Mono-layered process
Heat of adsorption is low (0–20 kJ/mol) Heat of adsorption is high (80–400 kJ/mol)

 
Fig. 2. Difference between physical and chemical adsorption.



237K. Ali et al. / Desalination and Water Treatment 302 (2023) 231–252

determine the efficiency of absorbents [216]. Therefore, 
it is necessary to understand the properties of the adsor-
bents and the adsorbent–adsorbent relationship to achieve 
the desired removal of the adsorbate. Therefore, several 
techniques (such as scanning electron microscopy (SEM), 
X-ray diffraction spectrum, Brunauer–Emmett–Teller (BET), 
Fourier-transform infrared spectroscopy (FTIR)) are used 
to characterize the physico-chemical surface properties of 
the adsorbent to determine the feasibility of use.

Morphological investigation by SEM analysis is a widely 
used technique to describe the detailed morphology, topol-
ogy and structure of the surface of an adsorbent. All stud-
ies that used AWM as adsorbents proved that they have a 
porous and loose structure and that their surfaces contain 
active sites suitable for adsorption of the dye from aque-
ous solutions and wastewater [210–228]. For example, the 
SEM images of coconut bunch waste [126], neem bark, 
and mango bark [127] exhibit a caves-like, uneven and 
rough surface morphology. The meranti sawdust has con-
siderable layers of pores where there is a good possibility 
for dye to be adsorbed [135]. The pores within the banana 
stalk waste particles were highly heterogeneous. All previ-
ous research proved that the surface of the adsorbent before 
adsorption differed from that after, which indicates the 
capability of dye adsorption. The functional groups on the 
surface of the adsorbent are usually determined by using 
FTIR spectra in the region of 4,000–400  cm–1. For example, 
the functional groups (–OH, C–H, –COOH, –NH2) present 
on the surface of the Olive Pomace are variable [100]. The 
main surface functional groups present in the rice husk 
Ash are carbonyl and siloxane groups [211]. The hydropho-
bic functional group of the C–H and the C–O group were 

also found on the surface of coffee ground powder [212]. 
Various functional groups such as hydroxyl, carbonyl, phe-
nolic, amino, carboxylate, nitro, and azo groups in the AWM 
make them selective and highly capable for adsorption of 
dyes from wastewater [208–228]. The specific surface area 
is one of the main characteristics of the adsorbents because 
the larger surface area can contain more active sites and 
also presents a larger pore size which enhances the inter-
action between the adsorbents and the adsorbates and then 
greatly affects the efficiency and capacity of the adsorption 
[13]. Some important surface properties of AWM are men-
tioned in Table 3. The relatively small surface area of AWM 
is one of the main drawbacks of these adsorbents, ranging 
from 0.034 to 123 m2/g in the scope of the research we have  
covered.

The dye solution’s initial pH, which strongly influences 
the surface charge density and the degree of ionization and 
adsorption efficiency of the adsorbent, plays a consider-
able role throughout the adsorption process. The degree of 
adsorption differs with the change in the pH of the medium. 
At high pH, the removal efficiency of the cationic dye 
increases because of the adsorbent’s negatively charged sur-
face that favours the cationic groups’ adsorption, resulting 
in an improvement in adsorption. However, at low pH, it 
shows reverse order [79].

The pH at the point of zero charges (pHpzc) of the adsor-
bent is defined where the net charge of the adsorbent sur-
face is equal to zero. In other words, pHpzc describes the 
state when the positive charge equals the negative charge 
on the surface of the adsorbent. When pH is less than pHpzc, 
favourable anionic dye adsorption is achieved. However, 
the adsorption of cationic dye is observed when the surface 

Table 3
Surface properties of agricultural waste materials for dye removal

Agricultural waste materials SBET (m2/g) Vtotal (cm3/g) Dm (µm) References

Activated carbon 1,400 – – [229]
Rice husk 2.4 – – [209]
Rice husk 33.5 0.0166 9.9 × 10–4 [211]
Rice husk 36.4 0.1049 4.3 × 10–3 [26]
Pomelo peels 0.034 – 1.3 × 10–3 [213]
Eucalyptus bark 6.6 0.00343 – [217]
Hazelnut shells 14.6–21.6 – 12.5–50.0 [129]
Walnut 13.3 – 12.5 [129]
Cherry 11.5 – 12.5 [129]
Oak sawdust 10.0 – 12.5 [129]
Pitch pine 9.4 – 12.5 [129]
Banana peels 20.6–23.5 – – [130]
Orange peels 20.6–23.5 – – [130]
Pumpkin seed hull 91.8 – – [149]
Garlic peels 0.561 1,120,000 8.0 × 10–3 [131]
Luffa cylindrica fiber 123 – 1.0–10.0 [228]
Yellow passion fruit waste 30 0.07 3.0 × 10–3 [132]
Wheat shells 0.67 – – [133]
Cucumber peels 0.855 – – [229]
Potato peels 0.614 – – [229]



K. Ali et al. / Desalination and Water Treatment 302 (2023) 231–252238

becomes negatively charged (pH  >  pHpzc) [79]. The pHpzc 
of the adsorbent is a good indicator of the electro-chemical 
properties of functional groups present on its surface [230].

The contact time, which represents the time required 
for adsorption to reach the equilibrium state [231], is 
another important factor for the separation system design 
[232]. Studying the effect of the initial adsorbent dose and 
dye concentration on the adsorption process is also neces-
sary. Previous literature studies indicated that adsorption 
capacity (qe) increases with dye concentration and decreases 
with adsorbent dose. However, it is reversed for the pro-
cess efficiency. The separation efficiency increases with the 
adsorbent dose due to the increased surface area and avail-
able binding sites [233,234]. However, it decreases with 
adsorbate concentration due to the increasing ratio of dye 
molecules to the available adsorbent surface area [130].

The amount of dye adsorbed by AWM is calculated 
by mass balance. The adsorption efficiency (E, %) and 
capacity (qe, mg/g) are determined by using Eqs. (1) and (2):
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where C0 (mg/L) is the initial dye concentration, Ce (mg/L) 
is the dye concentration at the equilibrium, m (g) is the 
weight of absorbent used, and V (L) is the volume of the 
dye solution. The adsorption capacities of some AWM and 
studied conditions are summarized in Table 4.

4.2. Isotherm equilibrium and kinetic models

The adsorption isotherm of a solid–liquid system gen-
erally provides information about the adsorption mecha-
nisms, the affinity of the adsorbent, the interactions between 
the adsorbent and adsorbate as well as surface properties 
and internal bonding [244]. Adsorption isotherm curves 
describe the relationship between adsorbed dye (qe) capacity 
and the residual dye concentration in the solution at equi-
librium [245,246]. Adsorption isotherms generally plateau 
at high dosages, corresponding to complete surface cover-
age [245,246]. In most cases, the equilibrium-state behavior 
of an adsorbent is studied based on Langmuir, Freundlich, 
and Temkin models [244–252]. The Langmuir isotherm 
assumes the formation of a monolayer on the sorbent 
based on chemical interactions. In addition, the energy at 
each site is assumed to be equal and no interaction occurs 
between molecules adsorbed on the surface [244–250]. The 
Freundlich isotherm describes physical sorption processes 
that occur on heterogeneous surfaces. In other words, this 
model can describe the surface heterogeneity. Generally, 
formation of multi-layers of solute molecules is expected 
during the process [244–248,251]. According to the value 
of “1/n”, the process is deemed unfavourable (1/n  >  1), 
irreversible (1/n = 0) or favourable (0 < 1/n < 1).

The Temkin isotherm model suggests that indirect con-
tact between solute molecules during adsorption are sig-
nificant and assumes that adsorption heat decreases as the 

coating of the surface progresses [244–248,252]. Table 5 
shows the non-linear and linear expressions of these models.

One of the most important criteria for selecting an 
appropriate adsorbent is the rate of the adsorption pro-
cess. The study of the kinetics of the process reveals the 
variation of the adsorption capacity with time. The kinetic 
measurements estimate the time required to reach process 
equilibrium and understand the adsorption mechanism. 
The most common kinetic models are pseudo-first-order, 
pseudo-second-order, Elovich, and intraparticle diffusion 
kinetic models [253–256].

The pseudo-first-order kinetic model is mainly appli-
cable to describe the process in its first half [100,257]. The 
pseudo-second-order model indicates that adsorption 
occurs according to chemical reactions such as donating/
receiving, or sharing electrons [100,257]. The dose of adsor-
bent and the specific surface area play an essential role in 
this model [258]. Although the Elovich model is commonly 
used to describe the heterogeneous chemical absorption of 
gases on solid surfaces, its applicability to liquid processes 
can help to predict the diffusion of dye molecules on the sur-
face and the activation energy of the system [101,259]. The 
intraparticle diffusion model is widely used to determine 
the mechanism that controls the adsorption process either 
film diffusion or particle diffusion [101,260]. The expressions 
of kinetic models are exhibited in Table 6.

The surface of agricultural wastes may contain polar 
functional groups such as hydroxyl, carbonyl, carboxyl etc. 
These functional groups can play a role in the adsorption 
process between dye ions and polar sites on the surface of 
the adsorbent. Thus, the adsorption reaction is the rate-lim-
iting step in most desorption processes by agricultural 
wastes. The adsorbent’s specific surface area and the dye’s 
amount are two major factors affecting the adsorption rate. 
Thus, it was concluded that most adsorption processes that 
use agricultural waste as adsorbents follow the Langmuir 
isotherm- and the pseudo-second-order kinetic models 
[261]. Table 7 summarises the studies performed on apply-
ing isotherm and kinetic models for removing dyes using 
agricultural waste.

4.3. Effect of temperature and thermodynamics

The study of the effect of temperature and thermody-
namics is important in describing the adsorption process 
and achieving an equilibrium state. Thermodynamic param-
eters include Gibbs free energy change (ΔG°), enthalpy 
change (ΔH°), and entropy change (ΔS°). The value of ΔG° 
can be calculated from Eq. (3):

�G RT K� � � ln 	 (3)

where R is the general gas constant (8.314  J/mol·K) and K 
is the distribution constant [equilibrium constant; Eq. (4)] 
at temperature T (K). The ΔG° for physical adsorption pro-
cesses generally ranges from 0 to 20 kJ/mol, while it varies 
between 80 and 400 kJ/mol for chemical processes [99,261].
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Table 4
Adsorption efficiencies and capacities of some agricultural waste materials at the different studied conditions

Agricultural waste 
materials

Dye Contact 
time (min)

Tempera-
ture (K)

pH Dye concen-
tration (mg/L)

Adsorbent 
dose (g)

E (%) qmax 
(mg/g)

References

Activated carbon Indigo Blue 140 298–353 2–11 5–40 0.1–1.0 ⁓75 53.00 [227]
Coconut bunch Methylene Blue 330 303 2–12 50–500 0.2 – 70.92 [126]
Sunflower seed husk Methylene Blue 420 298–353 2–11 25–100 0.1 ⁓100 45.25 [128]
Hazelnut shells Methylene Blue 60 293 2.5–4.2 250–1,000 0.5 – 76.9 [129]
Walnut sawdust Methylene Blue 60 293 2.5–4.2 250–1,000 0.5 – 59.17 [129]
Cherry sawdust Methylene Blue 120 293 2.5–4.2 250–1,000 0.5 – 39.84 [129]
Oak sawdust Methylene Blue 60 293 2.5–4.2 250–1,000 0.5 – 29.94 [129]
Pitch pine sawdust Methylene Blue 60 293 2.5–4.2 250–1,000 0.5 – 27.78 [129]
Hazelnut shells Acid Blue 25 60 293 2.5–4.2 50–500 0.5 – 60.20 [129]
Walnut sawdust Acid Blue 25 – 293 2.5–4.2 50–500 0.5 – 36.98 [129]
Cherry sawdust Acid Blue 25 – 293 2.5–4.2 50–500 0.5 – 31.98 [129]
Oak sawdust Acid Blue 25 – 293 2.5–4.2 50–500 0.5 – 27.85 [129]
Pitch pine sawdust Acid Blue 25 – 293 2.5–4.2 50–500 0.5 – 26.19 [129]
Banana peels Methylene Blue 1,440 303 4–10 10–120 0.1 – 15.9 [130]
Banana peels Methyl Orange 1,440 303 4–10 10–120 0.1 – 17.2 [130]
Banana peels Rhodamine B 1,440 303 4–10 10–120 0.1 – 13.2 [130]
Banana peels Congo Red 1,440 303 4–10 10–120 0.1 – 11.2 [130]
Banana peels Methyl Violet 1,440 303 4–10 10–120 0.1 – 7.9 [130]
Banana peels Amido Black 10B 1,440 303 4–10 10–120 0.1 – 7.9 [130]
Orange peels Methylene Blue 1,440 303 4–10 10–120 0.1 – 13.9 [130]
Orange peels Methyl Orange 1,440 303 4–10 10–120 0.1 – 15.8 [130]
Orange peels Rhodamine B 1,440 303 4–10 10–120 0.1 – 9.1 [130]
Orange peels Congo Red 1,440 303 4–10 10–120 0.1 – 7.9 [130]
Orange peels Methyl violet 1,440 303 4–10 10–120 0.1 – 6.1 [130]
Orange peels Amido Black 10B 1,440 303 4–10 10–120 0.1 – 3.8 [130]
Garlic peels Methylene Blue 210 303–323 4–12 25–200 0.3 – 142.86 [131]
Yellow passion fruit 
waste

Methylene Blue 4,320 298 2–11 5–600 0.1–1.0 ⁓100 74.70 [132]

Wheat shells Methylene Blue 75 303–323 2–9 100–400 0.1–3.0 ⁓100 21.50 [133]
Cedar sawdust Methylene Blue 45 293 2–11 40 0.001–0.015 ⁓97 142.36 [134]
Crushed brick Methylene Blue 45 293 2–11 40 0.001–0.015 ⁓96 96.61 [134]
Meranti sawdust Methylene Blue 180 303–333 3–12 50–200 0.1–1.2 – 158.73 [135]
Mansonia wood 
sawdust

Methylene Blue – 299 – 120 – 93.6 28.07 [136]

Beech sawdust Methylene Blue 190 296 1.7–13 1.4–14 – – 11.40 [137]
Rice husk Methylene Blue 2,880 305 3–8 10–125 0.02–0.12 – 40.58 [138]
Papaya seeds Methylene Blue 180 303 3–10 50–360 0.05–1 – 555.56 [139]
Grass waste Methylene Blue 180 303 3–10 70–380 0.05–1.2 ⁓80 457.64 [140]
Paspalum notatum Methylene Blue 360 303 3–8 30–100 0.01–0.08 ⁓50 31.00 [141]
Pomelo peels Methylene Blue 315 303 2–10 50–500 0.2 – 344.83 [142]
Guava leaf powder Methylene Blue 20 303 7.5 100–800 2 ⁓100 295.04 [143]
Jackfruit peels Methylene Blue 180 303 2–11 35–400 0.05–1.2 – 285.71 [144]
Banana stalk waste Methylene Blue 330 303 4–12 50–500 0.2 – 243.90 [145]
Palm kernel fibre Methylene Blue 120 299–339 7.1 100–550 0.1 ⁓100 233.41 [146]
Broad bean peels Methylene Blue 320 303 2–10 30–325 0.3 – 192.70 [147]

Rubber seed shell Methylene Blue 60
Room tem-
perature

– 5–100 0.1–0.5 – 82.64 [148]

Castor seed shell Methylene Blue 120 309 – 25–300 0.1–1 – 158.73 [149]
Pumpkin seed hull Methylene Blue 110 303 2–11 25–300 0.3 – 141.92 [150]

Table 4 (Continued)
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The values of ΔH° and ΔS° can be obtained from the 
van’t Hoff equation [Eq. (5)] as the slope and intercept of the 
plot of lnK vs. 1/T, respectively.

lnK H
RT

S
R

� �
�
�

�� � 	 (5)

A negative value of ΔH° indicates the exothermic nature 
of the adsorbate’s adsorption on the adsorbent’s surface. On 
the other hand, a positive value of ΔH° refers to the endo-
thermic nature of the adsorption process and the forma-
tion of strong bonds between the adsorbate and adsorbent. 
A positive value of ΔS° signifies an increase in randomness 

Agricultural waste 
materials

Dye Contact 
time (min)

Tempera-
ture (K)

pH Dye concen-
tration (mg/L)

Adsorbent 
dose (g)

E (%) qmax 
(mg/g)

References

Pineapple stem Methylene Blue 330 303 2–10 25–300 0.3 – 119.05 [151]
Coconut husk Methylene Blue 20–180 – 2–12 50–500 0.25–1.5 100 99.00 [152]
Coffee husks Methylene Blue 120–720 303–323 3–11 50–500 0.5–3.75 96 90.10 [153]
Fallen Phoenix tree’s 
leaf

Methylene Blue 180 295–323 4.5–10 30–180 0.02 95 89.70 [154]

Hazelnut shells Methylene Blue 1,440 298–328 3–9 – 0.25 – 87.98 [155]
Neem bark Malachite Green 120 298 2–9 0.365–36.5 0.5–2 – 0.36 [223]
Tamarind shell Congo Red 60–360 303 5.5–12 20–80 0.05–0.9 – 10.48 [235]
Azadirachta indica leaf Congo Red 60–300 300 6.7 10–50 0.01–0.05 99 72.00 [236]
Teak tree bark 
powder

Methylene Blue 60 303–323 3–11 100–400 0.025–0.15 99.4 333.33 [237]

Tree fern Acid Yellow 132 180 298
3.5–
11.5

500–2,000 0.5–3 – 280.30 [238]

Pine sawdust Acid Blue 256 180 298
3.5–
11.5

500–2,000 0.5–3 – 398.80 [238]

Peanut hull Methylene Blue 720 293 2–11 25–200 0.05–0.5 ⁓100 68.03 [239]
Peanut hull Brilliant Cresyl Blue 720 293 2–11 25–200 0.05–0.5 ⁓100 – [239]
Peanut hull Neutral Red 720 293 2–11 25–200 0.05–0.5 ⁓100 87.72 [239]
Coir pith Acid Violet 120 303 3–11 40 0.05–1 ⁓95 7.34 [240]
Coir pith Rhodamine B 120 303 3–11 125 0.05–1 ⁓95 94.73 [240]
Coir pith Methylene Blue 80 303 3–11 125 0.05–1 ⁓95 120.43 [240]
Coir pith Acid Brilliant Blue 220 303 3–11 40 0.05–1 ⁓76.6 5.57 [240]
Rice husk Methylene Blue 150 305 3–8 10–125 0.02–0.12 88.7 40.58 [138]
Rice husk Indigo Carmine 480 293–323 2–10 50–500 0.2–2.5 – 65.91 [241]
Rice husk Safranin 2,880 305 – 10–125 0.06 – 178.08 [242]
Orange peels Malachite Green 1,440 305 – 50–200 0.009 – 483.63 [243]
Jujuba seeds Congo Red 300 303–333 2–12 25–100 0.01–0.3 ⁓88 55.56 [133]

Table 4

Table 5
Non-linear and linear equations of the most isotherm models used

Model name Non-linear equation Linear equation Plot
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Table 6
Non-linear and linear equations of the kinetic models studied

Model name Non-linear equation Linear equation Plot
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Table 7
Isotherm and kinetic models used in various studies for dyes removal

Adsorbent Dye Fitted isotherm model Fitted kinetic model References

Activated carbon Indigo Blue Freundlich Pseudo-second-order [227]
Mango bark Malachite Green Langmuir Pseudo-second-order [126]
Neem bark Malachite Green Langmuir Pseudo-second-order [127]
Sunflower seed husk Methylene Blue Langmuir Pseudo-second-order [128]
Hazelnut shells Methylene Blue Langmuir Pseudo-second-order [129]
Walnut sawdust Methylene Blue Langmuir Pseudo-second-order [129]
Cherry sawdust Methylene Blue Langmuir Pseudo-second-order [129]
Oak sawdust Methylene Blue Langmuir Pseudo-second-order [129]
Pitch pine sawdust Methylene Blue Langmuir Pseudo-second-order [129]
Hazelnut shells Acid Blue 25 Langmuir Pseudo-second-order [129]
Walnut sawdust Acid Blue 25 Langmuir Pseudo-second-order [129]
Cherry sawdust Acid Blue 25 Langmuir Pseudo-second-order [129]
Oak sawdust Acid Blue 25 Langmuir Pseudo-second-order [129]
Pitch pine sawdust Acid Blue 25 Langmuir Pseudo-second-order [129]
Banana peels Methylene Blue Freundlich – [130]
Banana peels Methyl Orange Freundlich – [130]
Banana peels Rhodamine B Freundlich – [130]
Banana peels Congo Red Freundlich – [130]
Banana peels Methyl violet Freundlich – [130]
Banana peels Amido Black 10B Freundlich – [130]
Orange peels Methylene Blue Langmuir – [130]
Orange peels Methyl Orange Langmuir – [130]
Orange peels Rhodamine B Langmuir – [130]
Orange peels Congo Red Langmuir – [130]
Orange peels Methyl violet Langmuir – [130]
Orange peels Amido Black 10B Langmuir – [130]
Garlic peels Methylene Blue Freundlich Pseudo-second-order [131]
Yellow passion fruit waste Methylene Blue Langmuir Pseudo-first-order [132]
Wheat shells Methylene Blue Langmuir Pseudo-second-order [133]
Cedar sawdust Methylene Blue Langmuir Pseudo-second-order [134]
Crushed brick Methylene Blue Langmuir Pseudo-second-order [134]
Meranti sawdust Methylene Blue Langmuir Pseudo-second-order [135]
Mansonia wood sawdust Methylene Blue Langmuir – [136]
Beech sawdust Methylene Blue Freundlich Pseudo-second-order [137]
Rice husk Methylene Blue Langmuir Pseudo-second-order [138]

Table 7 (Continued)
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at the solid–liquid interface during adsorption, while a 
negative value of ΔS° indicates a decrease in irregularity 
upon the adsorption [99–101]. Table 8 provides a summary 
of thermodynamic studies performed on the adsorption 
of dyes on agricultural waste materials.

AWM, such as papaya seeds, grass waste, pomelo peels, 
guava leaf powder, jackfruit peels, banana stalk waste, 
palm kernel fibre, teak tree bark powder, tree fern, pine 
sawdust has been used by many researchers in dye reme-
diation of contaminated water [139,140,142–156,237,238]. 
Hameed [139] used papaya seeds for the adsorption of MB 
(555.56 mg/g) present in wastewater at the equilibrium time 
of 180 min. The effect of increasing the initial dye concen-
tration on dye adsorption showed positive effects, and the 
dye adsorption followed the Langmuir isotherm and pseu-
do-second-order kinetic models. The adsorption of MB 
on grass waste achieved an adsorption capacity of up to 
457.64 mg/g [140]. In another study by Hameed et al., pom-
elo peels were used for the adsorption of MB (adsorption 
capacity: 344.83 mg/g at pH 8.0 and 303 K). The Langmuir 
isotherm best described the process of adsorption [142]. 

Guava leaf powder [143], jackfruit peels [144], banana 
stalk waste [145] and palm kernel fibre [146] as adsorbents 
achieved the maximum removal capacities of 295.04, 285.71, 
243.90 and 233.41 mg/g, corresponding to the contact time 
of 20, 180, 330 and 120  min, respectively in the removal 
of MB dye. Teak tree bark powder was also used for the 
adsorption of MB dye, which showed 333.33 mg/g adsorp-
tion capacity within 60 min [237]. Tree fern and pine saw-
dust exhibited a maximum adsorption capacity of 280.30 
and 398.80  mg/g for Acid Yellow 132 and Acid Blue 25 
adsorption in a contact time of 180 min, respectively [238]. 
The adsorptive behavior of MG on orange peels showed 
an adsorption capacity of 483.63  mg/g at a contact time 
of 24  h and 305  K [243]. According to the listed results, 
AWM, in addition to their many advantages, competes with 
activated carbon and nanocomposites in their effective-
ness in removing the dyes by the adsorption process.

Previously, conventional treatment processes (such as 
biological, coagulation/flocculation, and advanced physi-
co-chemical processes) were used to treat dyes in wastewa-
ter. Biological processes were used to remove dyes using 

Adsorbent Dye Fitted isotherm model Fitted kinetic model References

Papaya seeds Methylene Blue Langmuir Pseudo-second-order [139]
Grass waste Methylene Blue Langmuir Pseudo-second-order [140]
Paspalum notatum Methylene Blue Langmuir Pseudo-second-order [141]
Pomelo peels Methylene Blue Langmuir Pseudo-second-order [142]
Guava leaf powder Methylene Blue Langmuir Pseudo-second-order [143]
Jackfruit peels Methylene Blue Langmuir Pseudo-second-order [144]
Banana stalk waste Methylene Blue Langmuir Pseudo-second-order [145]
Palm kernel fibre Methylene Blue Langmuir Pseudo-second-order [146]
Broad bean peels Methylene Blue Langmuir Pseudo-first-order [147]
Castor seed shell Methylene Blue Multi-layer adsorption model Pseudo-first-order [149]
Pumpkin seed hull Methylene Blue Langmuir Pseudo-second-order [150]
Pineapple stem Methylene Blue Langmuir Pseudo-second-order [151]
Coconut husk Methylene Blue Langmuir Pseudo-second-order [152]
Coffee husks Methylene Blue Langmuir Pseudo-second-order [153]
Fallen Phoenix tree’s leaf Methylene Blue Langmuir Pseudo-second-order [154]
Hazelnut shells Methylene Blue Langmuir Pseudo-second-order [155]
Tamarind shell Congo Red Langmuir, Freundlich Pseudo-first-order [235]
Azadirachta indica leaf Congo Red Langmuir Pseudo-second-order [236]
Tree fern Acid Yellow 132 Langmuir Pseudo-second-order [238]
Pine sawdust Acid Blue 25 Langmuir Pseudo-second-order [238]
Peanut hull Methylene Blue Langmuir Pseudo-first-order [239]
Peanut hull Brilliant Cresyl Blue Freundlich Pseudo-first-order [239]
Peanut hull Neutral Red Langmuir Pseudo-second-order [239]
Coir pith Acid Violet Langmuir Pseudo-second-order [240]
Coir pith Rhodamine B Langmuir Pseudo-second-order [240]
Coir pith Methylene Blue Langmuir Pseudo-second-order [240]
Coir pith Acid Brilliant Blue Langmuir Pseudo-second-order [240]
Rice husk Methylene Blue Langmuir Pseudo-second-order [138]
Rice husk Safranin Langmuir Pseudo-second-order [242]
Orange peels Malachite Green Langmuir Pseudo-second-order [243]
Jujuba seeds Congo Red Langmuir Pseudo-first-order [133]

Table 7
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Table 8
Effect of temperature and thermodynamic parameters on some dyes removal by agricultural waste materials

Adsorbent Dye Effect of 
temperature

ΔG° (kJ mol–1) ΔH° (kJ mol–1) ΔS° (J mol–1 K–1) References

Activated carbon Indigo Blue Negative –4.21 to –4.86 –8.40 –11.74 [227]
Mango bark Malachite Green Positive –21.45 20.21 –150 [126]
Neem bark Malachite Green Positive –21.45 20.21 180 [127]
Sunflower seed husk Methylene Blue Positive – 3.27 18.3 [128]
Wheat shells Methylene Blue Negative –22.64 –24.11 –26.35 [133]
Cedar sawdust Methylene Blue Negative – – – [134]
Crushed brick Methylene Blue Negative – – – [134]
Meranti sawdust Methylene Blue Positive −6.99 86.62 308 [136]
Guava leaf powder Methylene Blue Positive −29,254 33.20 192.966 [143]
Palm kernel fibre Methylene Blue Positive –13.99 37.61 172.564 [146]
Coffee husks Methylene Blue –6.55 17.69 –3.1 [153]
Fallen Phoenix tree’s leaf Methylene Blue Negative −4.62 7.77 −40 [154]
Hazelnut shells Methylene Blue Positive – –– – [155]
Azadirachta indica leaf Congo Red Negative –22.17 –218.70 –56.32 [236]
Almond shells Crystal Violet Positive –0.35 to –0.68 3.59 13.23 [262]
Banana peels Acid Blue 25 Positive –14.66 to –14.74 –12.10 –8.02 × 103 [263]
Durian peel Acid Blue 25 Positive –13.62 to –13.64 –13.40 –0.82 × 103 [263]
Anchote peel Methyl Orange Positive –8.21 to –9.05 –14.14 –27.90 × 103 [264]

 

 
 
 
 

 
 

 

Fig. 3. Adsorption process and mechanism for the dye removal [89–94].
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aerobic and anaerobic or facultative bacteria. The special 
conditions of use of biological processes and coagulants 
required to destabilize charged and suspended colloidal 
impurities are among the most important reasons for their 
lack of widespread use. The advanced physico-chemical 
processes include adsorption, filtration, photocatalysis, 
Fenton reaction, ozonation, UV/H2O2, and anodic oxidation. 
Adsorption is one of the widely used physio-chemical pro-
cesses in dye waste treatment. Although removal efficien-
cies can reach over 90%, pore blockages and film fouling 
during this process are still the major drawbacks. However, 
the adsorption process is beneficial for wastewater treat-
ment because of its operation ease, low cost, high efficiency, 
possibility of recycling of adsorbents, and suitability for the 
treatment of dye compounds. In general, when comparing 
previous studies, it is evident that adsorption is the most 
studied process for dye removal.

4.4. Adsorption mechanisms

Adsorption of dyes on the surface of the adsorbent can 
occur in two ways depending on the interaction between 
the solid surface and the adsorbent molecule (physical 
and chemical adsorption). There are several mechanisms 
of adsorption which may work in conjunction with each 
other (Fig. 3).

4.4.1. Physical adsorption mechanisms

Some factors such as adsorbent surface area, porosity, 
and aromaticity affect physical adsorption. Adsorption of 
dyes onto AWM surfaces mainly occurs through physical 
interactions such as van der Waals forces (intermolecular 
gravity), electrostatic interactions, pore filling, π–π interac-
tions, hydrophobic interactions, surface diffusion, intraparti-
cle pore diffusion, and hydrogen bonding [265–274].

4.4.2. Chemical adsorption mechanisms

Removing dyes from wastewater via AWM follows 
numerous chemical mechanisms such as surface complex-
ation, ion-exchange, and precipitation [34,88,89,275–278]. 
The surface complexation concept describes the interfacial 
equilibrium caused by specific chemical reactions between 
the bulk species and active sites (functional groups) on the 
surface of the adsorbent. They can explain the effects of 
changing chemical conditions, such as pH, on adsorption. 
It is also concerned with specific types of chemical reac-
tions and defines equilibrium constants, mass balances, and 
charge balances [277,278].

The removal of dyes by adsorption on the AWM 
surface may occur via exchange of dye ions/or the replace-
ment of functional groups present on the adsorbent sur-
face. In other words, the ion-exchange mechanism involves 
anion or cation exchange between the dye solution 
and the surface of the adsorbent [277,278].

5. Conclusion

This review article presents a wide range of agricultural 
waste materials, as cost-effective adsorbent. These low-cost 

bio-sorbents are recommended since they are relatively 
cheap or of no cost, good efficiency, high adsorption capac-
ity, minimum energy consumption, and simple maintenance 
compared to more expensive adsorbents.

Parameters of optimal values such as pH, temperature, 
initial dye concentration and adsorbent dose, reported in 
previous studies, are discussed. These factors determine 
to some extent, the adsorption mechanism. According to 
the study results related to the isotherms and kinetics of 
the adsorption process, agricultural wastes often follow 
Langmuir and Freundlich isotherms and pseudo-second-or-
der kinetic models. It was also found that the adsorption 
process is usually suitable, spontaneous, and either exo-
thermic or endothermic based on thermodynamic param-
eters. The biosorbent process requires further research in 
modelling, biosorbent regeneration and waste material sta-
bilization to enhance efficiency and recovery. At the end of 
this review, we recommend that more attention be paid by 
researchers to the dye removal procedure from real indus-
trial effluents. This can be achieved by applying models to 
reach the optimal conditions for the removal process, then 
conducting the process continuously within separation col-
umns to market it commercially, and finally renewing the 
adsorbent materials using one of the techniques used in 
this field, such as making a change in the pH, adding water, 
adding acidic or alkaline substance, or adding an organic 
substance. It is also possible to increase the effectiveness 
of these materials by modifying them in an acidic or basic 
medium or through the synthesis of composites to direct 
adsorption towards selective removal.
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Symbols and abbreviations

AWM	 —	 Agricultural waste materials
B	 —	 Constant related to heat of sorption, J/mol
b	 —	 Temkin isotherm constant
BB	 —	 Blue base
BOD	 —	 Biochemical oxygen demand
C0	 —	 Initial concentration of dye, mg/L
CI	 —	 Color index
Ce	 —	 Equilibrium concentration of dye, mg/L
COD	 —	 Chemical oxygen demand
CR	 —	 Congo Red
CV	 —	 Crystal Violet
DG	 —	 Direct Green
DR	 —	 Direct Red
EDX	 —	 Energy-dispersive X-ray spectroscopy
FTIR	 —	 Fourier-transform infrared spectroscopy
I	 —	� Boundary layer diffusion effects (external 

film resistance), mg/g
K	 —	� Distribution constant or equilibrium con-

stant, L/mg
k1	 —	 Pseudo-first-order rate constant, 1/min
k2	 —	� Pseudo-second-order rate constant, g/

mg·min
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kid	 —	� Intraparticle diffusion rate constant, 
mg/g·min0.5

KF	 —	 Freundlich adsorption capacity, L/mg
KL	 —	 Langmuir equilibrium constant, L/mg
KT	 —	� Temkin constant related to the adsorption 

heat, L/mg
m	 —	 Mass of adsorbent, g
MB	 —	 Methylene Blue
MG	 —	 Malachite Green
MO	 —	 Methyl Orange
n	 —	 Freundlich adsorption intensity
OR	 —	 Original Red
PFO	 —	 Pseudo-first-order
PSO	 —	 Pseudo-second-order
qe	 —	� Amount of dye adsorbed per gram adsor-

bent at equilibrium, mg/g
qt	 —	� Amount of dye adsorbed per gram adsor-

bent at time t, mg/g
qmax	 —	� Maximum amount of dye adsorbed per 

gram adsorbent, mg/g
R	 —	 Gas constant, 8.314 J/mol·K
RB	 —	 Rhodamine B
RB5	 —	 Reactive Black 5
RL	 —	 Dimensionless separation factor
R2	 —	 Correlation coefficient
SEM	 —	 Scanning electron microscopy
t	 —	 Time, min
T	 —	 Temperature, K
V	 —	 Volume of the aqueous solution, L
YB	 —	 Yellow Base 28
α	 —	 Elovich initial adsorption rate, mg/g·min
β	 —	 Elovich desorption constant, g/mg
ΔG°	 —	 Change in Gibbs free energy, kJ/mol
ΔH°	 —	 Change in enthalpy, kJ/mol
ΔS°	 —	 Change in entropy, kJ/mol·K
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